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Abstract

Increased interest in realistic modeling of natural phenomena leads naturally to their

description as random processes in space and time. Methods of generating realizations

of multi-dimensional random processes, specifically the Fast Fourier Transform, Turning

Bands, and Moving Average algorithms, are critically evaluated and means of improving

accuracy and computational efficiency are suggested. As an alternative and complement

to these methods, a technique called Local Average Subdivision (LAS) is introduced which

produces realizations of locally averaged random processes in one, two, or three dimensions.

The main advantage of the LAS method is that it can be easily conditioned on known data

and that changes in resolution of the field are properly represented statistically.

The LAS method is employed in a simulation-based study of thestatistics of excur-

sions and extrema of two-dimensional Gauss-Markov processes. Empirical relationships

for the average number of isolated excursions and their areas are presented and compared

with existing theories. A measure related to the degree of clustering of the excursions is also

proposed. Some common extreme value cumulative distribution functions are compared to

the simulation-based distributions.

Best linear estimation techniques in the frequency domain are incorporated in a new

approach to the simulation of optionally conditioned stationary or non-stationary space-time

processes and applied to earthquake ground motion simulation. This method is used along

with the Local Average Subdivision algorithm in a liquefaction risk case study where the soil

is modeled as a three-dimensional stochastic medium and input ground motions come from

a space-time random field. The liquefaction analysis is performed by a non-linear multi-

phase finite element model for which the LAS realizations areideally suited as they give

random properties representing the average over each element.
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Chapter 1

Introduction

1.1 General

One of the most magnificent and perhaps disturbing aspect of the universe around us

is its “randomness”. Whether or not the universe is truly random is still an open question

(which may be largely philosophical in nature). However on apractical level its staggering

complexity alone renders it unknowable in exact detail and one must settle for approxima-

tions. It is this uncertainty that leads naturally to the representation of nature through an-

alytical or numerical models of random phenomena. Such models have great importance

in applications ranging from reliability estimation, optimization, and even human thought.

The use of these models is not yet commonplace, however thereare a number of reasons for

this: First of all they depend heavily on extensive databases to ensure that they are reasonably

realistic. This data is often not available for a specific application and can be expensive to

obtain. Secondly the solution of complex problems using analytical models has often proved

to be difficult if not impossible. The advent of high-speed computers is beginning to allow

the solution of many of these but the techniques are as yet notgeneral knowledge. Finally

the theory governing all but relatively simple random processes has not been well devel-

oped. For example, although it is known that many ‘failures’are initiated at extrema, little

is known about the statistics of extrema in more than one dimension nor how to incorporate

such statistics into the analysis or design of a system.

The paucity of data is particularly evident for multi-dimensional processes. A geotech-

nical engineer attempting to evaluate the reliability of a footing will find very little informa-

tion dealing with the spatial variability of soil properties. Similarly the spatial distribution

of wind speeds in many natural settings is poorly understoodas is the distribution of defects

or micro-cracks in solids. Although no attempt is made herein to address this lack of data, it

may be that the availability of useful multi-dimensional random models will encourage the

necessary data collection.

It is the formulation and solution of complex stochastic problems to which this disserta-

tion is primarily devoted. In general if the analytical solution to a problem cannot be found,
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the very powerful Monte Carlo approach can in principle always be used. In many ways

Monte Carlo simulations are analogous to real life – for example much of our knowledge

about the safety of structures is based on years of full-scale ‘simulations’, i.e. the construc-

tion and observation of thousands of buildings. Of course the use of computer simulation

is much less expensive, not to mention the risk to human life that such full-scale ‘testing’

entails. Optimization problems also often entail the generation of many realizations of the

phenomena being modeled. For both of these issues reliable and accurate simulation tech-

niques are essential.

With this in mind, the first goal of this thesis is to evaluate and implement a variety of

random field generators. To accomplish this the general properties of the types of random

fields to be simulated are examined in this chapter followingthe work of Yaglom [71], Adler

[2], Pugachev [57], and Vanmarcke [25]. In Chapter 2 the simulation of random fields in

one, two, or three dimensions using Fourier Transform techniques is explored. Emphasis is

placed on implementation issues such as means of improving accuracy. While the computa-

tional speed of Fast Fourier transform simulations is impressive, considerable care must be

taken to ensure reasonable accuracy. In Chapter 3, the Turning Bands and Moving Average

techniques are investigated. The Turning Bands technique is attributed originally to Math-

eron [45]. Practical application and implementation issues follow the work of Mantoglou

and Wilson [43] and Tompson and Ababou [64]. Although the Turning Bands method can

be exceptionally efficient, bands or streaks are apparent inthe realizations. Also an equiv-

alent one-dimensional spectral or covariance structure must be determined through an inte-

gral equation. This reduces the method’s value as a general purpose easy-to-use simulator.

The Moving Average approach shares this drawback with the Turning Bands Method – a

weighting function must be determined through an integral equation. Once this has been

found, generation of one-dimensional process via the Moving Average method is relatively

efficient and accurate. However in higher dimensions, the method becomes extremely cum-

bersome and was abandoned due to its high cost. Chapter 4 introduces a technique dubbed

‘Local Average Subdivision’ (LAS) of producing one, two, orthree-dimensional realiza-

tions of ‘local average’ random processes. The LAS method depends on the knowledge of

a so-called variance function which was developed and investigated in considerable detail by

Vanmarcke [25] and is an alternative to the specification of second-order properties of ran-

dom processes through their covariance functions. The Local Average Subdivision method

is found to offer considerable accuracy, efficiency, along with the ability to condition the

field easily. In Chapter 5, the FFT techniques are combined with linear estimation theory

to enable the production of a set of spatially correlated non-stationary time histories (which
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could represent ground motion at a series of points) and optional conditioning of the field

(if some ground motions are known).

The final two chapters of the dissertation apply the simulation methods proposed in

Chapters 4 and 5 to illustrate that the methods work and to develop methodology for future

studies. In particular, Chapter 6 looks at some of the statistics of excursions and extrema of

the two-dimensional locally averaged Gaussian process having a first-order Markov correla-

tion function, herein referred to as the Gauss-Markov process. Existing theories concerning

statistics of excursions are presented and compared to dataobtained through the analysis of

a sequence of realizations. Empirical relationships are developed which more closely fit the

data over a range of thresholds and scales of fluctuation. Chapter 7 presents a liquefaction

case study in which a soil mass is modeled as a three-dimensional random field subjected

to earthquake excitation. A Monte-Carlo analysis is performed employing a non-linear fi-

nite element code written by Prevost [55] for two different earthquake intensities and two

different soil models.

1.2 Basic Properties of Random Fields

In the followingZ is defined to be a random variable taking values from the setΩ

which is the sample space. Now letE be an arbitrary set of elementsfx1,x2, . . .g. Then

the scalar random processZ is defined over the setE to be the family of random variables

Z(x1), Z(x2), . . . corresponding to all elementsx1,x2, . . . in the setE . In general, the setE
will be considered to be infinite, made up of points in some spaceRn. ThusZ(x) can be

thought of as a random function onE and is said to be fully specified if for anyk elementsx1,x2, . . . ,xk in the setE the cumulative distribution function

Fx1,x2...xk
(b1, b2, . . . , bk) = P [Z(x1) < b1, Z(x2) < b2, . . . , Z(xn) < bk] (1.1)

is given.

The random functionZ(x) is called strictly homogeneous if the distribution functions

(1.1) are invariant under the translation� , i.e., if

Fx1+τ ,x2+τ ,...,xk+τ (b1, b2, . . . , bk) = Fx1,x2,...,xk
(b1, b2, . . . , bk). (1.2)

In particular, homogeneity implies that all the one-dimensional distribution functions

(k = 1) are the same and independent of position

Fxi
(b) = F (b), 8xi 2 E , (1.3)
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and that all the two-dimensional distribution functions are only dependent on lags and di-

rection

Fxi,xj
(bi, bj) = Fxi−xj ,0(bi, bj). (1.4)

The complete description of a random function given by (1.1)is usually far too complex

to deal with easily and so we shall restrict ourselves hereinto a description based on just the

first two moments of the probability distribution. Using Stieltjes integrals these moments

are defined as follows

m(x) = E [Z(x)] =
Z

Ω

bdFx(b) (1.5)

B(xi,xj) +m(xi)m(xj) = E
�
Z(xi)Z(xj)

�
=
Z

Ω

Z
Ω

b1b2dFxi,xj
(b1, b2), (1.6)

wherem(x) andB(xi,xj) are usually referred to as the mean and covariance functions re-

spectively. If the mean defined by (1.5) is independent ofx (thus constant) and if the co-

variance function defined by (1.6) is dependent on just the lag and direction, i.e., if

E [Z(x)] = m,

(1.7)

E
�
Z(xi)Z(xj)

��m2 = B(xi � xj),

thenZ is said to be weakly homogeneous or homogeneous in the wide sense. In this work,

the word homogeneous will always be meant in this sense. Furthermore if the covariance

function is also independent of direction,

E
�
Z(xi)Z(xj)

��m2 = B(jxi � xj j), (1.8)

thenZ is isotropic.

In general the mean and covariance functions will not uniquely describe the random

functionZ(x), as all the higher-order moments are needed. This is not true, however, of a

Gaussian or normal process which is completely described bythe first and second moments

and for which there is no difference between strict homogeneity and wide-sense homogene-

ity. Because of this and since a large number of random functions encountered in practice

are at least approximately Gaussian, we will restrict ourselves to the study of homogeneous

Gaussian processes. Gaussian processes can often be transformed into non-Gaussian pro-

cesses with little loss in accuracy [72] allowing full (albeit approximate) stochastic repre-

sentation of a large class of phenomena. In addition we shallalways consider the Gaussian
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process to have mean zero – a mean function can always be easily added. Thus the only in-

formation needed about the homogeneous processZ(x) is carried in the covariance function

B(� ).

Examining now some of the properties of the covariance function B(� ) for homoge-

neous zero-mean processes, one sees from the definition (1.7) that

B(0)> 0, (1.9a)

B(�� ) = B(� ), (1.9b)jB(� )j � B(0), (1.9c)

where property (c) follows from the inequality

E [Z(x + � )� Z(x)]2 = E
�
Z2(x + � )� 2Z(x + � )Z(x) +Z2(x)

� � 0. (1.10)

If, in addition to property (1.9b), the covariance functionB(� ) is an even function with

respect to each component of the lag vector� = (τ1, . . . , τn), i.e.,

B(τ1, . . . , τk, . . . , τn) = B(τ1, . . . ,�τk, . . . , τn), (1.11)

for anyk 2 f1,2, . . . , ng, thenB(� ) is said to be quadrant symmetric (q.s.)[25]. Functions

possessing this property are fully defined if the function isknown only over the lag-space

quadrant of positive lags.

Equation (1.7) also implies that the inequality

mX
j,k=1

B(�j � �k)ajak � 0 (1.12)

holds for anym real numbersa1, a2, . . . , am and any�1, �2, . . . , �m. This follows from the

relation

mX
j,k=1

B(�j � �k)ajak =
mX

j,k=1

E
�
Z(�j)Z(�k)

�
ajak

= E

"
mX
j=1

Z(�j)aj

#2 � 0

and soB(� ) is a positive definite function. Khinchin [35] also shows that the converse result

is true, i.e., every positive definite function of a real (or integral) argument is the covariance

function of a homogeneous random process (or sequence).
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1.3 Spectral Representation of Homogeneous Processes

In the following it is useful to allow the random functionZ(x) to take values from the

set of complex numbers. In this caseZ(x) can be expressed as

Z(x) = R(x) + iQ(x), (1.13)

whereR(x) andQ(x) are real zero-mean random functions. The associated covariance func-

tion also becomes complex in general and is given by

B(� ) = E
�
Z(x + � )Z(x)

�
, (1.14)

where the overbar denotes the complex conjugate. Properties (1.9a) and (1.9c) remain valid

but (1.9b) becomes

B(�� ) = B(� ) (1.15)

and the inequality (1.12) showing positive definiteness becomes
mX

j,k=1

B(�j � �k)ajak � 0, (1.16)

wherea1, a2, . . . , am are arbitrary complex numbers.

An important result by Khinchin [35] allows the covariance function of any mean-square

continuous homogeneous zero-mean random process to be expressed in the form of an in-

tegral

B(� ) =
Z ∞

−∞

eiω·τ dΣ(!), (1.17)

whereΣ(!) is a real non-decreasing bounded function. A sufficient condition for mean-

square continuity ofZ(x) is that the covariance functionB(� ) be continuous at the point� = 0. In the following, we will assume that this condition is satisfied. If the absolute value

of the correlation function decreases sufficiently rapidlyasj� j ! 1 such thatZ ∞

−∞

jB(� )jd� <1 (1.18)

then the spectral distribution functionΣ(!) can be written

Σ(!) =
Z ω1

−∞

Z ω2

−∞

� � � Z ωn

−∞

S(!)d!, (1.19)

whereω1, ω2, . . . , ωn are the components of!. The functionS(!) is called the spectral den-

sity function of the processZ(x) and the condition thatΣ(!) be non-decreasing implies that

S(!) � 0 for all!. The use of (1.19) in (1.17) leads to the Wiener-Khinchin relationships

B(� ) =
Z ∞

−∞

eiω·τ S(!)d!, (1.20)
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S(!) =
1

(2π)n

Z ∞

−∞

e−iω·τ B(� )d� . (1.21)

The restriction (1.18) is satisfied by most covariance functions of practical interest. One

notable exception is that of the fractional noise process developed by Mandelbrot and van

Ness [41] and discussed in Chapter 4. Introducing now a random fieldW (!) with orthog-

onal increments satisfying

E [W (!)] = 0 (1.22a)

E
�
W (!)W (!)

�
= Σ(!) (1.22b)

E
�
W (∆!)W (∆!)

�
= Σ(∆!) (1.22c)

E
�
W (∆!i)W (∆!j)

�
= 0 if ∆!i \∆!j = φ (1.22d)

whereφ denotes the empty set,∆! = (ω1, ω1+∆ω1]�� � ��(ωn, ωn+∆ωn] is ann-dimensional

interval starting at the point (ω1, ω2, . . . , ωn), and

Σ(∆!) = Σ((ω1, ω1 + ∆ω1] � � � � � (ωn, ωn + ∆ωn]) (1.23)

is the amount of spectral power contained in the interval∆!. For a mean square continuous

homogeneous zero-mean random process, the spectral representation theorem tells us that

Z(x) has the following mean square integral representation

Z(x) =
Z ∞

−∞

eix·ωW (d!). (1.24)

Notice that if (1.19) holds then E
�
W (d!)W (d!)

�
= S(!)d!.

The importance of (1.24) is that it allows a realization of the fieldZ(x) to be created

simply by generating a sequence of realizations of the random variableW (d!) according

to the distribution given by (1.22a–1.22d) and summing themup. Notice thatW (d!i) is

independent ofW (d!j) if i 6= j. In fact if Z(x) is defined on a regular lattice then (1.24)

becomes

Z(xm) =
Z π

−π

eixm·ωW (d!)

= lim
K→∞

KX
k=−K

eixm·ωkW (∆!k), (1.25)
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where it is recognized that the sum is actually ann-dimensional sum and each component

ωjk of the vector!k has value

ωjk =
kπ

K
. (1.26)

In practiceK is taken as a finite number large enough to adequately the subdivide the fre-

quency interval [�π, π] so that little loss in accuracy occurs.

If Z(x) is mean square continuous, homogeneous, and takes values from the real num-

bers only, then (1.6) implies thatB(� ) must also be real. This in turn implies thatS(�!) =

S(!) since the imaginary part of (1.20) must drop out. For such a real process (1.24) can

be written as

Z(x) = lim
K→∞

KX
k=−K

nA(∆!k) cos(x � !k) + B(∆!k) sin(x � !k)
o
, (1.27)

whereA(∆!k) andB(∆!k) are independent identically distributed random intervalfunc-

tions with

E [A(∆!k)] = E [B(∆!k)] = 0

E [A(∆!k)]2 = E [B(∆!k)]2 = S(!k)∆! (1.28)

E
�A(∆!k)A(∆!j)

�
= E

�B(∆!k)B(∆!j)
�

= 0 if k 6= j
in the limit as∆! ! 0.

1.4 Local Average Processes

Virtually all the information gathered concerning the world around us comes to us in the

form of an average. The human eye cannot resolve infinite detail and so delivers averages

at some scale of resolution - more averaging being performedfor some of us than others!

Similarly both laboratory and field measurements usually represent averages over some re-

gion. It is thus appropriate to investigate the properties of random processes that have been

averaged over some domain. LetZD(x) be defined as the average ofZ(x) over some domain

D of sizejDj = T1T2 � � �Tn centered atx,

ZD(x) =
1jDj Z x1+T1/2

x1−T1/2
� � � Z xn+Tn/2

xn−Tn/2
Z(ξ1, . . . , ξn)dξ1 � � � dξn.
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Obviously, ifZ(x) is a zero mean function then so isZD(x). The covariance between lo-

cal averages can be derived by considering two averaging domains of sizejDαj and jDβj
centered at the pointsxα andxβ and taking expectations,

E
�
ZDα

(xα)ZDβ
(xβ)

�
=

1jDαj jDβj ZDα

Z
Dβ

E [Z(�)Z(�)] d�d� (1.29)

which for a homogeneous process is equivalent to

BDαDβ
(xα � xβ) =

1jDαj jDβj ZDα

Z
Dβ

B(� � �)d�d�. (1.30)

Letting jDαj = jDβj = jDj and takingxα = xβ = (T1
2 ,

T2
2 , . . . ,

Tn

2 ), the point variance of the

homogeneous processZD(x), BD(0), can be shown to change with the averaging regionD

according to

BD(0) =
1jDj2 Z T1

0

Z T1

0
� � � Z Tn

0

Z Tn

0
B(ξ1 � η1, . . . , ξn � ηn)dξ1dη1 � � � dξndηn, (1.31)

a 2n-fold integral. Equation (1.31) can also be written in the form

BD(0) = σ2γ(T1, T2, . . . , Tn), (1.32)

whereσ2 = B(0) is the point variance ofZ(x). The functionγ(D) is called the variance

function of the processZ and is essentially defined by (1.32). It relates the point variance

of the processZ to the variance of the averaged processZD. The variance function can

thus be viewed as a measure of the reduction of the point varianceσ2 under local averaging.

Formally,

γ(T1, . . . , Tn) =
1jDj2 Z T1

0

Z T1

0
� � � Z Tn

0

Z Tn

0
ρ(ξ1 � η1, . . . , ξn � ηn)dξ1dη1 � � � dξndηn,

(1.33)

=
1jDj2 Z T1

−T1

� � � Z Tn

−Tn

�jT1j � jξ1j� � � ��jTnj � jξnj�ρ(ξ1, . . . , ξn)dξ1 � � � dξn,
whereρ(� ) = B(� )/σ2. The fact thatρ(�� ) = ρ(� ) was used to reduce (1.33) from a 2n-

fold integration to ann-fold integration. It can be easily seen from (1.32) and (1.33) that ifjDj = 0 thenγ(0) = 1. Also since 0� ρ(� ) � 1 then 0� γ(T1, . . . , Tn) � 1.

The covariance between two local averages (1.30) can also beexpressed in terms of the

variance function; ifDα is a cube centered atxα with volumejDαj = T1T2T3 andDβ a cube

centered atxβ with volumejDβj = T ′
1 T

′
2 T

′
3 then

BDαDβ
(xα � xβ) =

σ2

23 jDαj jDβj 3X
j=0

3X
k=0

3X
ℓ=0

(�1)j(�1)k(�1)ℓ jDjkℓj2γ(T1j, T2k, T3ℓ).

(1.34)
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The dimensionsTij are shown in Figure 1.1 andjDjkℓj = T1jT2kT3ℓ. The general relationship

for then-dimensional case is

BDαDβ
(xα � xβ) =

σ2

2n jDαj jDβj 3X
j1=0

� � � 3X
jn=0

(�1)j1 � � � (�1)jn jDj1j2...jn
j2γ(T1j1

, . . . , Tnjn
).

(1.35)

x1

x3

x2

T33

T32

T31

T30 T2

T1

T3

Dα = T1 T2 T3

T23
T22

T21 T20

T10
T11

T12
T13

T′
3T′

2

T′
1 Dβ = T′

1 T′
2 T′

3

Figure 1.1 Distances characterizing the relative location of the volumesDα and
Dβ in three-dimensional space (courtesy of Vanmarcke [25]).

Another useful measure of the statistics of random fields is the scale of fluctuationθ

defined by Vanmarcke for one-dimensional processes to be

θ = lim
t→∞

Tγ(T ). (1.36)

This limit will exist if

lim
|τ |→∞

τ B(τ ) = 0. (1.37)

If (1.37) is satisfied, an alternative relationship giving the scale of fluctuation is

θ =
2
σ2

Z ∞

0
B(τ )dτ, (1.38)

which can be seen to be a measure of how rapidly the correlation function falls off to zero.
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1.5 Parameter Estimation and Ergodicity

In the following chapters where several methods of simulating random fields are pre-

sented, a means of evaluating the output of an algorithm is essential. This will be accom-

plished by comparing the estimated covariance function with the known (or assumed) co-

variance function. A one-dimensional estimator will be used exclusively since it can al-

ways be applied in various directions to estimate the multi-dimensional covariance structure.

Since all the simulation techniques used will employ a knownzero mean over the ensemble,

the following unbiased estimator along a line will be used

B̂(j∆x) =
1
Nf

NfX
n=1

1
N � j

N−jX
k=1

Zn(k∆x)Zn((k + j)∆x), j = 0,1, . . . , N � 1 (1.39)

whereNf is the number of realizations of the process over which to average,N is the num-

ber of discrete field points along the line in question and thesubscript onZ signifies that

it is a realization. It is assumed that the field points are equispaced and are at locations

(∆x,2∆x, . . . ,N∆x) to simplify notation. It is easy to see that for a known mean zero

process, E
�
B̂(τ )

�
= B(τ ).

Another aspect of the evaluation of a simulation algorithm is its rate of convergence to

the desired mean and covariance structure. If a homogeneousrandom process is ergodic then

its mean and correlation function can be found from a single realization ofinfiniteextent

m = E [Z(x)] = lim
|D|→∞

1jDj ZD

Z(x)dx, (1.40)

B(� ) +m2 = E [Z(x + � )Z(x)] = lim
|D|→∞

1jDj ZD

Z(x + � )Z(x)dx. (1.41)

In order to guarantee the validity of the above relationships, two conditions must be imposed

on the homogeneous random functionZ(x). For Gaussian processes these conditions are

lim
|D|→∞

1jDj ZD

B(� )d� = 0, (1.42a)

lim
|D|→∞

1jDj ZD

jB(� )j2d� = 0, (1.42b)

which are clearly met if

lim
τ→∞

B(� ) = 0. (1.43)

Thus ergodicity implies that the correlation between points separated by a large distance is

negligible. A realization obtained from a particular algorithm is said to be ergodic if the
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desired mean and correlation structure can be obtained using equations (1.40) and (1.41)

respectively. Of course realizations of infinite extent arenever produced and so one cannot

expect a finite realization to be ‘ergodic’ (the word loses meaning in this context). In fact

for finite-domain realizations averaging must be performedover the whole spaceΩ of out-

comes in order to exactly calculatem andB(� ). Although some algorithms may produce re-

alizations which more closely approximate the desired statistics when averaged over a fixed

(small) number of realizations than others, this becomes a matter of judgement. There is also

the argument that since most natural processes are far from ergodic, why should a simula-

tion of the process be ergodic? In general this issue will only be mentioned in passing. All

comparisons between the statistics estimated from the realizations of a given algorithm and

the exact will be computed using (1.39) and will note the number of realizations over which

averaging was performed. It is usually easy to tell if the estimated statistics are correctly

approaching the desired statistics.
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Chapter 2

Fourier Transform Techniques

2.1 One-Dimensional Processes

Much of the theory involving Fourier transform techniques was developed in the context

of time series analysis and can be found in Brillingeret al.[8] and Priestley [56]. Although

these works are directed primarily towards the spectral analysis of time series, they contain

the basic concepts pertinent to simulation using Fourier transforms. Through the spectral

representation theorem, it was shown in Chapter 1 that a meansquare continuous, homoge-

neous real process can be expressed as a sum of sinusoids. Forthe one-dimensional case,

the processZ(x) can be defined asZ(x) =
KX

k=−K

fAk cos(xωk) + Bk sin(xωk)g, (2.1)

which, for finiteK, is an approximation to the exact process,Z, defined by (1.27). For

numerical work, this approximation can be made as close as desired by increasingK and

the frequency range. Throughout this and following chapters the symbolZ will be used

to denote the algorithmic process. The coefficientsAk andBk are independent zero-mean

random variables which are taken to be Gaussian. Their variances are determined by the

spectral density function of the process,

E [Ak]2 = E [Bk]2 = S(∆ωk), (2.2)

andAk?Aj if k 6= j (similarly for Bk). To make the following explanations clearer, the

interval function notation used in Chapter 1 and in (2.2) will now be abandoned and by∆ω

we will henceforth mean the length of the interval so that (2.2) will be written

E [Ak]2 = E [Bk]2 = S(ωk)∆ωk, (2.3)

and forω1 < ω2 < � � � < ωK , the interval length∆ωk is defined by

∆ωk = 1
2(ωk+1� ωk−1). (2.4)
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This interval is usually taken to be constant, however in some cases, such as when the spec-

tral density function changes rapidly, the ability to change spectral resolution is valuable.

On the other hand, doing so eliminates (in general) the use ofthe Fast Fourier Transform

techniques to be discussed here and so we will consider the frequency interval length to be

constant.

SinceS(�ω) = S(ω), the one-sided spectral density functionG(ω) can be defined as

G(ω) = 2S(ω), ω � 0 (2.5)

such that the point variance,σ2, is preserved when integrating over the positive frequencies

only,

σ2 =
Z ∞

−∞

S(ω)dω =
Z ∞

0
G(ω)dω. (2.6)

Using the one-sided power spectral density function, (2.1)can be written in terms of the

non-negative frequenciesZ(x) =
KX
k=1

fAk cos(xωk) + Bk sin(xωk)g. (2.7)

The variance ofAk andBk become

E [A1]
2 = E [B1]

2 = 1
2G(ω1)∆ω,

(2.8)

E [Ak]2 = E [Bk]2 = G(ωk)∆ω, k = 2,3, . . . ,K

where it was assumed thatω1 = 0. The simulation thus involves generating realizations forAk andBk in (2.7).

An equivalent way of writing (2.7) isZ(x) =
KX
k=1

Ck cos(xωk + Φk), (2.9)

in whichΦk is a random phase angle uniformly distributed on the interval [0,2π] andCk is

Rayleigh distributed with
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E [Ck] =
p

π
2G(ωk)∆ω, (2.10)

E [Ck]2 = 2G(ωk)∆ω. (2.11)

TakingCk to be deterministic, as proposed by Shinozuka and Jan [62],Ck =
p

2G(ωk)∆ω, (2.12)

yields a process with the exact (in the limit) spectral powerat each frequency reflected in

every realization. This formulation has the advantage of converging more rapidly to the

desired statistics but the upper bound ofZ(x) over the space of outcomes isZ � KX
k=1

p
2G(ωk)∆ω (2.13)

which may be an unrealistic restriction. As it is often the extremal properties ofZ(x) which

are of interest, (2.7) will be used with random coefficients in the following.

Consider now the special case of the discrete processZj ' Z(xj), j = 1,2, . . . ,K

where the coordinatesxj and the frequenciesωk are selected according to

xj = (j � 1)∆x = (j � 1)
L

K � 1
, j = 1,2, . . . ,K (2.14)

ωk = (k � 1)∆ω = (k � 1)
2π(K � 1)

KL
, k = 1,2. . . . ,K, (2.15)

whereL is the physical length of the process (L = xK). The coefficients can be combined

to form a single complex coefficientXk = Ak � iBk, (2.16)

which leads to the discrete Fourier transform (DFT) pairZj =
KX
k=1

Xkei2π(k−1)(j−1)/K , (2.17)Xk =
1
K

KX
j=1

Zje
−i2π(k−1)(j−1)/K . (2.18)
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It can be seen thatZK+j = Zj and so the processZ is periodic with periodT where

T =
LK

K � 1
. (2.19)

Furthermore ifZ is real thenAk =
1
K

KX
j=1

Zjcos
�2π(k−1)(j−1)

K

�
, Bk =

1
K

KX
j=1

Zjsin
�2π(k−1)(j−1)

K

�
, (2.20)

= AK−k+2 = �BK−k+2.

From a practical point of view, the generation of a process inthe form of (2.17) can be

accomplished using the very efficient Fast Fourier Transform (FFT) algorithm developed

by Cooley and Tukey [16]. FFT algorithms are commonly available [30, 58, 52, 73] and

efficient implementation issues are discussed in some detail by Nobile and Roberto [51],

Harriset al. [28], Skinner [63], McClellan and Rader [47], and Polgeet al. [54]. For one-

dimensional processes on scalar machines, the FFT program given by Newland [50] was

employed which used a standard radix-2 butterfly (restricted to processes of length 2p). On

the CYBER 205 supercomputer, a vectorized FFT routine from the MAGEV library based

on a prime factor algorithm (N = 2p3q5r) was used.

The considerable savings in computer time that the FFT algorithm affords does not come

without a price. Care must be taken to ensure that the statistics of the process are preserved

reasonably accurately. First of all it is easy to show that the covariance function of a real FFT

process is symmetric about a lag ofT/2. Writing B̂k = B̂(k∆x) to denote the covariance

function of the FFT process (for this proof,k = 0,1, . . . ,K � 1),

B̂k = E
�Zℓ+kZℓ

�
= E

"
KX
j=1

Xj exp
�
i
�

2π(ℓ+k−1)(j−1)
K

�	 KX
m=1

Xm exp
��i �2π(ℓ−1)(m−1)

K

�	#
=

KX
j=1

E
�XjXj

�
exp

�
i
�

2π(j−1)(k)
K

�	
, (2.21)

where use was made of the fact that E
�XjXm

�
= 0 for j 6= m (overbar denotes the complex

conjugate). Similarly one can derive

B̂K−k =
KX
j=1

E
�XjXj

�
exp

��i �2π(j−1)(k)
K

�	
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= B̂k (2.22)

since E
�XjXj

�
is real. The covariance function of a real process is also real in which case

(2.22) becomes simply

B̂K−k = B̂k. (2.23)

This property is illustrated in Figure 2.1 for a process whose desired covariance function is

the simple exponential (Ornstein-Uhlenbeck process)

B(τ ) = σ2 e−
|τ |
2 . (2.24)

0 1 2 3 4 5

Lag τ

0
0.

2
0.

4
0.

6
0.

8
1

1.
2

C
ov

ar
ia

nc
e

Estimated Covariance
Desired Covariance   B(τ) = e-τ/2

Figure 2.1 Comparison of estimated and exact covariance function for apro-
cess generated using the Fast Fourier Transform (averaged over 200
realizations).

It can be seen that for relatively long scales of fluctuation,θ, (where the covariance

function decreases slowly compared to the process length) aphysical field size greater than

that required must be selected and the excess ignored. In general if the distanceτ ∗ is defined

to be the lag at which the covariance function decreases in magnitude to a sufficiently small

value (say 0.1) then the minimum field size,Lmin, can be determined approximately from

the desired field sizeL as

Lmin ' L + τ ∗. (2.25)
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For the Ornstein-Uhlenbeck process with covariance function

B(τ ) = σ2 e−
2|τ |
θ , (2.26)

the value ofτ ∗ can be taken equal to the scale of fluctuation,

τ ∗ = θ. (2.27)

so that for such a processLmin = L + θ implying that a field size of at least 9 should have
been used for the process shown in Figure (2.1) and the last four units ignored.

The second problem associated with the use of the FFT method has to do with the dis-
cretization of the frequency axis. Figure (2.2) illustrates an example in which an overly
coarse frequency increment results in a poor estimation of the point variance. The spectral
density function shown is that corresponding to the Ornstein-Uhlenbeck process (2.26) with
θ = 4.

B(τ ) = σ2 e−2τ/θ

G(ω) =
4σ2θ

π(4 + θ2ω2)

∆ω =
2π(K � 1)

KL

0 1 2 3 4 5
ω0

0.
5

1
1.

5

G
(ω

)

ω1 ω2 ω3

G(ω1)∆ω/2

G(ω2)∆ω
G(ω3)∆ω

Figure 2.2 Example of overly coarse frequency discretization resulting in a poor

estimation of point variance (L = 5 andθ = 4).

The frequency increment∆ω = 2π(K � 1)/KL = 2π/T must be small enough so that
the sequence12G(ω1)∆ω, G(ω2)∆ω, . . . adequately approximates the exact spectral density
function, particularly in regions whereG(ω) changes rapidly. This represents a further lim-
itation on the minimum size of the field,Lmin and its discretization.

In the following sub-sections two methods of improving the accuracy of the simulation
using the FFT approach are suggested. Both aim at approximating more closely the true
point variance of the process, the most important of its second-order statistics.
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2.1.1 Spectral Formulation

If the processZ(x) is to be real, a review of Equation (2.20) shows that the random

coefficientsAK−k+2 andBK−k+2 must be determined by their counterpartsAk andBk for

k = 2,3, . . . , K
2 . This in turn implies thatAk andBk need only have realizations generated

for them overk = 1,2, . . . ,1 + K
2 according to

E [A1]
2 = 1

2G(ω1)∆ω,

E [Ak]2 = E [Bk]2 = 1
4G(ωk)∆ω, k = 2,3, . . . , K

2 (2.28)

E
�A1+K/2

�2
= G(ωk)∆ω

with the added requirement thatB1 = B1+K/2 = 0.

The variances of the coefficientsAk andBk can be obtained in a more consistent fashion

using the inverse relationships (2.20)

E [Ak]2 =
1
K2

KX
j=1

KX
ℓ=1

E
�
ZjZℓ

�
cos
�

2π(k−1)(j−1)
K

�
cos
�

2π(k−1)(ℓ−1)
K

�
(2.29)

using the exact covariance E
�
ZjZℓ

�
which is given by (1.20) for a zero-mean process. A

discrete approximation to (1.20) is

E
�
ZjZℓ

� ' ∆ω

KX
m=1

G(ωm)cos
�

2π(m−1)(j−ℓ)
K

�
. (2.30)

Substituting (2.30) into (2.29) leads to

E [Ak]2 =
∆ω

K2

KX
j=1

KX
ℓ=1

KX
m=1

G(ωm)cos
�

2π(m−1)(j−ℓ)
K

�
CkjCkℓ

=
∆ω

K2

KX
j=1

KX
ℓ=1

KX
m=1

G(ωm)fCmjCkjCmℓCkℓ + SmjCkjSmℓCkℓg
=

∆ω

K2

KX
m=1

G(ωm)
KX
j=1

CmjCkj

KX
ℓ=1

CmℓCkℓ

+
∆ω

K2

KX
m=1

G(ωm)
KX
j=1

SmjCkj

KX
ℓ=1

SmℓCkℓ, (2.31)

where
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Ckj = cos
�

2π(k−1)(j−1)
K

�
,

Skj = sin
�

2π(k−1)(j−1)
K

�
.

To reduce (2.31) further, use is made of the following two identities

1)
KX
k=1

sin
�

2π(m−1)(k−1)
K

�
cos
�

2π(j−1)(k−1)
K

�
= 0

2)
KX
k=1

cos
�

2π(m−1)(k−1)
K

�
cos
�2π(j−1)(k−1)

K

�
=

8><>:0, if m 6= j
K
2 , if m = j orK � j + 2

K, if m = j = 1 or 1 +K
2

By identity (1), the second term of (2.31) is zero. The first term is also zero, except when

m = k orm = K � k + 2, leading to the results

E [Ak]2 =

8><>: 1
2G(ωk)∆ω, if k = 1
1
4fG(ωk) +G(ωK−k+2)g∆ω, if k = 2, . . . , K

2

G(ωk)∆ω, if k = 1 + K
2

(2.32)

remembering that fork = 1 the frequency interval is12∆ω. An entirely similar calculation

leads to

E [Bk]2 =

(
0, if k = 1 or 1 +K

2

1
4fG(ωk) +G(ωK−k+2)g∆ω, if k = 2, . . . , K

2

(2.33)

The generation of coefficients using (2.32) and (2.33) and the symmetriesAK−k+2 = Ak, k = 2,3, . . . , K
2

(2.34)BK−k+2 = �Bk, k = 2,3, . . . , K
2

gives considerably better point variance estimates when used in the FFT simulation of real

processes than obtained using (2.28) and represent a new contribution by the author to the

art of FFT simulation. In fact the relationships (2.28) are not valid when the symmetry re-

lationships (2.34) are used in (2.17) to produce real processes.

If an analytical form ofG(ω) is known then an even better approximation can be obtained

by usingG∗(ωk) in (2.32) and (2.33) defined as

G∗(ωk) =

ωk+ 1
2∆ωZ

ωk−
1
2∆ω

G(ω)dω, (2.35)
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which is just the area under the power spectral density function within the interval of length

∆ω centered atωk. Although this improvement should yield better point variance estimates,

it was not implemented in the code. The philosophy held by theauthor is that these algo-

rithms should be as simple as possible for the user, requiring just the specification of the

functional form ofG(ω) or supplying discrete estimates ofG(ω). The use of (2.35) would

require either the user to evaluate the functional form ofG∗ for the desiredG(ω) or the nu-

merical integration ofG(ω) at each frequency step. In higher dimensions, the latter could

become ponderous. The following technique leads to an improved point variance estimate

at a fraction of the overhead.

2.1.2 Covariance Formulation

Equation (2.29) suggests an entirely new approach to the determination of the statistics

of the coefficientsAk andBk. Instead of introducing the discrete approximation (2.30), the

known covariance function can be used,

E [Ak]2 =
1
K2

KX
j=1

KX
ℓ=1

E
�
ZjZℓ

�
CkjCkℓ

=
1
K2

KX
j=1

KX
ℓ=1

B|j−ℓ|CkjCkℓ

=
σ2

K2

KX
ℓ=1

[Ckℓ]
2 +

2
K2

K−1X
j=1

Bj

K−jX
ℓ=1

CkℓCk,ℓ+j, (2.36)

similarly,

E [Bk]2 =
1
K2

KX
j=1

KX
ℓ=1

E
�
ZjZℓ

�
SkjSkℓ

=
1
K2

KX
j=1

KX
ℓ=1

B|j−ℓ|SkjSkℓ

=
σ2

K2

KX
ℓ=1

[Skℓ]
2 +

2
K2

K−1X
j=1

Bj

K−jX
ℓ=1

SkℓSk,ℓ+j, (2.37)

where the notationBj = B(j∆x) was employed. The additional trigonometric identities

3)
KX
ℓ=1

CkℓCkℓ =

(
K if k = 1 or 1 +K

2

K
2 if k = 2,3, . . . , K

2
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4)
KX
ℓ=1

SkℓSkℓ =

(
0 if k = 1 or 1 +K

2

K
2 if k = 2,3, . . . , K

2

5)
K−jX
ℓ=1

CkℓCk,ℓ+j =

8><>:K � j if k = 1
1
2f(K � j � 1)Ck,j+1 � Skj/Sk1g if k = 2,3, . . . , K

2

(�1)j(K � j) if k = 1 + K
2

6)
K−jX
ℓ=1

SkℓSk,ℓ+j =

(
0 if k = 1 or 1 +K

2

1
2f(K � j � 1)Ck,j+1 � Sk,j+2/Sk1g if k = 2,3, . . . , K

2

allows the reduction of (2.36) and (2.37) to

E [Ak]2 =

8>>><>>>: σ2

K + 2
K2

PK−1
j=1 (K � j)Bj if k = 1

σ2

2K + 1
K2

PK−1
j=1 Bj[(K � j � 1)Ck,j+1 � Skj/Sk1] if k = 2,3, . . . , K

2

σ2

K + 2
K2

PK−1
j=1 (�1)j (K � j)Bj if k = 1 + K

2

(2.38)

E [Bk]2 =

(
0 if k = 1 or 1 +K

2

σ2

2K + 1
K2

PK−1
j=1 Bj [(K � j � 1)Ck,j+1 � Sk,j+2/Sk1] if k = 2,3, . . . , K

2

(2.39)

Equations (2.38) and (2.39) can be evaluated using a pair of inverse FFT’s making the cal-

culation of the variances very efficient. Letting

Xk =
1
K2

KX
j=1

δjBj−1(K � j + 1)cos
�

2π(k−1)(j−1)
K

�
,

(2.40)

Yk =
1
K2

KX
j=1

δjBj−1sin
�

2π(k−1)(j−1)
K

�
,

where

δj =

�
1
2 if j = 1

1 otherwise

then the variances of the Fourier coefficients can be expressed as

E [Ak]2 = EkXk � FkYk,

(2.41)

E [Bk]2 = GkXk + FkYk,

where
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Ek =

�
2 if k = 1 or 1 +K

2

1 otherwise

Gk =

�
0 if k = 1 or 1 +K

2

1 otherwise

Ek =

(
0 if k = 1 or 1 +K

2

cos(2π(k−1)/K)
sin(2π(k−1)/K) otherwise

The process shown previously in Figure 2.1 was generated using this procedure which guar-

antees that the estimated point variance will tend to the desired point variance no matter what

frequency interval is used.

It should be noted at this point that in order to eliminate thesymmetry in the estimated

covariance function of the simulated process, all the jointmoments E[AkAm], E [AkBm]

and E[BkBm] which arenot zero when using (2.17) (as can be easily verified using (2.20)

in a manner similar to the above) must be included. This, however, is a formidable task

involving the prior simulation of the correlated (and cross-correlated) processesAk andBk.

It will be assumed that these joint moments are zero and a correction for the symmetry in

the estimated covariance function will be made by adjustingthe size of the process using

(2.25) and ignoring the excess.

2.2 Multi-Dimensional Extensions

Following the results of Section 2.1, the discrete Fourier transform of the 2-D discrete

real processZij ' Z((i−1)∆x1, (j−1)∆x2) isZij =
K1X
m=1

K2X
n=1

�Amn cos
�

2π(i−1)(m−1)
K1

+ 2π(j−1)(n−1)
K2

�
+Bmn sin

�
2π(i−1)(m−1)

K1
+ 2π(j−1)(n−1)

K2

�	
(2.42)

in which the Fourier coefficientsAmn andBmn are assumed to be independent zero mean

normally distributed random variates. Equation (2.42) will be evaluated using a two-

dimensional FFT algorithm. On scalar machines, the 2-D FFT was coded using a radix-

2x2 butterfly algorithm following the concepts discussed byDudgeon and Mersereau [18].

This algorithm was found to run in about 80% of the time required by the usual row-column

decomposition algorithm. In three dimensions, a radix-2x2x2 algorithm was coded that runs

in about 50% of the time required for the 3-D row-column code.Both of these algorithms

require that the number of field points in each direction be aninteger power of 2. On the

CYBER 205 supercomputer, the vectorized multi-dimensional FFT algorithms provided by
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the MAGEVFFT library were used. Other implementation issues of the multi-dimensional

FFT are discussed in [9, 31, 59].

Higher dimensional FFT’s involve additional summations and associated terms in the

trigonometric functions of (2.42). For illustrative purposes, the two-dimensional process

will be concentrated on here and the corresponding results for the three-dimensional case

just stated. The inverse transforms corresponding to (2.42) areAmn =
1

K1K2

K1X
i=1

K1X
j=1

Zij cos
�

2π(i−1)(m−1)
K1

+ 2π(j−1)(n−1)
K2

�
, (2.43)Bmn =

1
K1K2

K1X
i=1

K1X
j=1

Zij sin
�

2π(i−1)(m−1)
K1

+ 2π(j−1)(n−1)
K2

�
, (2.44)

which imply that the following planar symmetries must applyfor real processesAK1−m+2,K2−n+2 = Amn,

(2.45)AK1−m+2,n = Am,K2−n+2,

for m,n = 2,3, . . . , Kα

2 whereKα is eitherK1 or K2 appropriately. In addition the line

symmetries Aℓ,K2−n+2 = Aℓ,n,

(2.46)AK1−m+2,ℓ = Am,ℓ,

apply over the same range inm, n, and forℓ = 1 or ℓ = 1 + Kα

2 . Similar relationships

exist for the coefficientsBmn except that they are anti-symmetries, i.e.BK1−m+2,K2−n+2 =�Bmn and so on. The planar and line symmetries are shown graphically in Figure 2.3. Thus

in two dimensions, the Fourier coefficients must be generated over the two darker shaded

quadrants of Figure 2.3 and the 4 half-lines alongℓ = 1 andℓ = 1 + Kα

2 , the rest of the

coefficients obtained using the symmetry relations. If the process is quadrant symmetric

then the additional symmetry relationAK1−m+2,n = Amn (2.47)

applies and so only one quadrant of theAmn andBmn coefficients need be specified.
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m

n

1 1+ K1

2 K1

1

1+ K2

2

K2

Figure 2.3 Fourier coefficient symmetry over the plane of their indices. Dashed
arrows denote symmetric half-lines and double arrows denote sym-
metric planes.

The three-dimensional symmetries are similar except that the coefficients must be speci-

fied over 4 quadrant volumes, 6 half-planes corresponding tothe indexesℓ = 1 andℓ = 1+Kα

2

(α = 1,2,3), and the 12 half-lines corresponding to the edges of the [1,1 + K1
2 ] � [1,1 +

K2
2 ] � [1,1 + K3

2 ] cube. Again, if the process is quadrant symmetric additional symmetries

in the coefficients apply and only one quadrant volume need bespecified.

The variances of the Fourier coefficients can be obtained from the inverse transforms

(2.43) and (2.44) as

E [Amn]2 =
1

(K1K2)2

K1X
i=1

K2X
j=1

K1X
k=1

K2X
ℓ=1

E
�
ZijZkℓ

�
Cim,jnCkm,ln, (2.48)
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E [Bmn]2 =
1

(K1K2)2

K1X
i=1

K2X
j=1

K1X
k=1

K2X
ℓ=1

E
�
ZijZkℓ

�
Sim,jnSkm,ℓn. (2.49)

where,

Cim,jn = cos
�

2π(i−1)(m−1)
K1

+ 2π(j−1)(n−1)
K2

�
,

Sim,jn = sin
�

2π(i−1)(m−1)
K1

+ 2π(j−1)(n−1)
K2

�
.

Assuming the covariance of the process,Bjk = B(j∆x1, k∆x2), to be quadrant sym-

metric which in turn implies that the spectral density function, S(ω1, ω2), is also quadrant

symmetric, the discrete approximation to (1.20) becomes

E
�
ZijZkℓ

� ' ∆ω1∆ω2

K1X
m=1

K2X
n=1

G(ω1m, ω2n)cos
�

2π(m−1)(i−k)
K1

�
cos
�

2π(n−1)(j−ℓ)
K2

�
, (2.50)

whereG(!) = 2nS(!), for a process inRn, is the uni-quadrant spectral density function.

When (2.50) is substituted into (2.48) and (2.49) the following (spectral formulation) vari-

ances of the Fourier coefficients are obtained

E [Amn]2 =

8>>>>>><>>>>>>:
∆ω1∆ω2G

d(ωm, ωn), m = 1,1 + K1
2 andn = 1,1 + K2

2

1
4∆ω1∆ω2(Gd(ωm, ωn) +Gd(ωm, ωK2−n+2)), m = 1,1 + K1

2

1
4∆ω1∆ω2(Gd(ωm, ωn) +Gd(ωK2−m+2, ωn)), n = 1,1 + K2

2

1
8∆ω1∆ω2(Gd(ωm, ωn) +Gd(ωm, ωK2−n+2)

+Gd(ωK1−m+2, ωn) +Gd(ωK1−m+2, ωK2−n+2)), otherwise.

(2.51)

The variances ofBmn are identical except at the four corner points whereBmn = 0,m,n =

1,1+Kα

2 . The superscriptd denotes the correction made onG(!) to account for the discrete

nature of the spectral density function: Inn-dimensional space, set

Gd(!) =
G(!)

2d
(2.52)

whered is the number of components of! = (ω1, ω2, . . . , ωn) which are equal to zero. (In the

one-dimensional case, this was accomplished by using half the frequency interval atω1 = 0.)

Using the actual covariance function in (2.48) and (2.49) leads to the variances of the

Fourier coefficients in the so-called covariance formulation. These results, along with the

spectral formulation results for three-dimensional processes, are shown in Appendix A.

As in the one-dimensional case, the problems associated with the multi-dimensional

FFT simulation methods have to do with discretization of thefrequency space and symme-

try of the estimated covariance function. The former usually leads to poor estimation of the
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point variance of the process and can be solved either by increasing the size of the field or by

employing the covariance formulation. The latter problem can only be solved by increasing

the field size in each component direction using (2.25) and the directional scales of fluctua-

tion (see Vanmarcke [25] for definitions of directional scales of fluctuation). Figures 2.4 and

2.5 represent sample functions of the 2-D process generatedusing the spectral formulation

and covariance formulation respectively for a process having the target covariance function

of the continuous Markov process

B(τ1, τ2) = σ2 exp

��2
θ

p
τ 2

1 + τ 2
2

�
, (2.53)

with associated spectral density function

G(ω1, ω2) =
4θ2σ2

π
�

4 + θ2(ω2
1 + ω2

2)
� 3

2

. (2.54)

In these processes, the directional scales of fluctuationθ1 = θ2 = θ = 4 are quite large com-

pared to the 5� 5 physical size of the field shown in Figures 2.4 and 2.5. Figures 2.6 and

2.7 show the estimated and exact covariance functions for the spectral and covariance for-

mulations respectively. Notice that although the physicallength of each side of the field is

only 5, the horizontal scales on Figures 2.6 and 2.7 are long enough to cover the length of

the diagonal since the covariance is also estimated in that direction. It can be seen that the

spectral formulation (without the correction given by 2.35) significantly over-estimates the

point variance of the process. Although the covariance formulation correctly captures the

point variance, its sample function has a somewhat striatedappearance similar to what might

be obtained if aliasing were present. The use of symmetries in the Fourier coefficients elim-

inates direct aliasing but it is possible that the Fourier transform of the covariance function

(see 2.40) is introducing some aliasing of the covariance structure.

When shorter scales of fluctuation are used, both the striated appearance of the covari-

ance formulation and the poorly estimated variance of the spectral formulation tend to dis-

appear and so, under these conditions, the spectral formulation is preferred for its simplicity.

Figures 2.8 and 2.9 show sample functions for the spectral and covariance formulations re-

spectively using scales of fluctuationθ1 = θ2 = θ = 1
2. In this case Figures 2.10 and 2.11

show the correct point variance in the estimated statisticsand Figure 2.9 has lost much of

its striated appearance.

A comment should be made at this point about the rendering of these realizations which

consist of 256� 256 discrete points. In all cases, a grey scale mapping is used in which

the minimum value of the realization is mapped to white and the maximum to black. No
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direct smoothing is performed and the printer is actually displaying a 256� 256 grid of

squares each having an associated grey level. Color renderings were experimented with, but

it was found that extreme care had to be exercised in the selection of palettes and brightness

levels (for each realization) in order to pick out details such as striations and streaks. Grey

scale renderings seem to give these details with little trouble. Printing and reproduction of

these realizations is also sometimes troublesome. Variations in toner and drum quality can

give apparent artifacts which may be misleading – particularly to the reader of a third-hand

copy! Nevertheless, the visual appraisal of these grey-scale renderings was considered by

the author as being an essential means of establishing the quality of an algorithm, in terms

of individual realizations, that was superior to color renderings or contour plots.

Figure 2.12 show the estimated statistics for a three-dimensional process of physical

size 5� 5� 5 using the target covariance function

B(τ1, τ2, τ3) = σ2 exp

��2
θ

p
τ 2

1 + τ 2
2 + τ 2

3

�
, (2.55)

with θ = 4 using the spectral formulation. The dashed lines are the estimated covariances

along various directions within the 5� 5� 5 cube (i.e. vertical, horizontal, depth, plane

diagonals and body diagonal). It can be seen that the point variance is significantly over-

estimated by the spectral formulation due to the rather large frequency increment. Figure

2.13 shows the estimated statistics of the same process (2.55) using the covariance formu-

lation. A much better estimate of the point variance is obtained using this method. When

shorter scales of fluctuation are used in the 3-D case, both algorithms yield good estimates

of the covariance structure as illustrated in Figures 2.14 and 2.15, using the spectral and co-

variance formulations respectively, forθ = 1
2. This suggests that, in general, it is best to use

a sufficiently large field (compared to the directional scales of fluctuation) when simulating

via the FFT algorithm.

Although the examples discussed above are isotropic processes, the programs written

to perform the simulations are only restricted to quadrant symmetric processes. As an il-

lustration of an anisotropic process, Figure 2.16 shows a sample function of a 2-D process

with the target covariance function

B(τ1, τ2) = σ2 exp

(�s�2τ1

θ1

�2

+

�
2τ2

θ2

�2
)
, (2.56)

with θ1 = 0.8, θ2 = 0.2. Figure 2.17 shows the equivalent process simulated usingthe co-

variance formulation and Figures 2.18 and 2.19 show their estimated statistics averaged over

100 realizations. It can be seen that anisotropy is handled adequately by the FFT algorithms.
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2.3 Summary

To obtain reasonably good realizations using an FFT algorithm, it is suggested that the

following simple guidelines be followed;

1) ensure that the size of the field to be simulated is larger than that required and that the

excess is ignored. How much larger depends on the scale of fluctuation of the process

but could be as much as twice the size in any direction.

2) ensure that the spectral density above the Nyquist limitπ/∆x is negligible. This repre-

sents a limitation on the resolution of the field.

3) ensure that∆ω = 2π/T is small enough to adequately capture rapid changes in the

spectral density function. Using the covariance formulation discussed above or explic-

itly determining the area under the spectral density function at each frequency step are

possible alternatives to this criteria.
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Figure 2.4 Sample function of a 2-D field (spectral formulation) with covari-
ance function given by (2.53) forθ = 4. For such a large scale
of fluctuation, the process varies relatively smoothly and one gets
larger dark and light regions.
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Figure 2.5 Sample function of a 2-D field (covariance formulation) withcovari-
ance function given by (2.53) forθ = 4.
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Figure 2.6 Estimated statistics of a 2-D field (spectral formulation) with covari-
ance function given by (2.53) forθ = 4. Statistics are averaged over
100 fields.
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Figure 2.7 Estimated statistics of a 2-D field (covariance formulation) with co-
variance function given by (2.53) forθ = 4. Statistics are averaged
over 100 fields.
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Figure 2.8 Sample function of a 2-D field (spectral formulation) with covari-
ance function given by (2.53) forθ = 1

2. Notice the increased ‘rough-
ness’ corresponding to a shorter scale of fluctuation.
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Figure 2.9 Sample function of a 2-D field (covariance formulation) withcovari-
ance function given by (2.53) forθ = 1

2.
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Figure 2.10 Estimated statistics of a 2-D field (spectral formulation) with covari-
ance function given by (2.53) forθ = 1

2. Statistics are averaged over
100 fields.
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Figure 2.11 Estimated statistics of a 2-D field (covariance formulation) with co-
variance function given by (2.53) forθ = 1

2. Statistics are averaged
over 100 fields.
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Figure 2.12 Estimated statistics of a 3-D field (spectral formulation) with covari-
ance function given by (2.55) forθ = 4. Statistics are averaged over
50 fields.
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Figure 2.13 Estimated statistics of a 3-D field (covariance formulation) with co-
variance function given by (2.55) forθ = 4. Statistics are averaged
over 50 fields.
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Figure 2.14 Estimated statistics of a 3-D field (spectral formulation) with covari-
ance function given by (2.55) forθ = 1

2. Statistics are averaged over
50 fields.
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Figure 2.15 Estimated statistics of a 3-D field (covariance formulation) with co-
variance function given by (2.55) forθ = 1

2. Statistics are averaged
over 50 fields.
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Figure 2.16 Sample function of an anisotropic 2-D field (spectral formulation)
with covariance function given by (2.56) forθ1 = 0.8 andθ2 = 0.2.
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Figure 2.17 Sample function of an anisotropic 2-D field (covariance formula-
tion) with covariance function given by (2.56) forθ1 = 0.8 andθ2 =
0.2.
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Figure 2.18 Estimated statistics of an anisotropic 2-D field (spectral formulation)
with covariance function given by (2.56) forθ1 = 0.8 andθ2 = 0.2.
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Figure 2.19 Estimated statistics of an anisotropic 2-D field (covariance formu-
lation) with covariance function given by (2.56) forθ1 = 0.8 and
θ2 = 0.2.
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Chapter 3

Moving Average and Turning Bands Methods

3.1 Introduction

In this chapter, two simulation methods will be investigated that both depend on the

solution of certain integral equations for their implementation. The first is the Moving Av-

erage technique which is usually combined with the Auto-Regressive method to form what

is called an ARMA model. The auto-regressive technique involves generating values of a

process along a line based on past values of the process,Z(xi) = aWi +
pX

j=1

bjZ(xi−j), (3.1)

in whicha andbj are coefficients determined by the desired first and second-order statistics

of the process andWi is a discrete white noise process having zero mean and unit vari-

ance. Although auto-regression is a very efficient means of generating one-dimensional

processes, it does not have a simple interpretation in higher dimensions since the ‘past’ of a

pointZ(x1, x2) has little meaning. For this reason, the auto-regressive techniques have not

been pursued in this work and only the moving average techniques, which are well defined

in higher dimensions, have been considered. It should be noted that Naganumaet al. [49]

have developed an ARMA model for two-dimensional processesthat defines the ‘past’ as

lying in the lower left quadrant below the point in question.Although there is some ques-

tion as to the validity of such an assumption, they achieve very good results in matching the

estimated covariance structure with the desired which is the more important criteria.
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3.2 Moving Average Method

The Moving Average (MA) technique of simulating random processes is a well known

approach involving the expression of the process as an average of an underlying white noise

process. Formally, ifZ(x) is the desired process then

Z(x) =
Z ∞

−∞

f (�)dW (x + �), (3.2a)

or equivalently,

Z(x) =
Z ∞

−∞

f (� � x)dW (�), (3.2b)

in whichdW (�) is the incremental white noise process at the location� with statistical prop-

erties

E [dW (�)] = 0,

E [dW (�)]2 = d�, (3.3)

E
�
dW (�)dW (�′)� = 0, if � 6= �′,

andf (�) is a weighting function determined from the second order statistics ofZ(x)

E [Z(x)Z(x + � )] =
Z ∞

−∞

Z ∞

−∞

f (� � x)f (�′ � x� � )E
�
dW (�)dW (�′)� ,

=
Z ∞

−∞

f (� � x)f (� � x� � )d�. (3.4)

If Z(x) is homogeneous, then the dependence onx disappears, and (3.4) can be written in

terms of the covariance function (note by 3.3 that E[Z(x)] = 0),

B(� ) =
Z ∞

−∞

f (�)f (� � � )d�. (3.5)

Defining the Fourier transform pair corresponding tof (�) in R
⋉ to be,

F (!) =
1

(2π)n

Z ∞

−∞

f (�)e−iω·ξ d�, (3.6a)

f (�) =
Z ∞

−∞

F (!)eiω·ξ d!, (3.6b)

then by the convolution theorem (3.5) can be expressed as

B(� ) = (2π)n
Z ∞

−∞

F (!)F (�!)e−iω·τ d!, (3.7)
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from which a solution can be obtained from the Fourier transform ofB(� ),

F (!)F (�!) =
1

(2π)2n

Z ∞

−∞

B(� )e−iω·τ d� . (3.8)

Note that the symmetry in the left hand side of (3.8) comes about due to the symmetry

B(� ) = B(�� ). It is still necessary to assume something about the relationship between

F (!) andF (�!) in order to arrive at a final solution through the inverse transform. Usu-

ally the functionF (!) is assumed to be either even or odd.

Weighting functions corresponding to several common one-dimensional covariance func-

tions have been determined by a number of authors, notably Journel and Huijbregts [32] and

Mantoglou and Wilson [43]. In higher dimensions, the calculation of weighting functions

becomes quite complex and is often done numerically throughFFT’s. The non-uniqueness

of the weighting function and the difficulty in finding it, particularly in higher dimensions,

renders this method of questionable value to the user who wishes to be able to handle arbi-

trary covariance functions.

Leaving this issue for the moment, the implementation of theMA method is itself a

rather delicate problem. For a discrete process in one dimension, (3.2a) can be written

Zi =
∞X

j=−∞

fjWi,j, (3.9)

whereWi,j is a discrete white noise process taken to have zero mean and unit variance. To

implement this, the sum must be restricted to some rangep, usually chosen such thatf±p is

negligible, Zi =
pX

j=−p

fjWi,j . (3.10)

The next concern is how to discretize the underlying white noise process. If∆x is the incre-

ment of the physical process such thatZi = Z((i−1)∆x) and∆u is the incremental distance

between points of the underlying white noise process, such that

Wi,j = W ((i−1)∆x + j∆u), (3.11)

thenfj = f (j∆u) and∆u should be chosen such that the quotientr = ∆x/∆u is an inte-

ger for simplicity. Figure 3.1 illustrates the relationship betweenZi and the discrete white

noise process. For finite∆u, the discrete approximation (3.10) will introduce some error

into the estimated covariance of the realization. This error can often be removed through

a multiplicative correction factor as shown by Journel and Huijbregts [32] but in general is

reduced by taking∆u as small as practically possible (and thusp as large as possible).
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Figure 3.1 Schematic representation of the moving average process in one di-
mension.

Once the discretization of the underlying white noise process and the rangep has been

determined, the implementation of (3.10) in one dimension is quite straightforward and usu-

ally quite efficient for reasonable values ofp. In higher dimensions, the method rapidly

becomes cumbersome. Figure 3.2 shows a typical portion of a 2-D discrete processZij,

marked by X’s, and the underlying white noise field, marked bydots. The entire figure rep-

resents the upper right corner of a 2-D field. The processZij is now formed by the double

summation Zij =
p1X

k=−p1

p2X
ℓ=−p2

fkℓWi,j,k,ℓ, (3.12)

wherefkℓ is the 2-D weighting function andWi,j,k,ℓ is the discrete white noise process cen-

tered at the same position asZij. Thei andj subscripts onW are for bookkeeping purposes

so that the sum is performed over a centered neighborhood of discrete white noise values.
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Zij

Figure 3.2 Two-dimensional moving average process.Zij is formed by sum-
ming the contributions from the underlying white noise process in
the shaded region.

In the typical example illustrated in Figure 3.2, the discretization of the white noise

process is such thatr = ∆u/∆x = 3 and a relatively short scale of fluctuation was used so

thatp = 6. This means that if aK1 �K2 field is to be simulated, the total number of white

noise realizations to be generated must be,

NW =
�

1 + 2p1 + r1(K1 � 1)
��

1 + 2p2 + r2(K2 � 1)
�
, (3.13)

or in the neighborhood of (rK)2 for a square field. This can be contrasted immediately with

the FFT approach which requires the generation of about1
2K

2 random values for a quadrant

symmetric process (note that the factor of one-half is a consequence of the periodicity of

the generated field). Whenr = 3, some 18 times as many white noise realizations must be

generated for the moving average algorithm as for the FFT method. Also the construction

of each field point requires a total of (2p + 1)2 additions and multiplications which, for the

not unreasonable example given above, is 132 = 169. This means that the entire field will be

generated usingK2(2p + 1)2 or about 11 million additions and multiplications for a 200�
45



200 field. Again this can be contrasted to the two-dimensional FFT method (radix-2, row-

column algorithm) which requires some 4K2 log2K or about 2 million multiply-adds. In

most cases, the moving average approach in two dimensions was found to run at least 10

times slower than the FFT approach. In three dimensions, themoving average method used

to generate a 64� 64� 64 field withp = 6 was estimated to run over 100 times slower

than the corresponding FFT approach. For this reason, and since the weighting function

is generally difficult to find, the moving average method as a general method of producing

realizations of multi-dimensional random fields was abandoned by the author.

It can be noted in passing that the two-dimensional ARMA model suggested by Na-

ganumet al.[49] requires about 50 to 150 multiply-adds (depending on the type of covari-

ance structure modeled) for each field point. This is about 2 to 6 times slower than the FFT

approach. While this is quite competitive for certain covariance functions, the correspond-

ing run speeds for three-dimensional processes are estimated to be 15 to 80 times slower

than the FFT approach depending on the choice of parametersp andr.

3.3 Turning Bands Method

The Turning Bands Method (TBM), as originally suggested by Matheron [45], involves

the simulation of isotropic random fields in two- or higher-dimensional space by using a

sequence of one-dimensional processes along lines crossing the space. With reference to

Figure 3.3, the algorithm can be described as follows,

1) choose an arbitrary origin within or near the domain of thefield to be generated,

2) select a linei crossing the domain having a direction given by the unit vectorui which

may be chosen either randomly or from some fixed set,

3) generate a realization of a one-dimensional process,Zi(ξi), along the linei having zero

mean and covariance functionB1(τi) whereξi andτi are measured along linei,

4) orthogonally project each field pointxk onto the linei to define the coordinateξki =xk � ui of the one-dimensional process valueZi(ξki),

5) add the componentZi(ξki) to the field valueZ(xk) for eachxk,

6) return to step (2) and generate a new one-dimensional process along a subsequent line

until L lines have been produced,

7) normalize the fieldZ(xk) by dividing through by the factor
p
L.
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Figure 3.3 The Turning Bands Method: contributions from the line processZi(ξi)
atxk � ui are summed into the field processZ(x) atxk.

Essentially, the generating equation for the zero-mean discrete processZ(x) is given byZ(xk) =
1p
L

LX
i=1

Zi(xk � ui), (3.14)

which can be an exceptionally fast algorithm, particularlyas the number of dimensions of
the process increases. It depends on knowledge of the one-dimensional covariance function,
B1(τ ). Once this is known, the line processes can be produced using some efficient 1-D
algorithm such as auto-regressive, moving average, or FFT techniques.

The covariance functionB1(τ ) is chosen such that the multi-dimensional covariance
structureBn(� ) in R

⋉ is reflected in each realization or over the ensemble. For two-
dimensional isotropic processes, Mantoglou and Wilson [43] give the following relation-
ship betweenB2(� ) andB1(ξ) for r = j� j,

B2(r) =
2
π

Z r

0

B1(ξ)p
r2 � ξ2

dξ, (3.15)
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which is an integral equation to be solved forB1(ξ). In three dimensions, the relationship

between the isotropicB3(r) andB1(ξ) is particularly simple,

B1(ξ) =
d

dξ

�
ξB3(ξ)

�
. (3.16)

Mantoglou and Wilson supply explicit solutions for either the equivalent one-dimensional

covariance function or the equivalent one-dimensional spectral density function for a variety

of common multi-dimensional covariance structures. In particular for the exponential type

covariance function,

B2(τ1, τ2) = σ2 exp
n� 2

θ

p
τ 2

1 + τ 2
2

o
, (3.17)

the corresponding one-dimensional one-sided spectral density function is shown to be

G1(ω) =
2ωσ2θ2

[4 + θ2ω2]3/2
. (3.18)

In this implementation of the TBM, the line processes were constructed using a 1-D

FFT algorithm as discussed in Chapter 2. Line lengths were chosen to be twice that of the

field diagonal to avoid the symmetric covariance problem inherent with the FFT method.

To reduce errors arising due to overly coarse discretization of the lines, the ratio between

the incremental distance along the lines,∆u, and the minimum incremental distance in the

field along any coordinate,∆x, was selected to be∆u/∆x = 1
2. Figure 3.4 represents a

realization of a 2-D process with covariance function givenby (3.17) in which the mid-

point of each line was located at the center of the domain as was illustrated in Figure 3.3. The

finite number of lines used, in this case 16, results in a streaked appearance of the realization

which is more pronounced if fewer lines are used and less pronounced as the number of lines

increases. These artifacts are still evident using 32 lines, but, as shown in Figure 3.5, are

almost invisible when using 64 lines (the use of number of lines which are powers of 2 is

arbitrary). Since the 16 line case runs at about the same speed as the 2-D FFT approach, the

elimination of the streaks in the realization comes at a price of running about 3 to 5 times

as slow as the FFT method. Other origin locations were tried including the use of all four

corners (the particular corner selected as an origin dependent on which quadrant the unit

vectorui points into) with no particular success in improving the appearance of realizations

for a small number of lines.

The orientation of the lines can either be chosen randomly orselected from a set of

prescribed directions which evenly divide the unit circle or sphere. In three dimensions, the

maximum number of lines which will subdivide the unit sphereinto equal solid angles is 15

[32]. If more lines are desired (as is likely to eliminate thestreaking phenomena) then the

sphere can only be approximately subdivided. Both of the realizations shown in Figures 3.4
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and 3.5 were created using evenly spaced lines on the unit circle. By using an ‘ergodic’ uni-

dimensional generator (see Equations 2.9 and 2.12), Mantoglou and Wilson state that evenly

oriented lines will produce an ergodic realization. This assertion was tested to a limited

extent by the author, as shown in Figures 3.6 and 3.7, and it was found that while neither

approach yielded a strictly ergodic process over the limited domain, the use of evenly spaced

lines did render estimated statistics which converged somewhat more quickly to the desired.

This is more evident when the scale of fluctuation is relatively large, as in Figure 3.6. No

particular difference was evident between those realization produced with an ‘ergodic’ 1-D

FFT line generating algorithm (2.9) and those produced witha ‘non-ergodic’ generator (2.7).

Perhaps more importantly, the use of evenly oriented lines reduced the streaks apparent in

the realizations.

Note that the Turning Bands Method does not suffer from the symmetric covariance

structure that is inherent in the FFT approach. However, thenecessity of finding an equiva-

lent 1-D covariance or spectral density function through anintegral equation along with the

streaked appearance of the realization when an insufficientnumber of lines are used makes

the method less attractive. In two dimensions, the efficiency of the method was found to

be reasonably competitive with the 2-D FFT algorithm, running at about the same speed

if streaks are acceptable or 3 to 5 times slower if the streaksare to be eliminated. Since it

is difficult to visualize 3-D realizations, no tests were runto evaluate their appearance and

so no estimate of the number of lines required to eliminate streaking was done. One could

presume that a similar ‘density’ of lines is required in the 3-D case as in the 2-D case and so

the speed comparisons between the 3-D TBM and 3-D FFT approach may be roughly the

same as in the 2-D case.
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Figure 3.4 Sample function of a 2-D field via TBM using 16 lines with co-
variance function given by (3.17) forθ = 4. Notice the banded or
streaked appearance.
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Figure 3.5 Sample function of a 2-D field via TBM using 64 lines with covari-
ance function given by (3.17) forθ = 4. The streaked appearance
has largely disappeared.
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16 randomly oriented lines: Non-ergodic 1-D FFT generator
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16 randomly oriented lines: Ergodic 1-D FFT generator

Figure 3.6 Comparison of estimated statistics of 2-D fields generated via TBM using scale
θ = 4 for randomly versus evenly oriented lines and ‘ergodic’ versus ‘non-
ergodic’ generation of the line processes. Solid lines denote the exact covariance
and dashed lines represent estimated horizontal, vertical, and diagonal covari-
ances averaged over 10 realizations.
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16 evenly oriented lines: Non-ergodic 1-D FFT generator

0 1 2 3 4 5 6 7 8

Lag

-0
.5

0
0.

5
1

1.
5

C
ov

ar
ia

nc
e

16 evenly oriented lines: Ergodic 1-D FFT generator
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16 randomly oriented lines: Non-ergodic 1-D FFT generator
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16 randomly oriented lines: Ergodic 1-D FFT generator

Figure 3.7 Comparison of estimated statistics of 2-D fields generated via TBM using scale
θ = 1 for randomly versus evenly oriented lines and ‘ergodic’ versus ‘non-
ergodic’ generation of the line processes. Solid lines denote the exact covariance
and dashed lines represent estimated horizontal, vertical, and diagonal covari-
ances averaged over 10 realizations.
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Chapter 4

Local Average Subdivision

4.1 Introduction

In this chapter a fast and accurate method of producing realizations of a discrete local

average random process is presented. The motivation for such an approach arises out of

a need to account for the fact that most engineering measurements are only defined over

some finite domain and thus represent a local average of the property. For example, soil

porosity is ill-defined at the micro-scale – it is measured using samples of finite volume and

the variability of the values obtained is often significantly effected by the volume tested. The

same is true of strength measurements, say, of concrete cylinders, or radar measurements of

cloud densities (see also Rodriguez-Iturbe [60]). A properly defined local average process is

therefore more easily related to actual measurements made at any scale and those measures

more easily incorporated.

A further advantage of the method proposed herein is that it is ideally suited to stochas-

tic finite element modeling using efficient, low order, interpolation functions. Each discrete

local average given by a realization becomes the average property within each discrete el-

ement. In this context, the ability to easily change the resolution of a region of the domain

while maintaining internal consistency gives finite element modelers the freedom of chang-

ing mesh resolution in regions of interest.

The concept behind the Local Average Subdivision (LAS) approach arose out of the

stochastic subdivision algorithm described by Carpenter [12] and Fournieret al.[21]. Their

method is limited to modeling power spectra having aω−d form and suffered from problems

with aliasing and ‘creasing’. Lewis [39] generalized the approach to allow the modeling of

arbitrary power spectra without eliminating the aliasing.Such midpoint displacement al-

gorithms involve recursively subdividing the domain by generating new midpoint values

randomly selected according to some distribution. Once chosen, the value at a point re-

mains fixed and at each stage in the subdivision only half the points in the process are deter-

mined (the others created in previous iterations). Aliasing arises because the power spectral

density is not modified at each stage to reflect the increasingNyquist frequency associated

with each increase in resolution. Voss [53, Chap. 1] attempted to eliminate this problem
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with considerable success by adding randomness to all points at each stage in the subdivi-

sion in a method called ‘successive random additions’. However the internal consistency

easily achieved by the midpoint displacement methods (their ability to return to previous

states while decreasing resolution through decimation) islargely lost with the successive

random additions technique. The property of internal consistency in the midpoint displace-

ment approach implies that certain points retain their value throughout the subdivision and

other points are created to remain consistent with them withrespect to correlation. In the

LAS approach, internal consistency implies that certain regions maintain a constant aver-

age throughout the subdivision. The property of internal consistency is important because

it allows the process to be easily conditioned.

The method proposed here solves the problems associated with the stochastic subdi-

vision methods and incorporates into it concepts of local averaging theory. The general

procedure is presented first for a one-dimensional stationary process characterized by its

second-order statistics. The algorithm is illustrated by aOrnstein-Uhlenbeck process, hav-

ing a simple exponential correlation function, as well as bya fractional Gaussian noise pro-

cess as defined by Mandelbrot [41]. The simulation procedurein two and three dimensions

is then described. Finally some comments concerning the relative efficiency of the method

are made.

4.2 One-Dimensional Local Average Subdivision

The construction of a local average process via LAS essentially proceeds in a top-down

recursive fashion as illustrated in Figure 4.1. In Stage 0, aglobal average is generated for the

process. At Stage 1, the domain is subdivided into two regions whose ‘local’ averages must

in turn average to the global (or parent) value. Subsequent stages are obtained by subdivid-

ing each ‘parent’ cell and generating values for the resulting two regions while preserving

upwards averaging. Note that the global average remains constant throughout the subdivi-

sion – a property that is ensured merely by requiring that theaverage of each pair generated

is equivalent to the parent cell average. This ‘constant average’ is also a property of any cell

being subdivided – such internal consistency allows for simple conditioning of the process.

Specifically, the algorithm proceeds as follows;

1) generate a normally distributed global average (labeledZ0
1 in Figure 4.1) with mean

zero and variance obtained from local averaging theory,

2) subdivide the field into two equal parts,

3) generate two normally distributed values,Z1
1 andZ1

2, whose means and variances are

selected so as to satisfy three criteria:

a) that they show the correct variance according to local averaging theory,
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b) that they are properly correlated with one another,

c) that they average to the parent value,1
2(Z1

1 +Z1
2) = Z0

1.

That is, the distributions ofZ1
1 andZ1

2 are conditioned on the value ofZ0
1,

4) subdivide each cell in stage 1 into two equal parts,

5) generate two normally distributed values,Z2
1 andZ2

2, whose means and variances are

selected so as to satisfy four criteria:

a) that they show the correct variance according to local averaging theory,

b) that they are properly correlated with one another,

c) that they average to the parent value,1
2(Z2

1 +Z2
2) = Z1

1,

d) that they are properly correlated withZ2
3 andZ2

4.

The third criteria implies conditioning of the distributions ofZ2
1 andZ2

2 on the value

of Z1
1 . The fourth criteria will only be satisfied approximately byconditioning their

distributions also onZ1
2.

and so on in this fashion. The approximations in the algorithm come about in two ways:

first, as was already mentioned, the correlation with adjacent cells across parent boundaries

is accomplished through use of the parent values (which are already known having been pre-

viously generated). Second the range of parent cells on which to condition the distributions

will be limited to some neighborhood. The remainder of this chapter is devoted largely to

the determination of these conditional Gaussian distributions at each stage in the subdivi-

sion and to an estimation of the algorithmic errors. In the following, the term ‘parent cell’

refers to the previous stage cell being subdivided and ‘within cell’ means within the domain

defined by the boundary of the parent cell. The symbolZ is used to denote the algorithmic

process andZ to denote the exact process throughout.

Stage 0

Stage 1

Stage 2

Stage 3

Stage 4

Z 1
0

Z 1
1 Z 2

1

Z 1
2 Z 2

2 Z 3
2 Z 4

2

Z 1
3 Z 2

3 Z 3
3 Z 4

3 Z 5
3 Z 6

3 Z 7
3 Z 8

3

Figure 4.1 Top-down approach to the LAS construction of a random process

Consider first a continuous stationary scalar random functionZ(x) in one dimension, a

sample of which may appear as shown in Figure 4.2, and define a domain of interest [0, T ]

within which a realization is to be produced. Two comments should be made at this point:

First, as it is currently implemented the method is restricted to stationary processes fully
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described by their second-order statistics (mean, variance and autocorrelation function or,

equivalently, spectral density function). Second, the subdivision procedure depends on the

physical size of the domain being defined since the dimensionover which local averaging

is to be performed must be known.

0 T

0 t

Figure 4.2 Sample function of an Ornstein-Uhlenbeck process withB(τ ) = e−
|τ |
2 .

The average ofZ(x) over the domain [0, T ] is given by

Z0
1 =

1
T

Z T

0
Z(x)dx, (4.1)

whereZ0
1 is a random variable whose statistics

E
�
Z0

1

�
= E [Z] , (4.2)

E
�
(Z0

1)
2
�

=
1
T 2

Z T

0

Z T

0
E
�
Z(ξ)Z(ξ′)

�
dξ dξ′ = E2[Z] +

2
T 2

Z T

0
(T � τ )B(τ )dτ, (4.3)

can be found by making use of stationarity and the fact thatB(τ ), the covariance function

of Z(t), is an even function of lagτ according to (1.9b). AssumingZ(t) to be a mean-

zero Gaussian random function then (4.2) and (4.3) give sufficient information to generate

a realization ofZ0
1 which becomesZ0

1 (Stage 0) in the LAS method.

Consider now the general case where stagei is known and stagei+1 is to be generated.

In the following the superscripti denotes the stage under consideration. Define

T i =
T

2i
, i = 0,1,2, . . . , L, (4.4)

57



where the desired number of discrete local averages in the realization isN = 2L, and define

Z i
k to be the average ofZ(x) over the interval (k�1)T i < x � kT i centered atxk = (k�1

2)T i,

i.e.

Z i
k = 1

T i

kT iZ
(k−1)T i

Z(x)dx (4.5)

where E
�
Z i

k

�
= E [Z] = 0. The target covariance between local averages separatedby lag

nT i , n > 0, between centers is

E
�
Z i

kZ
i
k+n

�
= E

264� 1
T i

�2

kT iZ
(k−1)T i

(k+n)T iZ
(k+n−1)T i

Z(ξ)Z(ξ′)dξ dξ′

375
=
�

1
T i

�2

T iZ
0

(n+1)T iZ
nT i

B(ξ � ξ′)dξ dξ′

=
�

1
T i

�2

nT iZ
(n−1)T i

(ξ � (n−1)T i)B(ξ)dξ +
�

1
T i

�2

(n+1)T iZ
nT i

((n+1)T i � ξ)B(ξ)dξ. (4.6)

A much simpler formulation is possible by introducing the concept of a variance function

defined by (1.33) for the 1-D process as follows

γ(T i) =
�

1
σT i

�2

T iZ
0

T iZ
0

B(ξ � ξ′)dξ dξ′ = 2
�

1
σT i

�2

T iZ
0

(jT ij � jτ j)B(τ )dτ, (4.7)

whereσ2 = B(0). Vanmarcke [25] has determined this function for a variety of processes.

In terms of the variance function, (4.6) becomes forn � 0

E
�
Z i

kZ
i
k+n

�
= σ2

2

h
(n−1)2γ((n−1)T i)� 2n2γ(nT i) + (n+1)2γ((n+1)T i)

i
. (4.8)

j j+1

2j-1 2j 2j+1 2j+2

Figure 4.3 1-D LAS indexing scheme for stagei (top) and stagei + 1 (bottom).

With reference to Figure 4.3, the construction of stagei + 1 values given stagei is ob-

tained by estimating a mean forZ i+1
2j and adding a zero mean discrete white noiseci+1W i+1

j

having variance (ci+1)2, Z i+1
2j = M i+1

2j + ci+1W i+1
j , (4.9)
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where the symbolZ is used to denote the algorithmic process which will be an approx-

imation toZ. The best linear estimate for the meanM i+1
2j can be determined by a linear

combination of stagei values in some neighborhoodj � n, . . . , j + n,

M i+1
2j =

j+nX
k=j−n

ai
k−jZ i

k. (4.10)

Multiplying (4.9) through byZ i
m, taking expectations and using the fact thatW i+1

j is uncor-

related with the stagei values allows the determination of the coefficientsa in terms of the

desired covariances,

E
�
Z i+1

2j Z
i
m

�
=

j+nX
k=j−n

ai
k−j E

�
Z i

kZ
i
m

�
, (4.11)

i.e., a system of equations (m = j � n, . . . , j + n) from which the coefficientsai
ℓ, ℓ =�n, . . . , n, can be solved. Notice that the exact processZ is used when evaluating expec-

tations. The covariance matrix multiplying the vectorfai
ℓg is both symmetric and Toeplitz

(elements along each diagonal are equal). ForW i+1
j � N(0,1) , the variance of the noise

term is (ci+1)2 which can be verified by squaring (4.9), taking expectations, and employing

the results of (4.11)

(ci+1)2 = E
�
(Z i+1

2j )2
�� j+nX

k=j−n

ai
k−j E

�
Z i+1

2j Z
i
k

�
. (4.12)

The adjacent cell value,Z i+1
2j−1, is determined by ensuring that upwards averaging is pre-

served – that the average of each stagei + 1 pair equals the value of the stagei parent,Z i+1
2j−1 = 2Z i

j �Z i+1
2j , (4.13)

which incidentally gives a means of evaluating the cross-stage covariances

E
�
Z i+1

2j Z
i
m

�
= 1

2E
�
Z i+1

2j Z
i+1
2m−1

�
+ 1

2E
�
Z i+1

2j Z
i+1
2m

�
. (4.14)

All the expectations in Equations (4.11) to (4.14) are evaluated using (4.6) or (4.8) at the

appropriate stage.

For stationary processes, the set of coefficientsfai
ℓg andci are independent of position

since the expectations in (4.11) and (4.12) are just dependent on lags. The generation pro-

cedure can be restated as follows;

1) for i = 0,1,2, . . . , L compute the coefficientsfai
ℓg, ℓ = �n, . . . , n using (4.11) and the

coefficientsci+1 using (4.12),

2) starting withi = 0, generate a realization for the global mean using (4.2) and (4.3),

3) subdivide the domain,
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4) for eachj = 1,2, . . . ,2i, generate realizations forZ i+1
2j andZ i+1

2j−1 using (4.9) and (4.13),

5) incrementi and, if not greater thanL, return to step 3.

Because the LAS procedure is recursive, obtaining stagei+ 1 values using the previous

stage, it is relatively easy to condition the field simply by specifying the values of the local

averages at a particular stage. So, for example, if the global mean of a process is knowna

priori , then the stage 0 valueZ0
1 can be set to this mean and the LAS procedure started at

stage 1. Similarly if the resolution is to be refined in a certain region, then the values in that

region become the starting values and the subdivision resumed at the next stage.

Although the LAS method yields a local average process, whenthe discretization size

becomes small enough it is virtually indistinguishable from the limiting continuous process.

Thus the method can be used to approximate continuous functions as well.

Finally it should be noted that the calculation of the coefficientsa andc need only be

done once for a particular process. Subsequent realizations can then be produced extremely

efficiently by starting at step 2 in the procedure listed above.

4.2.1 Accuracy

It is instructive to investigate how closely the algorithm approximates the target statistics

of the process from one subdivision to the next. Assuming thestagei values come from the

exact process, the LAS scheme can be writtenZ i+1
2j = ci+1W i+1

j +
j+nX

k=j−n

ai
k−jZ

i
k, (4.15)Z i+1

2j−1 = 2Z i
j �Z i+1

2j . (4.16)

It is easy to see that the expectation ofZ is zero since E
�
Z i

k

�
= 0, as desired, while the

variance is

E
�
(Z i+1

2j )2
�

= E

"�
ci+1W i+1

j +
j+nX

k=j−n

ai
k−jZ

i
k

�2

#
= (ci+1)2 +

j+nX
k=j−n

ai
k−j

j+nX
ℓ=j−n

ai
ℓ−j E

�
Z i

kZ
i
ℓ

�
= E

�
(Z i+1

2j )2
�� j+nX

k=j−n

ai
k−j E

�
Z i+1

2j Z
i
k

�
+

j+nX
k=j−n

ai
k−j E

�
Z i+1

2j Z
i
k

�
= E

�
(Z i+1

2j )2
�
, (4.17)
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in which the coefficientsci+1 andai
ℓ where calculated using (4.11) and (4.12) as before. Sim-

ilarly, the ‘within cell’ covariance at lagT i+1 is

E
�Z i+1

2j−1Z i+1
2j

�
= E

"�
2Z i

j � ci+1W i+1
j � j+nX

k=j−n

ai
k−jZ

i
k

��
ci+1W i+1

j +
j+nX

ℓ=j−n

ai
ℓ−jZ

i
ℓ

�#
= 2

j+nX
ℓ=j−n

ai
ℓ−j E

�
Z i

ℓZ
i
j

�� E
�
(Z i+1

2j )2
�

= 2E
�
Z i+1

2j Z
i
j

�� E
�
(Z i+1

2j )2
�

= E
�
Z i+1

2j−1Z
i+1
2j

�
, (4.18)

using the results of (4.17) along with (4.14). Thus the covariance structure within a cell is

preservedexactlyby the subdivision algorithm. Some approximation does occur across cell

boundaries as can be seen by considering

E
�Z i+1

2j Z i+1
2j+1

�
= E

"�
ci+1W i+1

j +
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kZ
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�� j+n+1X
ℓ=j−n+1

ai
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�
Z i+1

2j Z
i
ℓ

�
. (4.19)

The algorithmic error in this covariance comes from the lasttwo terms. Using a neighbor-

hood size ofn = 1, the discrepancy between (4.19) and the exact covarianceis illustrated

numerically in Figure 4.4 for a zero mean Ornstein-Uhlenbeck process having covariance

and variance functions

B(τ ) = σ2 exp

��2jτ j
θ

�
, (4.20)

γ(D) =
θ2

2D2

�
2D
θ

+ exp

��2D
θ

�� 1

�
, (4.21)

whereD is the averaging dimension (in Figure 4.4,D = T i+1). Although Figure 4.4 shows

a wide range in the product 2D/θ (and thus a wide range in effective cell sizes), the error is

typically very small.

61



To address the issue of errors at larger lags and the possibility of errors accumulating

from stage to stage, it is useful to look at the exact versus estimated ensemble statistics of

the process. Figure 4.5 illustrates this comparison for theOrnstein-Uhlenbeck process. It

can be seen from this example and from the fractional Gaussian noise example to come,

that the errors seem to be self-correcting and the algorithmic correlation structure tends to

the exact correlation function when averaged over several realizations. The within-cell rate

of convergence of the estimated statistics to the exact is1
Nf

, whereNf is the number of

realizations. The overall rate of convergence of the LAS realizations to the exact statistics

is about the same.
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Figure 4.4 Comparison of algorithmic and exact covariance between adjacent cells across
a parent cell boundary for varying effective averaging lengths 2D/θ.
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Figure 4.5 Comparison of exact and estimated covariance function forθ = 4 averaged over
200 realizations.

4.2.2 Boundary Conditions and Neighborhood Size

When the neighborhood size (2n + 1) is greater than 1 (n > 0), the construction of

values near the boundary may require values from the previous stage which lie outside the

boundary. This problem is handled by assuming that what happens outside the domain [0, T ]

is of no interest and uncorrelated with what happens within the domain. The generating

relationship (4.9) near either boundary becomesZ i+1
2j = ci+1W i+1

j +
j+qX

k=j−p

ai
k−jZ i

k, (4.22)

wherep = min(n, j�1), q = min(n,2i� j) and the coefficientsai
ℓ need only be determined

for ℓ = �p, . . . , q. The periodic boundary conditions mentioned by Lewis [39] are not ap-

propriate if the target covariance structure is to be preserved since they lead to a covariance

which is symmetric about lagT/2 (unless the desired covariance is also symmetric about

this lag).

In the implementation of the 1-D LAS method, a neighborhood size of 3 was used

(n = 1), the parent cell plus its two adjacent cells. Because of the top-down approach,

there seems to be little justification to using a larger neighborhood for processes with co-

variance functions which decrease monotonically or which are relatively smooth. When the

covariance function is oscillatory, a larger neighborhoodis required in order to successfully
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approximate the function. In Figure 4.6 the observed and theoretical covariances are com-

pared for a process with

B(τ ) = σ2 cos(ωτ )e−2τ/θ, (4.23)

which has the corresponding variance function

γ(D) =
2θ2

D2(4 + θ2ω2)2

n
e−2D/θ[(4� θ2ω2) cosωD�4θω sinωD] + 2D

θ (4 +θ2ω2)�4 +θ2ω2

o
.

(4.24)

Considerable improvement in the model is obtained when a neighborhood size of 5 is used

(n = 2). This improvement comes at the expense of taking about twice as long to gener-

ate the realizations. Many practical models of natural phenomena employ monotonically

decreasing covariance functions, often for simplicity, and so then = 1 implementation is

usually preferable.
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Figure 4.6 Effect of neighborhood size for a)n = 1 and b)n = 2 on the modeling of damped
oscillatory noise (4.23) withθ = 4 andω = 8.
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Fractional Gaussian Noise

As a further demonstration of the LAS method, a self-similarprocess called fractional

Gaussian noise was simulated. Fractional Gaussian noise (fGn) is defined by Mandelbrot

and Ness [41] to be the derivative of fractional Brownian motion (fBm), obtained by aver-

aging the fBm over a small intervalδ. The resulting process has covariance and variance

functions

B(τ ) =
σ2

2δ2H

hjτ + δj2H � 2jτ j2H + jτ � δj2H
i
, (4.25)

γ(D) =
jD + δj2H+2 � 2jDj2H+2 + jD � δj2H+2 � 2δ2H+2

D2(2H + 1)(2H + 2)δ2H
, (4.26)

defined for 0< H < 1. The caseH = 0.5 corresponds to white noise andH ! 1 gives

1/f type noise. In practiceδ is taken to be equal to the smallest lag between field points

(δ = T/2L) to ensure that whenH = 0.5 (white noise),B(τ ) becomes zero for allτ � T/2L.

A sample function and its corresponding ensemble statistics are shown in Figure 4.7 for

1/f type noise (H = 0.95). The self-similar type processes have been demonstrated by

Mandelbrot [42], Voss [68], and many others [48, 53, 69] to berepresentative of a large

variety of natural forms and patterns, for example music, terrains, crop yields, and chaotic

systems.

Estimates of the power spectral density function of the fractional Gaussian noise, along

with the oscillatory and exponential noises discussed earlier, obtained from the LAS real-

izations can be found in Appendix B. As with the covariance estimates, they show excellent

agreement with the exact.
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Figure 4.7 a) Sample function of 1/f type noise (H = 0.95) and (b) corresponding esti-
mated versus exact covariance structure (averaged over 200realizations).
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4.3 Multi-Dimensional Extensions

In two dimensions, a rectangular domain is defined and the subdivision proceeds by di-

viding rectangles into 4 equal areas at each stage. In order to preserve the exact ‘within cell’

covariance structure, three random noises are added to three of the cell quadrants and the

fourth quadrant is determined such that upwards averaging is preserved. Figure 4.8 presents

the 2-D LAS scheme for the first 3 stages in which the center of each local average is marked

with a different symbol for each stage. The generating relationships are,Z i+1
1 = Z i+1

2j,2k = ci+1
11 W

i+1
1jk +

nxyX
ℓ=1

ai
ℓ1Z i

m(ℓ),n(ℓ),Z i+1
2 = Z i+1

2j,2k−1 = ci+1
21 W

i+1
1jk + ci+1

22 W
i+1

2jk +
nxyX
ℓ=1

ai
ℓ2Z i

m(ℓ),n(ℓ),

(4.27)Z i+1
3 = Z i+1

2j−1,2k = ci+1
31 W

i+1
1jk + ci+1

32 W
i+1

2jk + ci+1
33 W

i+1
3jk +

nxyX
ℓ=1

ai
ℓ3Z i

m(ℓ),n(ℓ),Z i+1
4 = Z i+1

2j−1,2k−1 = 4Z i
jk �Z i+1

2j,2k �Z i+1
2j,2k−1 �Z i+1

2j−1,2k,

whereW is a discrete zero-mean, unit variance Gaussian white noiseandm(ℓ), n(ℓ) are

indexing functions traversing in a fixed pattern thenxy = (2nx +1)� (2ny +1) neighborhood

of Z i
jk. In this implementation,nx = ny = 1 and the boundary conditions are handled in the

same fashion as for the 1-D case. The coefficientsfai
ℓrg can be calculated from the linear

equations

E
�
Z i+1

2j,2kZ
i
m(p),n(p)

�
=

nxyX
ℓ=1

ai
ℓ1 E

�
Z i

m(ℓ),n(ℓ)Z
i
m(p),n(p)

�
, p = 1, 2, . . . , nxy

E
�
Z i+1

2j,2k−1Z
i
m(p),n(p)

�
=

nxyX
ℓ=1

ai
ℓ2 E

�
Z i

m(ℓ),n(ℓ)Z
i
m(p),n(p)

�
, p = 1, 2, . . . , nxy (4.28)

E
�
Z i+1

2j−1,2kZ
i
m(p),n(p)

�
=

nxyX
ℓ=1

ai
ℓ3 E

�
Z i

m(ℓ),n(ℓ)Z
i
m(p),n(p)

�
, p = 1, 2, . . . , nxy

in which the matrices on the right hand sides are symmetric but no longer Toeplitz in general.

The coefficient matrixi+1 is assumed to be lower triangular satisfyingi+1 � (i+1)T = R, (4.29)

whereR is symmetric and given by
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Rrs = E
�
Z i+1

r Z i+1
s

�� nxyX
ℓ=1

ai
ℓr E

�
Z i

m(ℓ),n(ℓ)Z
i+1
s

�
r, s = 1,2,3 (4.30)

using the indexing notation defined at the extreme left of (4.27). Notice that the assumption

of homogeneity vastly decreases the number of coefficients that need to be calculated and

stored sincefai
ℓrg andi+1 become independent of position. As in the 1-D case, the coeffi-

cients need only be calculated prior to the first realization– they can be re-used in subsequent

realizations reducing the effective cost of their calculation.

1

3 1

24

3 1 3 1

4 2 4 2

3 1 3 1

4 2 4 2

Figure 4.8 First three stages and indexing scheme of the 2-D LAS algorithm (stage 0 =⊠,
stage 1 = +, and stage 2 =Æ).

The expectations used in equations (4.28) to (4.30) can be determined from the two

dimensional variance function of the process

E
�
Z i

jkZ
i
j+m,k+n

�
= 1

4σ
2
h

(m−1)2(n−1)2γi(m−1,n−1)� 2(m−1)2n2γi(m−1,n) + (m−1)2(n+1)2γi(m−1,n+1)� 2m2(n−1)2γi(m,n−1) + 4(mn)2γi(m,n)� 2m2(n+1)2γi(m,n+1)

+ (m+1)2(n−1)2γi(m+1,n−1)� 2(m+1)2n2γi(m+1,n) + (m+1)2(n+1)2γi(m+1,n+1)
i

(4.31)

whereγi(m,n) was used to denoteγ(mT i
1 , nT i

2), T i
1 andT i

2 being the dimensions of the indi-

vidual averaging rectangles at stagei. For a quadrant symmetric covariance structure,γ(�)
is defined by Vanmarcke [25] to be

γ(D1,D2) =

�
1

σD1D2

�2
D1Z

−D1

D2Z
−D2

(jD1j � jτ1j) (jD2j � jτ2j)B(τ1, τ2)dτ1dτ2 (4.32)

69



Figure 4.9 shows a sample function of a process with covariance function

B(τ1, τ2) = σ2 expf�2
θ

p
τ 2

1 + τ 2
2g, (4.33)

for θ = 4, which was generated using the approximate variance function

γ(D1,D2) =
1
2

h
γ(D2)γ(D1jD2) + γ(D1)γ(D2jD1)

i
, (4.34)

where,

γ(Di) =

"
1 +

�
Di

θ

� 3
2

#− 2
3

, (4.35)

γ(DijDj) =

"
1 +

�
Di

θi
j

� 3
2

#− 2
3

, (4.36)

θi
j = si

"
cα + (1� cα) exp

(��Dj

θcα

�2
)#

. (4.37)

For the exponential covariance function (4.33), the value of cα should be taken asπ2 .

Other forms of this approximate 2-D variance function are given by Vanmarcke [25, Chap.

6]. The estimated covariances along three different directions are seen in Figure 4.11 to

show very good agreement with the exact (4.33). Figure 4.10 shows a sample function of

the same process forθ = 1
2 and its corresponding estimated statistics are shown in Figures

4.12.

Although the within-cell covariance structure is reflectedexactly by the LAS method,

the overall statistics of anisotropic processes are ratherpoorly preserved. The generated field

tends to become isotropic with a scale of fluctuation equal tothe minimum scale specified.

At this time, it is better to create the anisotropy through post-processing of an isotropic field:

generate an isotropic field using a single scale of fluctuation and stretch the resulting field in

the direction of the other directional scale of fluctuation to obtain an ellipsoidal correlation

structure.

In three dimensions, the LAS method involves recursively subdividing rectangular par-

allelepipeds into 8 equal volumes at each stage. The generating relationships are essentially

the same as in the 2-D case except now 7 random noises are used in the subdivision of each

parent volume at each stageZ i+1
s =

sX
r=1

ci+1
rs W

i+1
sjkl +

nxyzX
ℓ=1

ai
ℓsZ i

m(ℓ),n(ℓ),p(ℓ) s = 1,2, . . . ,7 (4.38)
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Z i+1
8 = 8Z i

jkl � 7X
s=1

Z i+1
s , (4.39)

in whichZ i+1
s denotes a particular octant of the subdivided cell centeredatZ i

jkl. For a neigh-

borhood size,nxyz, of 3� 3� 3, Figures 4.13, 4.14, and 4.15 show exact versus estimated

statistics for a process having isotropic covariance

B(τ1, τ2, τ3) = σ2 exp

��2
θ

�jτ1j +pτ 2
2 + τ 2

3

��
. (4.40)

Notice that (4.40) has a partially separable form. This is not necessary but is a form used in

Chapter 7 for modeling of soil. The approximate variance function corresponding to (4.40)

is given by

γ(D1,D2,D3) = γ(D1)γ(D2,D3), (4.41)

whereγ(D2,D3) is given by (4.34) with appropriate changes in subscripts and γ(D1) by

(4.35).

When compared to Figure 4.13, Figure 4.14 illustrates the rate of convergence of the

estimated statistics to the exact as the number of realizations is increased.
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Figure 4.9 Sample function of the 2-D LAS generated process given by (4.33) withθ = 4.
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Figure 4.10 Sample function of the 2-D LAS generated process given by (4.33) withθ = 1
2.
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Figure 4.11 Comparison of estimated and exact covariance structure of the LAS generated
2-D process (4.33), withθ = 4, averaged over 10 realizations.

0 1 2 3 4 5 6 7 8

Lag

-0
.5

0
0.

5
1

1.
5

C
ov

ar
ia

nc
e

Exact Covariance
Estimated Horizontal
Estimated Vertical
Estimated Diagonal

Figure 4.12 Comparison of estimated and exact covariance structure of the LAS generated
2-D process (4.33), withθ = 1

2, averaged over 10 realizations.

Implementation and Efficiency

In order to calculate stagei+1 values, the values at stageimust be known. This implies

that storage must be provided for at least 1.5N values whereN = 2L is the desired resolution

of the process in one dimension. The implementation described herein stores all the previous

stages, a storage requirement of (2N�1) in 1-D, 4
3(N �N) in 2-D, and 8

7(N �N �N) in

3-D. This allows rapid ‘zooming out’ of the field. The coefficientsfaig andi, which must

also be stored, can be efficiently calculated using LU factorization (see Equation (4.29)) and
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successive backsubstitutions (see Equation (4.28)). The Toeplitz property of the matrix in

Equation (4.11) was not taken advantage of for neighborhoodsizes greater than 3.

The LAS method is also fairly competitive with the FFT approach discussed in Chap-

ter 2. Table 4.1 compares times of the two methods running on aCyber 205 (CDC) super-

computer for one, two, and three-dimensional realizations. In one dimension, using a neigh-

borhood size of 3, LAS runs slightly faster than the FFT approach. Both methods have neg-

ligible setup times for the coefficient calculations. In twodimensions, the LAS approach

took about 1.5 times longer than the FFT method and the three-dimensional case took about

twice as long. It should be pointed out that these comparisons are made to the uncorrected

FFT simulation. If the symmetric covariance structure is corrected in the FFT simulation

by increasing the field size, then the performance of the multi-dimensional LAS method is

seen to approach and even surpass that of the FFT method.
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Figure 4.13 Comparison of estimated and exact covariance structure of the LAS gener-
ated 3-D process,θ = 4, averaged over 10 realizations. Estimates, shown
dashed, are made in various directions through the volume.
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Figure 4.14 Comparison of estimated and exact covariance structure of the LAS gener-
ated 3-D process,θ = 4, averaged over 50 realizations. Estimates, shown
dashed, are made in various directions through the volume.
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Figure 4.15 Comparison of estimated and exact covariance structure of the LAS generated
3-D process,θ = 1

2, averaged over 10 realizations. Estimates, shown dashed,
are made in various directions through the volume.
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Table 4.1 Comparison of execution times on a Cyber 205 super-computer.

Type Size Number of Time (seconds)

Simulations Setup Generation

1-D FFT 256 200 0.0013 0.1803

1-D LAS 256 200 0.0017 0.1486

2-D FFT 256�256 100 0.1265 15.2002

2-D LAS 256�256 100 0.1156 23.0100

3-D FFT 64�64�64 50 0.1517 48.7742

3-D LAS 64�64�64 50 6.1740 100.5700

77



Chapter 5

Space-Time Processes

5.1 Introduction

In this chapter attention will focus on spatial processes which evolve in time and thus

belong to a class of space-time homogeneous Gaussian randomfunctions. The function may

represent, for example, one component of earthquake groundmotion spatially distributed

over some area. Improved dynamic analyses of multi-supportstructures require more than

a single ground motion time history as input and an appropriate space-time process may

be used to this end. For instance, the motion experienced by one pier of a bridge is likely

to be somewhat different than that at other piers; the further the piers are separated, the

greater the likely difference in their support motions. Also high-frequency components of

earthquake ground motion will tend to be weakly correlated in space and low-frequency

components highly correlated. It is assumed that the spatial correlation structure as well as

the spectral density function at each spatial point is knowna priori. These functions may be

obtained from random field theory combined with empirical data from dense strong-motion

accelerograph arrays [1, 7, 26, 27].

Another situation arises when accelerograms are recorded at some points on the free

field in the vicinity of a site of interest and one wishes to simulate the ground motion at

the site. Linear estimation theory is used to simulate conditioned strong ground motions,

compatible with the known time histories, at arbitrary but prescribed locations on the free-

field surface.

The problem of generating two time histories with known cross-correlation is first ex-

amined. The concepts are then generalized to allow the simulation of spatially correlated

time series at any number of locations. Various implementation aspects are investigated;

first, the use of the FFT algorithm as a means of generating realizations of random time se-

ries, and second, the use of best linear estimation techniques to condition the field. Finally,

non-stationary extensions to the model are described and implemented.

78



5.2 Two Point Case

Consider two pointsx1 andx2 on the ground separated byr = x1�x2. The correlation of

the ground motion at these two points is assumed to be described in terms of the frequency-

dependent spatial correlation functionρω(r) that depends on the separation distance vectorr, and frequencyω. This function is real for quadrant-symmetric random fields[25]. As

was shown in Chapter 1, the zero-mean Gaussian random motionatx1 can be expressed as

a sum of independent random amplitude sinusoids at constantfrequency intervals,∆ω,Z1(t) =
KX
k=1

[A1k cos(ωkt) + B1k sin(ωkt)], (5.1)

whereA1k andB1k are zero-mean Gaussian random variables and the symbolZ is used to

denote the algorithmic process which is an approximation tothe true processZ. The true

process will be used in the evaluation of expectations. Consider thekth component ofZ1(t),Z1k(t) = A1k cosωkt + B1k sinωkt, (5.2)

whose variance is

σ2
1k = Var[Z1k] = G1(ωk)∆ω = E

�
(A1k cosωkt + B1k sinωkt)

2
�

= 1
2E
�A2

1k

�
+ 1

2E
�B2

1k

�
, (5.3)

whereG1(ω) is the one-sided power spectral density function associated withx1, and

E
�A2

1k

�
= E

�B2
1k

�
= G1(ωk)∆ω. (5.4)

Sample functions ofZ1(t) can be obtained by simulatingA1k andB1k as independent nor-

mally distributed variables with mean zero and variances given by (5.4).

Consider now the “two point problem”, i.e., the generation of two correlated time series.

At the frequencyωk, the components of the motion atx1 andx2 areZ1k(t) = A1k cosωkt +B1k sinωkt (5.5)

and Z2k(t) = A2k cosωkt +B2k sinωkt. (5.6)

The component processes associated with disjoint frequency intervals are always uncorre-

lated, E
�
Z1kZ2j

�
= 0 if j 6= k, by virtue of the spectral representation theorem for mean

square continuous, zero-mean, homogeneous random fields. The coefficient of correlation

betweenZ1k andZ2k is ρωk
(r) which can be formally expressed as

ρωk
(r) =

E [Z1kZ2k]
σ1kσ2k

=
1
2E [A1kA2k] + 1

2E [B1kB2k]p
G1(ωk)G2(ωk)∆ω

, (5.7)
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and thus,

E [A1kA2k] = E [B1kB2k] = ρωk
(r)
p
G1(ωk)G2(ωk)∆ω � C12(ωk), (5.8)

where, for a strictly homogeneous Gaussian random field,G1(ω) = G2(ω). The distinction

between spectral density functions will be retained throughout the chapter to accommodate

“nearly homogeneous” approximations and certain limitingcases such as spatial indepen-

dence. The joint probability density function corresponding to (5.8) is the bivariate normal

pdf,

fA1A2
(a1, a2) =

1

2πσ1σ2

p
1� ρ2

exp

� �1
2(1� ρ2)

�
a2

1

σ2
1

� 2ρ
a1a2

σ1σ2

+
a2

2

σ2
2

��
, (5.9)

where we usedA1, σ1, andρ in place ofA1k, σ1k, andρωk
(r) for simplicity. Associated with

equation (5.9) is the conditional density function

fA2|A1
(a2ja1) =

1

σ2

p
2π(1� ρ2)

exp

��1
2

�
a2 � (ρσ2

σ1
)a1

σ2

p
1� ρ2

�2�
, (5.10)

which is equivalent tofB2|B1
. Notice that whenρωk

(r) = 0, (5.10) becomes the marginal

distribution ofA2k, as expected. Whenρωk
(r) = 1, (5.10) becomes a dirac delta function

implying thatA2k = A1k in the perfect-correlation case. The two correlated time series can

now be obtained by first generating realizations forA1k andB1k (with mean zero and variance

σ2
1k) and then generatingA2k andB2k using the conditional distribution given by (5.10).

5.3 Multiple Point Case

Equation (5.1) can be generalized to describe the time histories at a number of locationsxi, Zi(t) =
KX

k=1

[Aik cos(ωkt) + Bik sin(ωkt)]. (5.11)

Again focusing on thekth component, the random coefficientsAik andBik have statistics

E [Aik] = E [Bik] = 0, (5.12)

E
�A2

ik

�
= E

�B2
ik

�
= Gi(ωk)∆ω, (5.13)

E
�AikAjk

�
= E

�BikBjk

�
= ρωk

(rij)∆ω
p
Gi(ωk)Gj(ωk) � Cij(ωk), (5.14)

whererij = xi�xj. The covariance matrixCij(ωk) is positive definite and can be diagonal-

ized to the set of positive eigenvaluesψmk through the use of an orthogonal transformation

matrixQ. Using the summation convention, the defining equations are

QilCij(ωk)Qjm = ψmkδlm, (5.15)
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QilQij = δlj , (5.16)

whereδlj is the kronecker delta, and summation is suspended on underscored indices. The

matrix Q also relates the variablesAik andBik to their uncorrelated counterpartsUmk and

Vmk, Aik = QimUmk, (5.17)Bik = QimVmk. (5.18)

Substituting (5.17) and (5.18) into (5.14) and using (5.15)it is easily seen that

Cov
�
Uik, Ujk

�
=

(
0 if i 6= j
ψik if i = j

(5.19)

and similarly forVik. Thusψik = Var[Uik], and [Uik, Ujk], [Vik, Vjk] represent independent

sets of uncorrelated normally distributed random variables with mean zero and varianceψik.

Using this information, realizations ofUik andVik can be generated and the resulting values

used in (5.17) and (5.18) to obtainAik andBik.

Equation (5.11) can be efficiently evaluated using the Fast Fourier Transform method. IfZi(t) is to be real, certain symmetry conditions must be applied to the coefficients as shown

in Chapter 2, Ai,K−k+2 = Aik, Bi,K−k+2 = �Bik, for k = 2,3, . . . , K
2 (5.20)

in which case the ensemble point variance is better preserved if one takes,

Cij(ωk) =

8><>:ρωk
(rij)∆ω

p
Gi(ωk)Gj(ωk) for k = 1, 1 + K

2

1
4ρωk

(rij)∆ω

rn
Gi(ωk) +Gi(ω∗

k)
on

Gj(ωk) +Gj(ω∗
k)
o

for k = 2,3, . . . , K
2

(5.21)

where

ωk =
2π(k � 1)
K∆t

, ω∗
k =

2π(K � k + 1)
K∆t

, ∆ω =
2π
K∆t

.

The covariance matrix is only evaluated for frequencies up toω1+K/2 = π/∆t. After diago-

nalizing and generating realizations for their uncorrelated counterparts, the coefficientsAik

andBik are determined using (5.17) and (5.18) fork = 1,2, . . . ,1+K/2, and the remainder

found using the symmetries (5.20). Applying an inverse FFT will yield a set of stationary

time histories representing a realization of the unconditioned field of ground motions.
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5.4 Conditioning the Field

The procedure required to produce a random field in which someof the time histories

are known and the others are conditioned on this knowledge isinvestigated in this section. It

can be accomplished through the theory of best linear estimation [36, 37, 46, 70], referred to

as ‘kriging’ in the context of geostatistics [32]. The quantity Z herein represents any scalar

field value of interest, not necessarily a function of time (as will be shown later, it actually

represents the Fourier coefficients derived in the previoussections).

Consider a discrete set of field pointsxν composed of two disjoint subsetsxα andxβ.

The subsetxα, α = f1,2, . . . , nαg is made up of points at which the field processZα(xα) is

known, whereas the subsetxβ, β = f1 +nα,2 +nα, . . . , nβ + nαg contains points at which

the field processZβ(xβ) is unknown, to be estimated using the following procedure.The

subscript onZ indicates that it is not a continuous function in space, but is defined at the

discrete pointsxν . The best linear unbiased estimate ofZβ(xβ), Z∗
β(xβ), can be obtained

by kriging

Z∗
β(xβ) =

nαX
α=1

ηαβZα(xα), (5.22)

whereηαβ is the set of kriging weights to be determined.

The mean of the field process E[Z(x)] = m(x) can be estimated from the known data

and expressed as a polynomial,

m(x) =
dX

i=0

ai fi(x). (5.23)

This allows drift in the mean to be accounted for if its functional form is known. In the

following,m(x) is taken to be either constant, linear, or quadratic inx, corresponding to 0th,

1st, or 2nd order kriging, respectively. The conditions imposed to ensure that the estimate

is unbiased, E[Z � Z∗] = 0, are

nαX
α=1

ηαβ fi(xα) = fi(xβ), i = 0,1, . . . , d. (5.24)

If C(xi,xj) = E
�
Zi(xi)Zj(xj)

�
is defined as the covariance between the field processes atxi andxj, then the variance of the estimate becomes,

E

�n
Zβ(xβ)� Z∗

β(xβ)
o2
�

= C(xβ,xβ)� 2
nαX
α=1

ηαβC(xβ,xα) +
nαX
α=1

nαX
γ=1

ηαβηγβC(xα,xγ)

(5.25)

which must be minimized subject to the (d + 1) non-bias constraints (5.24). Using the La-

grangian technique, a system of (nα+d+1) linear equations in the same number of unknowns
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is obtained. The unknowns are thenα weightsηαβ for the given locationsxβ and the (d+1)

Lagrange parametersµi,

nαX
α=1

ηαβC(xγ ,xα)� dX
i=0

µifi(xγ) = C(xγ ,xβ), γ = 1,2, . . . , nα

(5.26)
nαX
α=1

ηαβ fi(xα) = fi(xβ), i = 0,1, . . . , d.

This system has a unique solution if and only if;

1) the covariance matrixC is positive definite,

2) the (d+1) functionsfi(x) are linearly independent on the set ofnα data (this is satisfied

by the choice of constant, linear, or quadratic functions).

The system of equations (5.26) may be written in matrix form,h
Kα

in
ηαβ

o
=
n
Mβ

o
, (5.27)

where

h
Kα

i
=

2666666666666666666666664

C11 C12 C13 � � � C1nα
1 f1(x1) f2(x1) � � � fd(x1)

C21 C22 C23 � � � C2nα
1 f1(x2) f2(x2) � � � fd(x2)

.

.

.

.

.

.

.

.

.

.
.

.

.

.

.

.

.

.

.

.

.

.

.

.

.
.

.

.

.

.

Cnα1 Cnα2 Cnα3 � � � Cnαnα
1 f1(xnα

) f2(xnα
) � � � fd(xnα

)

1 1 1 � � � 1 0 0 0 � � � 0

f1(x1) f1(x2) f1(x3) � � � f1(xnα
) 0 0 0 � � � 0

f2(x1) f2(x2) f2(x3) � � � f2(xnα
) 0 0 0 � � � 0

.

.

.

.

.

.

.

.

.

.
.

.

.

.

.

.

.

.

.

.

.

.

.

.

.
.

.

.

.

.

fd(x1) fd(x2) fd(x3) � � � fd(xnα
) 0 0 0 � � � 0

3777777777777777777777775
83



in whichCαγ = C(xα,xγ) was used for convenience, and

n
ηαβ

o
=

8>>>>>>>>>>>>>>>>>>>>>>>>><>>>>>>>>>>>>>>>>>>>>>>>>>:

η1β

η2β

η3β

.

.

.

ηnαβ�µ0�µ1�µ2

.

.

.�µd

9>>>>>>>>>>>>>>>>>>>>>>>>>=>>>>>>>>>>>>>>>>>>>>>>>>>;
n
Mβ

o
=

8>>>>>>>>>>>>>>>>>>>>>>>>><>>>>>>>>>>>>>>>>>>>>>>>>>:

C(x1,xβ)

C(x2,xβ)

C(x3,xβ)

.

.

.

C(xnα
,xβ)

1

f1(xβ)

f2(xβ)

.

.

.

fd(xβ)

9>>>>>>>>>>>>>>>>>>>>>>>>>=>>>>>>>>>>>>>>>>>>>>>>>>>;
.

As [Kα] depends solely on the covariance structure and geometry ofthe known points,xα, it can be inverted once and used repeatedly to find the weights ηαβ for each pointxβ.

The actual covariance matrix to be used,C(xα,xγ) = Cαγ(ωk), is dependent on both spatial

distance as well as frequency. The conditioning thus involves kriging the Fourier coefficients

at each frequencyωk as follows;

1) Fourier decompose the known time histories to obtain the set of known Fourier coeffi-

cientsĀαk andB̄αk at the pointsxα,

2) krige the known Fourier coefficients to obtain estimatesĀ∗
βk andB̄∗

βk at the unknown

pointsxβ ,

3) generate the unconditional set of Fourier coefficientsAνk andBνk using the procedure

outlined in the previous sections for all the field pointsxν ,

4) krige the simulated Fourier coefficients over the setxα to obtain the set of simulated

estimatesA∗
βk andB∗

βk at the unknown pointsxβ,

5) compute the conditioned simulated Fourier coefficients over the setxβ to beÃβk = Aβk + Ā∗
βk �A∗

βk,B̃βk = Bβk + B̄∗
βk � B∗

βk.

Notice that the conditioned values are only generated over the ‘unknown’ points since

the Fourier coefficients over the ‘known’ points are alreadydetermined in step 1.
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In this way the set of conditioned Fourier coefficients are built up for eachωk, k = 1,2, . . .,

1+K
2 (the other half obtained using symmetry as discussed in the previous section) and then

an inverse Fourier transform is applied to obtain the final conditioned sample field.

5.5 Case Studies

A computer program was designed and implemented to perform the conditional simu-

lation of correlated earthquake ground motions. Several example runs were performed to

verify:

1) the ability of the program to produce properly correlatedstationary time histories with

no field values knowna priori,

2) the ability of the program to produce properly conditioned stationary time histories given

one or more prescribed time histories.

The spectral density function shown in Figure 5.1 was used inall the examples. A time

increment of 0.005 seconds and length of 1024 values gives time history durations of 5.115

seconds. The maximum Fourier frequency is thusωmax = π/∆t = 628 rad/sec and it can

be seen thatG(ω) is negligible above this value. However,G(ω) was derived independent

of this criteria – it was predicted given an earthquake of magnitude 5.2 at a distance of 15

km according to a procedure outlined by Vanmarcke [65].

The correlation function used in the examples has the following simple isotropic and

exponential form

ρωk
(rij) = exp

��ωkjrij j
2πcs

�
, (5.28)

wherec is the shear wave velocity in the medium (1500m/sec) ands is the scale of the

process (not to be confused with the scale of fluctuationθ which in this case varies with

ω). Equation (5.28) is only intended to illustrate the procedures, but does show some of the

characteristics of empirical correlation functions obtained from dense accelerograph array

data.
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Figure 5.1 Spectral density function used in examples.

Figure 5.2 shows the first 0.6 seconds of a four-point correlated motion example, in

which no sample functions are known, for gradually decreasing scales. The points are lo-

cated on the vertices of a 100 metre square. For a scale about the same as the distance be-

tween points, the relatively high correlation shown is to beexpected. At the other extreme,

for scales negligible compared to the inter-point distances, the motions appear uncorrelated.

The estimated point variance over an ensemble of realizations is within 5% of that predicted

theoretically by integratingG(ω).

To verify the kriging algorithm, an extreme example was considered in which three field

points were assumed to be moving sinusoidally (at a single frequency) and the fourth point’s

motion was to be simulated. The known points were located at (x, y) coordinates of (0,0),

(0,100), and (100,0) and the fourth unknown point at (50,50). For a large scale, Figure 5.3

shows the three superimposed sinusoids followed fairly closely by the motion at the fourth

point, as expected. Notice how the motion at the fourth pointbecomes increasingly random

at smaller scales.

Now consider a more realistic three-point example, where anunknown point is located

midway between two “known points” which are separated by 100metres. The motions at

the two “known points” were obtained by running the program once assuming that no points

were known and using a scales = 1.0. The resulting time histories shown at the top of Fig-

ure 5.4 become the known time histories when the third intermediate point is introduced.

Figure 5.4 shows how the motion at the unknown point lies essentially between the two

known motions when the scale is relatively large. As the scale decreases the motion at the

unknown point becomes increasingly random. It should be noted, however, that because the

motions at the two “known points” are so similar, and becausethere are two of them, the
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motion at the “unknown point” appears similar even for very short scales. The relatively

high shear wave velocity of 1500m/sec used also results in higher correlation over most

frequencies of interest. In soils, the shear wave velocity is much lower and so ground mo-

tions simulated in such a medium would show greater independence for the same scales and

inter-point distances. These same comments could have beenmade about Figure 5.3.

In summary, it appears that the technique proposed here is aneffective method of pro-

ducing stationary conditioned correlated time histories,the first and key step in the process

of producing compatible earthquake time histories at closely spaced points. The four-point

kriged problem illustrated in Figure 5.3 with 1024 time steps (and thus 513 frequency steps)

takes only about 10 seconds to run on a VaXstation. Of course as either of these dimensions

is increased, an increase in required computer time is expected particularly as the number

of field points increases. However for most practical problems the efficiency and accuracy

of the algorithm is excellent.
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Figure 5.2 Four point unconditional time history simulation for various scales. Points are
arranged on the vertices of a 100m square.
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Figure 5.3 Four point conditional time history simulation for variousscales with three points
known to be moving sinusoidally.
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Figure 5.4 Three point conditional time history simulation at two different scales. The
known motion of the two points is established in the uppermost plot.
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5.6 Non-Stationary Extensions

To become a useful design tool the procedures proposed in this chapter should be able

to generate more realistic earthquake ground motions. Thisimplies that non-stationary mo-

tions in which both the frequency content and amplitude evolve with time would be desir-

able. Such an extension can be easily accomplished simply bysimulating the time histories

within a series of time windows each of which can be considered stationary. Figure 5.5

shows an earthquake motion accelerogram recorded at the Wildlife Liquefaction Array site,

Imperial County, California.
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Figure 5.5 North-South component of down-hole (7.5m) earthquake acceleration motion
recorded Nov. 24, 1987 at the Wildlife Liquefaction Array site, Imperial County,
California (Superstition Hills event, magnitude 6.6) showing the four subwin-
dow stationary approximation.

The accelerogram was triggered by the Superstition Hills event (magnitude 6.6 on Nov.

24, 1987) and was measured at a depth of 7.5m below the ground surface. Only the North-

South component is shown here. This time history was arbitrarily divided into four equal

segments and power spectral density functions were estimated, as shown in Figure 5.6, for

the segments within each window. The power spectral densityfunctions were estimated in

two ways. The first, shown in dashed lines in Figure 5.6, involved digital spectral analysis

using the FFT and a rectangular smoothing window as discussed by Blackman and Tukey

[6] and Newland [50]. An 11 data-point rectangular smoothing window (�5 data points)

was used to reduce the variance of the estimate. The second method was the maximum
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Figure 5.6 Estimates of the power spectral density function within each time window ob-
tained using FFT and Maximum Entropy methods.

entropy approach outlined by Anderson [4] and Burg [11]. Themaximum entropy estimates
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were found to remain relatively high at low frequencies and so were arbitrarily reduced by

ignoring the firstm�1 frequency steps and fitting a parabola to themth frequency step that

passed through the origin. Using a value ofm = 6 (3.1rad/sec) in Figure 5.6 gave maxi-

mum entropy estimates in good agreement with those obtainedvia the FFT approach. For

simulation purposes, power spectral estimates which are representative over the ensemble

are believed to be superior. Therefore the corrected maximum entropy estimates were used

in the following simulations since they are related to maximum likelihood estimates [10].

The next step in the creation of a non-stationary time history from stationary segments

is the piecing together of the segments. This must be done such that the correlation between

time histories at various points in space is not effected. Itturns out that this can be accom-

plished through a simple linear combination of the time history before the join with the time

history after the join. Consider two adjacent segments of the time history, the first segment

starting at time (nf � Ke + 1)∆t and ending atnf∆t and the second segment starting at

time (nf + 1)∆t and ending at (nf +Ke)∆t, whereKe denotes the length of each stationary

segment. Calling the first segmentZ i(tj) and the second segmentZ i+1(tj), the final non-

stationary time seriesZ(tj) can be obtained as followsZ(tj) =

8><>:Z i(tj), if j < nf � nν

w(nf � j)Z i(tj) + (1� w(nf � j))Z i+1(tj), if nf � nν � j � nf + nνZ i+1(tj), if j > nf + nν

(5.29)

wherew(j) is a discrete weighting function defined over the transition region [�nν , nν ]. It

varies linearly such thatw(nν) = 1 andw(�nν) = 0. ThusZ(tnf
) is just equal to the average

of Z i(tnf
) andZ i+1(tnf

) and has increasing contributions from the appropriate segments as

the transition boundaries are approached. One may notice that (5.29) requires the knowledge

ofZ i(tj) beyond the timetnf
andZ i+1(tj) before the timetnf

, both of which are outside their

domains. To accommodate this, use can be made of the fact thatthe time segments will be

formed via the FFT and so the periodicity relationshipsZ i(tnf +j) = Z i(tj), j > 0

(5.30)Z i+1(tnf−j) = Z i+1(tnf +Ke−j), j � 0

apply.

In the implementation of this non-stationary extension, the size of the transition region

nν is chosen so that it covers a few oscillations of the motion. Although (5.29) guarantees

continuity ofZ(tj) even whennν = 0, such a small value will result in a discontinuous

derivative. The use of larger values ofnν will lead to a continuous derivative. A further
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advantage to the transition averaging technique given above becomes apparent when one re-

calls that the FFT simulation method gives a covariance structure which is symmetric about a

lag of 1
2Ke∆t. Within a given segment of the simulated motionZ i(tnf−Ke+1) is almost per-

fectly correlated withZ i(tnf
). The averaging with the independently simulatedZ i+1(tnf

)

will reduce this correlation. However, this also implies that the size of the windows used to

create the segments should be large compared to the scale of fluctuation of the process.

The technique of generating segments longer than required and ignoring the excess

could also be used to reduce this symmetric covariance effect when generating uncondi-

tioned simulations. However, when generating conditionedsimulations, this correction can-

not be used since the known time histories cannot be arbitrarily lengthened within each seg-

ment. Thus, such a correcting procedure was not employed in this implementation – it was

assumed that the reduction in covariance at lagsKe∆t due to the averaging of adjacent in-

dependent segments of the time series was sufficient to reduce the error to tolerable levels.

Figure 5.7 shows an unconditioned four-point non-stationary simulation in which the

points are arranged on the vertices of a 100m square and a scales = 100 used. Similarly,

Figure 5.8 shows an unconditioned four-point non-stationary simulation using a scales =

10. In both cases, the shear wave velocity used wasc = 130 m/sec in (5.28) which was the

average in-situ velocity measured at the Wildlife site at a depth of 7.5m. The non-stationary

nature of the simulated records is clearly evident, as is theincreasing independence of the

four motions as the scale decreases.

To illustrate the conditional simulation of the non-stationary motions, the original re-

corded earthquake motion was taken as known and a second conditional motion was sim-

ulated as shown in Figures 5.9 and 5.10 for two different scales. The tendency of the two

motions to become more similar as the scale increases is clearly evident. However, it can

also be seen that the amplitude of the simulated motion is largely governed by its spectral

density function. If this differs substantially from that of the known motion (which it does

in the first 5 seconds of the record), then there will be amplitude scaling of the simulated

motion that does not disappear even at very high scaless (for which the patterns may be

identical but the amplitudes are different). This phenomena is reduced as the number of

‘known’ records increases relative to the number of ‘unknown’ points (see for example Fig-

ure 5.3) and can also be cured by increasing the number of timewindow subdivisions and/or

aligning the window boundaries with natural changes in spectral power.

A potentially important conclusion that can be reached on the basis of Figures 5.9 and

5.10 is that the method can be extended to non-homogeneous fields in which the (evolution-

ary) spectral density function is changed from point to point in space. This may allow the

simulation of motion on a soil layer conditioned by ground motions recorded on bedrock or

below the surface. These observations have yet to be verifiedand are beyond the scope of

the present work.
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Figure 5.7 Four point unconditioned non-stationary simulation with points arranged on the
vertices of a 100m square for scales = 100.
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Figure 5.8 Four point unconditioned non-stationary simulation with points arranged on the
vertices of a 100m square for scales = 10.
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Figure 5.9 Two point conditioned non-stationary simulation for scales = 100.
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Figure 5.10 Two point conditioned non-stationary simulation for scales = 10.
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Chapter 6

Statistics of Level Excursions and Extrema

6.1 Introduction

In both design and analysis contexts, the extremes of randomprocesses are typically

of considerable interest. Many reliability problems are defined in terms of threshold excur-

sions – when load exceeds strength for example. Most theories governing extremal statistics

of random fields deal with excursion regions, regions in which the processZ exceeds some

threshold and the few exact results that exist usually only apply asymptotically when the

threshold level approaches infinity. A large class of randomfunctions are not amenable to

existing extrema theory at all and for such processes the analysis of a sequence of realizations

is currently the only way to obtain their extrema statistics. In this chapter, a methodology for

simulation-based estimation of the statistics of level excursions and extrema will be devel-

oped. The treatment herein is limited to the two-dimensional case although the procedure is

easily extended to higher dimensions. Seven quantities having to do with level excursions

and extrema of two-dimensional random fields are examined,

1) the total area of excursion regions within a given domain (Ab),

2) the number of isolated excursion regions (Nb),

3) the area of isolated excursion regions (Ae),

4) the number of holes appearing in excursion regions (Nh),

5) an integral geometric characteristic defined by Adler [2](Γ),

6) a measure of ‘clustering’ defined herein (Ψ),

7) the distribution of the global maxima.

These quantities will be estimated for a single class of random functions, namely Gaussian

processes with Markovian covariance structure (Gauss-Markov processes), over a limited

range of scales of fluctuation and threshold levels and so thestudy is by no means complete

and should be viewed primarily as a new approach to the determination of these statistics.

Hopefully the appearance of empirical relationships will lead eventually to exact analytical

results.
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Within a given domainV = [0, T1] � [0, T2] of areaAT , the total excursion area,Ab, can

be defined by

Ab =
Z
V

IV

�
Z(x)� bσ

�
dx, (6.1)

wherebσ is the threshold of interest,σ2 being the variance of the process, andIV(�) is the

indicator function defined onV
IV(t) =

�
1 if t � 0

0 if t < 0
. (6.2)

For a homogeneous process, the expected value ofAb is simply

E [Ab] = AT P[Z(0) � bσ], (6.3)

which, for a zero-mean Gaussian process yields

E [Ab] = AT [1� Φ(b)], (6.4)

whereΦ is the standard normal distribution function. The total excursion areaAb is made

up of the areas of isolated (disjoint) excursionsAe as follows

Ab =
NbX
i=1

Aei, (6.5)

for which the isolated excursion regions can be defined usinga point set representationAei = fx 2 V : Z(x) � bσ, x 62 Aej 8j 6= ig,
Aei = L(Aei), (6.6)

whereL(Aei) denotes the Lebesque measure (or area) of the point setAei. Given this def-

inition, Vanmarcke [25] expresses the expected area of isolated excursions as a function of

the second-order spectral moments

E [Aei] = 2π

�
F c(bσ)
f (bσ)

�2 j�11j−1/2, (6.7)

in whichF c is the complementary distribution function (for a Gaussianprocess,F c(bσ) =

1�Φ(b)), f is the corresponding probability density function,and�11 is the matrix of second-

order spectral moments �11 =

"
λ20 λ11

λ11 λ02

#
. (6.8)
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Equation (6.7) assumes that the threshold level is sufficiently high so that the pattern of oc-

currence of excursions tends toward a two-dimensional Poisson point process. The joint

spectral momentsλkℓ can be obtained either by integrating the spectral density function,

λkℓ =
Z ∞

∞

Z ∞

∞

ωk
1 ω

ℓ
2 S(ω1, ω2)dω1dω2, (6.9)

or through the partial derivatives of the covariance function evaluated at the origin,

λkℓ = � �∂k+ℓB(� )
∂τk

1 ∂τ
ℓ
2

�
τ=0

(6.10)

The above relations presume the existence of the second-order spectral moments of

Z(x) which is a feature of a mean-square differentiable process. A necessary and sufficient

condition for mean square differentiability is�
∂B(� )
∂τ1

�
τ=0

=

�
∂B(� )
∂τ2

�
τ=0

= 0. (6.11)

A quick check of the Gauss-Markov process whose covariance function is given by

B(� ) = σ2 expf�2
θ j� jg (6.12)

verifies that it is not mean square differentiable. Most of the existing theories governing ex-

trema or excursion regions of random fields depend on this property. Other popular models

which are not mean square differentiable and so remain intractable in this respect are:

1) the ideal white noise process,

2) the moving average of ideal white noise (uniformly weighted window),

3) fractal processes.

6.2 Local Average Processes

One of the major motivations for the development of local average theory for random

processes is to convert random functions which are not mean square differentiable into pro-

cesses which are. Vanmarcke shows that even a very small amount of local averaging will

produce finite covariances of the derivative process. For a two-dimensional local average

process,ZD(x), formed by averagingZ(x) overD = T1T2, Vanmarcke [25] presents the

following relationships for the variance of the derivativeprocessŻD in the two coordinate

directions,

Var
h
Ż (1)

D

i
=

2
T 2

1

σ2γ(T2)[1� ρ(T1jT2)], (6.13)
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Var
h
Ż (2)

D

i
=

2
T 2

2

σ2γ(T1)[1� ρ(T2jT1)], (6.14)

where,

Ż (i)
D =

∂

∂xi
ZD(x),

γ(T1) = γ(T1,0),

γ(T2) = γ(0, T2),

ρ(TijTj) =
1

T 2
jσ

2γ(Tj)

Z Tj

−Tj

(Tj � jτj j)B(Ti, τj)dτj . (6.15)

Furthermore, he shows that the joint second-order spectralmoment of the local average pro-

cess is always zero forD > 0, i.e.,

Cov
h
Ż (1)

D , Ż (2)
D

i
= 0, 8D > 0. (6.16)

This result implies that the determinant of the second-order spectral moment matrix for the

local average process can be expressed as the product of the two directional derivative pro-

cess variances, j�11,Dj1/2 = σ2

ŻD
=
�

Var
h
Ż (1)

D

i
Var

h
Ż (2)

D

i�1/2

. (6.17)

Since the theory governing statistics of level excursions and extrema for mean square

differentiable random functions is reasonably well established for high thresholds (see for

example Cramer and Leadbetter [17], Adler [2], and Vanmarcke [25]) attention will now

be focused on an empirical and theoretical determination ofsimilar measures for processes

which are not mean square differentiable. This will be accomplished through the use of a

small amount of local averaging employing the results just stated. In particular the seven

quantities specified in the second paragraph of this chapterwill be evaluated for the two-

dimensional Gauss-Markov process

B(τ1, τ2) = σ2 expf�2
θ

p
τ 2

1 + τ 2
2g, (6.18)

realizations of which will be generated using the 2-D LAS method described in Chapter

4. Since the LAS approach automatically involves local averaging of the non-mean square

differentiable point process (6.18), the realizations will in fact be drawn from a mean square

differentiable process. The subscriptD will be used to stress the fact that the results will be

for the local average process.
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6.3 Analysis of Realizations

Two-dimensional LAS generated realizations of homogeneous, zero-mean, isotropic,

Gaussian processes are to be analyzed individually to determine various properties of the

discrete binary field,Y , defined by

Yjk,D = IV
�Zjk,D � bσD

�
, (6.19)

whereσ2
D is the variance of the local average process. The indicator functionIV is given by

(6.2) and soYD(x) has value 1 where the functionZD exceeds the threshold and 0 elsewhere.

In the following, each discrete value ofYjk,D will be referred to as a pixel which is ‘on’ if

Yjk,D = 1 and ‘off’ if Yjk,D = 0. A space filling algorithm was devised and implemented to

both determine the area of each simply connected isolated excursion region,Aei,D, according

to (6.6), as well as to find the number of ‘holes’ in these regions. In this case, the Lebesque

measure is simply

Aei,D = L(Aei,D) =
X

∆Aei,D, (6.20)

where

∆Aei,D = IAei,D

�ZD(x)� bσD

�
∆A (6.21)

is just the incremental area of each pixel which is ‘on’ within the discrete set of pointsAei,D

constituting theith simply connected region. In practice, the sum is performed only over

those pixels which are elements of the setAei,D. Note that the area determined in this fash-

ion is typically slightly less than that obtained by computing the area within a smooth con-

tour obtained by linear interpolation. The difference, however, is expected to be minor at a

suitably fine level of resolution.

A ‘hole’ is defined as a set of one or more contiguous ‘off’ pixels which are surrounded

by ‘on’ pixels. With reference to Figure 6.1, it can be seen that situations arise in which

the hole is only ‘weakly’ surrounded by ‘on’ pixels. The algorithm was devised in such a

way that only about half of these weakly surrounded regions are determined to be holes. In

addition, if an ‘off’ region intersect with the boundary of the domain, then it is not classified

as a hole even if it is surrounded on all other sides by ‘on’ regions.
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(a) (b)

(c) (d)

Figure 6.1 Examples of ‘weakly’ surrounded holes - (a) and (b) are foundto be holes while
(c) and (d) are not.

A comment deserves to be made about the extrema statistics obtained from realizations

of the LAS algorithm. As explained in Chapter 4, the LAS method produces a local average

process. Thus the statistics obtained are, strictly speaking, those of a local average process

and will be affected by the size of the averaging domain. Noting that as the resolution of

the field is increased the local average process approaches that of the point process, we will

restrict ourselves herein to an analysis of a high resolution field. Our concentration will be

primarily on the variation of extrema statistics with scaleof fluctuation and threshold level

and the dependence on the size of the averaging domain left for later work.

The fields to be generated will have resolution 128� 128 and physical size 5� 5. This

gives a fairly small averaging domain having edge sizes ofT1 = T2 = 5/128 for which the

variance function defined by (4.34) to (4.37) correspondingto (6.18) ranges in value from

0.971 to 0.999 forθ = 1
2 to θ = 4. In all cases, the variance of the governing equation (6.18)

will be taken as unity and soσ2
D equals the variance function.

Figure 6.2 shows a typical realization of the binary fieldY obtained by determining the

b = 1 excursion regions ofZ for a scale of fluctuationθ = 1
2. Also shown in Figure 6.2

are theb = 1 contours which follow very closely the ‘on’ regions. The centroid of each

excursion is marked with a darker pixel.
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In the sections to follow, trial functions are matched to theobserved data and their pa-

rameters estimated. All curve fitting was performed by visual matching since it was found

that existing least squares techniques for fitting complex non-linear functions were in general

unsatisfactory. In most cases the statistics were obtainedas averages from 400 realizations.

0 1 2 3 4 5

x

0
1

2
3

4
5

y

Figure 6.2 Sample function of the binary fieldY (6.19). Regions shown in gray represent
regions ofZ which exceed the thresholdb = 1σD. Z is generated via the 2-D
LAS algorithm according to (6.18) withθ = 1

2.
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6.4 Total Area of Excursion Regions

Since an exact relationship for the expected total area of excursion regions within a given

domain, (6.4), is known for a Gaussian process, an estimation of this quantity from a series

of realizations represents a further check on the accuracy of the simulation method. Figure

6.3 shows the normalized average total area of excursions,Āb,D/AT , forAT = 25. Here and

to follow, the overbar denotes the quantity obtained by averaging over the realizations. The

estimated area ratios show excellent agreement with the exact.
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Figure 6.3 Average total area of excursion ratio,̄Ab,D/AT , as a function of thresholdb.

6.5 Expected Number of Isolated Excursions

Figure 6.4 shows the average number of isolated excursion regions observed within the

domain,N̄b,D, as a function of scale and threshold. Here the word ‘observed’ will be used

to denote the average number of excursion regions seen in theindividual realizations. A

similar definition will apply to other quantities of interest in the remainder of the chapter.

The observedN̄b,D is seen in Figure 6.4 to be a relatively smooth function defined all the

way out to thresholds in excess of 3σD.
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Figure 6.4 Average number of isolated excursions,N̄b,D, estimated from 400 realizations
of the locally averaged two-dimensional Gauss-Markov process (6.18).

An attempt will be made to fit the theoretical results which describe the mean number

of excursions of a local average process above a relatively high threshold to the data shown

in Figure 6.4. This expectation is [25]

E
�
Nb,D

�
=
AT f

2
D(bσD)

2πF c
D(bσD)

σ2

ŻD
, (6.22)

in whichfD andF c
D are the pdf and complementary cdf of the local average process respec-

tively. σ2

ŻD
is the geometric mean of the directional variances of the derivative process as

defined by (6.17). For the Gaussian process, (6.22) becomes

E
�
Nb,D

�
=

AT e−b2

4π2σ2
D [1� Φ(b)]

σ2

ŻD
. (6.23)

To determineσ2

ŻD
the functionsρ(T1jT2) andρ(T2jT1) must first be calculated using (6.15).

Considerρ(T1jT2) for the quadrant symmetric Gauss-Markov process

ρ(T1jT2) =
2

T 2
2σ

2γ(T2)

Z T2

0
(T2 � τ2)B(T1, τ2)dτ2

=
2

T 2
2 γ(T2)

Z T2

0
(T2 � τ2) expf�2

θ

p
T 2

1 + τ 2
2gdτ2.

Making the substitutionr2 = T 2
1 + τ 2

2 gives

ρ(T1jT2) =
2

T 2
2σ2γ(T2)

p
T 2

1 +T 2
2Z

T1

�
T2re−2r/θp
r2 � T 2

1

� re−2r/θ

�
dr.
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To avoid trying to numerically integrate a function with a singularity at its lower bound, the

first term in the integrand can be evaluated as followsp
T 2

1 +T 2
2Z

T1

T2re−2r/θp
r2 � T 2

1

dr =
Z ∞

T1

T2re−2r/θp
r2 � T 2

1

dr � ∞Zp
T 2

1 +T 2
2

T2re−2r/θp
r2 � T 2

1

dr

= T2T1K1(
2T1
θ )� aZp

T 2
1 +T 2

2

T2re−2r/θp
r2 � T 2

1

dr � Z ∞

a

T2re−2r/θp
r2 � T 2

1

dr.

The second integral on the right hand side can now be evaluated numerically and fora cho-

sen sufficiently large, the last integral has the simple approximation1
2θT2 expf�2a/θg. The

functionK1 is the modified Bessel function of order 1. Unfortunately, for smallT1, the

evaluation of this integral is extremely delicate as it involves the small differences of very

large numbers. An error of only 0.1% in the estimation of eitherK1 or the integrals on

the right hand side can result in a drastic change in the valueof σ2

ŻD
particularly at larger

scales of fluctuation. The following results were obtained usingT1 = T2 = 5
128, for which

ρ(T1jT2) = ρ(T2jT1), and a 20 point Gaussian quadrature integration scheme.

Table 6.1 Computed variances of the local average derivative process.

Scale ρ(T1jT2) σ2

ŻD

0.5 0.8482 196.18

1.0 0.9193 105.18

2.0 0.9592 53.32

3.0 0.9741 33.95

4.0 0.9822 23.30
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Using these variances, (6.22) was plotted against the observedN̄b,D in Figure 6.5. The

relatively poor agreement achieved may be as a result of the combination of the difficulty

in accurately determiningσ2

ŻD
for small averaging dimensions and the fact that (6.22) is an

asymptotic relationship, valid only forb ! 1. A much better fit in the tails (b > 1.5)

was obtained using the empirically determined values ofσ2

ŻD
shown in Table 6.2 which are

typically about one-half to one-third those shown in Table 6.1. Using these values, the fit is

still relatively poor at lower threshold levels.

An alternative approach to the description ofN̄b,D involves selecting a trial function and

determining its parameters. A trial function of the form

N̄b,D ≏ AT (a1 + a2b) expf�1
2 b

2g, (6.24)

where the symbol≏ is used to denote an empirical relationship, was chosen and amuch

closer fit to the observed data, as shown in Figure 6.6, was obtained using the coefficients

shown in Table 6.2. The functional form of (6.24) was chosen so that it exhibits the correct

trends beyond the range of thresholds for which its coefficients were derived.

Table 6.2 Empirically determined parameters of (6.24) and variancesof the

derivative process.

Scale a1 a2 σ2

ŻD

0.5 3.70 5.20 90.0

1.0 2.05 1.90 40.0

2.0 1.18 0.65 17.5

3.0 0.81 0.41 11.3

4.0 0.66 0.29 8.5

109



0 1 2 3 4

Threshold  b   (σ)

0
25

0
50

0

N
b,

D

θ = 0.5 Observed
Fitted

0 1 2 3 4

Threshold  b   (σ)

0
10

0
20

0

N
b,

D

θ = 1.0 Observed
Fitted

0 1 2 3 4

Threshold  b   (σ)

0
50

10
0

N
b,

D

θ = 2.0 Observed
Fitted

0 1 2 3 4

Threshold  b   (σ)

0
50

10
0

N
b,

D

θ = 3.0 Observed
Fitted

0 1 2 3 4

Threshold  b   (σ)

0
25

50

N
b,

D

θ = 4.0 Observed
Fitted

Figure 6.5 Comparison of theoretical fit by (6.23) with the observed average number of
isolated excursions obtained by simulation.
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Figure 6.6 Comparison of empirical fit by (6.24) with the observed average number of iso-
lated excursions obtained by simulation.
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6.6 Expected Area of Isolated Excursions

Within each realization, the average area of isolated excursions,Āe,D, is obtained by di-

viding the total excursion area by the number of isolated areas. Further averaging over the

400 realizations leads to the mean excursion areas shown in Figure 6.7 which are again re-

ferred to as the ‘observed’ results. The empirical relationship of the previous section, (6.24),

can be used along with the theoretically expected total excursion area (6.4) to obtain the

semi-empirical relationship

Āe,D ≏
[1� Φ(b)]e

1
2 b2

a1 + a2b
, (6.25)

which is compared to the observed in Figure 6.8 and is seen to show very good agreement.
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Figure 6.7 Average area of isolated excursion regions estimated from 400 realizations of
the locally averaged two-dimensional Gauss-Markov process.

For relatively high thresholds, dividing (6.4) by (6.23) and assuming independence be-

tween the number of regions and their total size, yields the expected area to be

E
�
Ae,D

�
= 4π2[1� Φ(b)]2 eb2

 
σ2

D

σ2

ŻD

!
. (6.26)

Again the use ofσ2

ŻD
as calculated from (6.17) gives a rather poor fit. Using the empirically

derived variances shown in Table 6.2 improves the fit in the tails, as shown in Figure 6.9,

but loses accuracy at lower thresholds at most scales.
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Figure 6.8 Comparison of semi-empirical fit by (6.25) with the observedaverage area of
isolated excursions obtained by simulation.
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Figure 6.9 Comparison of fit by (6.26), using the empirically derived variancesσ2

ŻD
, with

the observed average area of isolated excursions obtained by simulation.
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6.7 Expected Number of Holes Appearing in Excursion Regions

As will be shown later, the number of holes (‘off’ regions surrounded by ‘on’ regions)
appearing in excursion regions is to be used in the determination of Adler’s [2] integral geo-
metric characteristic of two-dimensional random fields. Since the data is being gathered, an
empirical measure relating the average number of holes,N̄h,D, with the threshold level and
the scale of fluctuation will be derived here. The estimatedN̄h,D curves, obtained by finding
the number of holes in each realization and averaging over 400 realizations, are shown in
Figure 6.10.
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Figure 6.10 Average number of holes appearing in excursion regions.

The empirical model used to fit these curves was

N̄h,D ≏ AT (h1 + h2b)[1 �Φ(b)], (6.27)

where the parameters giving the best fit are shown in Table 6.3and the comparison is made
in Figure 6.11.

Table 6.3 Empirically determined parameters of (6.27) based on the observed

average number of holes obtained by simulation.

Scale h1 h2

0.5 4.45 -2.00

1.0 2.49 -0.55

2.0 1.39 0.06

3.0 0.97 0.25

4.0 0.80 0.28
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Figure 6.11 Comparison of empirical fit by (6.27) with observed average number of holes
obtained by simulation.
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6.8 Integral Geometric Characteristic of 2-D Random Fields

In his thorough treatment of the geometrical properties of random fields, Adler [2] de-

velops a so-called integral geometric (IG) characteristic, Γ(Ab,D), as a statistical measure of

two-dimensional random fields. The definition ofΓ(Ab,D) will be shown here specifically

for the two-dimensional case although a much more general definition is given by Adler.

First, using a point set representation, the excursion setAb,D can be defined as the set of

points inV = [0, T1] � [0, T2] for whichZD(x) � bσD,Ab,D = fx 2 V : ZD(x) � bσDg. (6.28)

The Hadwiger characteristic ofAb,D, ϕ(Ab,D), is equal to the number of connected compo-

nents ofAb,D (the number of isolated excursion regions) minus the numberof holes inAb,D.

Finally, if V̂ is defined as the edges ofV which pass through the origin (the coordinate axes),

then the IG characteristic is formally defined as

Γ(Ab,D) = ϕ(Ab,D)� ϕ(Ab,D \ V̂). (6.29)

Essentially,Γ(Ab,D) is equal to the number of isolated excursion areas which do not intersect

the coordinate axes minus the number of holes in them. Figure6.12 shows the average value

of the IG characteristic,̄Γ(Ab,D), obtained from the locally averaged Gauss-Markov process

realizations.
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Figure 6.12 Average values of Adler’s IG characteristic,Γ̄, obtained from 400 realizations
of the locally averaged Gauss-Markov process.
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Adler presents an analytic result for the expected value ofΓ(Ab,D) which has been mod-

ified here to account for local averaging of a Gaussian process

E
�
Γ(Ab,D)

�
=

bAT

(2π)3/2σ2
D

expf�1
2b

2gσ2

ŻD
. (6.30)

Figure 6.13 shows the comparison between (6.30) and the observed data using the empiri-

cally estimated variancesσ2

ŻD
shown in Table 6.2. The fit at higher thresholds appears to be

quite reasonable.

Using a function of the same form as (6.24),

Γ̄(Ab,D) ≏ AT (g1 + g2b) expf�1
2 b

2g, (6.31)

yields a much closer fit over the entire range of thresholds byusing the empirically deter-

mined parameters shown in Table 6.4. Figure 6.14 illustrates the comparison.

Table 6.4 Empirically determined parameters of (6.31) based on the observed

average IG characteristic̄Γ obtained by simulation.

Scale g1 g2

0.5 2.70 5.10

1.0 1.50 1.80

2.0 0.87 0.58

3.0 0.61 0.32

4.0 0.50 0.22
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Figure 6.13 Comparison of theoretically predicted IG characteristic (6.30) with observed av-
erage values obtained by simulation.
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Figure 6.14 Comparison of empirically predicted IG characteristic (6.31) with observed av-
erage values obtained by simulation.
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6.9 Clustering of Excursion Regions

Once the total area of an excursion and the number of components which make it up

have been determined, a natural question to ask is how the components are distributed – do

they tend to be clustered together or are they more uniformlydistributed throughout the do-

main? It would be useful to define a measure, herein calledΨ, which varies from 0 to 1 and

denotes the degree of clustering, 0 corresponding to a uniform distribution and larger val-

ues corresponding to denser clustering. The determinationof such a measure involves first

defining a reference domain within which the measure will be calculated. This is necessary

since a homogeneous process over infinite space always has excursion regions throughout

the space. On such a scale, the regions will always appear uniformly distributed (unless

the scale of fluctuation also approaches infinity). For example, at scales approaching the

boundaries of the known universe, the distribution of galaxies appears very uniform. It is

only when attention is restricted to smaller volumes of space that one begins to see the local

clustering of stars. Thus an examination of the tendency of excursions to occur in groups

must involve a comparison within the reference domain of theexisting pattern of excursions

against the two extremes of uniform distribution and perfect clustering.

A definition forΨ which satisfies these criteria can be stated as follows

Ψ =
Ju � Jb

Ju � Jc
, (6.32)

whereJb is the polar moment of inertia of the excursion areas about their combined centroid,

Jc is the polar moment of inertia of all the excursion areas concentrated within a circle,

andJu is the polar moment of inertia about the same centroid if the excursion area were

distributed uniformly throughout the domain. Specifically

Jb =
Nb,DX

i

Jei +Aei,Djx̄b � x̄ij2, (6.33)

Jei =
X

j

∆Aei,Djx̄i � xjj2, (6.34)

Ju =
Ab,D

AT

Z
V

jx̄b � xj2dx, (6.35)

Jc =
A2

b,D

2π
, (6.36)

whereJei is the polar moment of inertia of theith excursion region of areaAei about its own

centroid,x̄i. ∆Aei,D is as defined by (6.21) and ¯xb is the centroid of all the excursion regions.

The second moment of area was used in the definition since it isinvariant under rotations.
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It can be easily seen that this definition will result inΨ = 0 when the excursion regions are

uniformly distributed over the space (Jb ! Ju) andΨ ! 1 when the excursion regions

are clustered within a small region (Jb ! Jc). It is also possible forΨ to take negative

values, indicating the occurrence of two local clusters at opposite sides of the domain. This

information is just as valuable as positive values forΨ, but in practice has not been observed

to occur on average.

All that remains is to defineΨ in the limiting cases. Equation (6.32) ensures thatΨ will

be quite close to 1 in the case of only a single excursion region. It seems natural then to take

Ψ = 1 if no excursions occur. At the other extreme, asAb,D ! AT , both the denominator

and numerator of (6.32) become very small. Although the limit for non-circular domains is

zero, it appears that the measure becomes somewhat unstableasAb,D ! AT . This situation

is of limited interest since the cluster measure of a domain which entirely exceeds a threshold

has little meaning. It is primarily a measure of the scatter of isolated excursions.
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Figure 6.15 Average values of the cluster measureΨ̄ estimated from 200 realizations of the
locally averaged Gauss-Markov process.

Individual realizations were analyzed to determine the cluster measureΨ and then av-

eraged over 200 realizations to obtain the results shown in Figure 6.15. Definite, relatively

smooth trends both with scale of fluctuation and threshold level are evident indicating that

the measure might be a useful one to categorize the degree of clustering.
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6.10 Distribution of the Global Maxima

Extracting the maximum value ofZD from each realization allows the estimation of its

corresponding probability density function (or equivalently the cumulative distribution) with

reasonable accuracy given a sufficient number of realizations. A total of 2200 realizations

of the locally averaged Gauss-Markov process were generated for each scale of fluctuation

considered. Conceptually it is not unreasonable to expect the cumulative distribution of the

global maximumFmax(b) to have the form of an extreme value distribution for a Gaussian

process

Fmax(b) = [Φ(b)]neff , (6.37)

whereneff is theeffectivenumber of independent samples in each realization. As the scale

of fluctuation approaches zero,neff should approach the total number of field points (128�
128) and as the scale becomes much larger than the field size,neff is expected to approach 1

(the field becomes totally correlated). Except at the shortest scale of fluctuation considered,

θ = 0.5, the function defined by (6.37) was disappointing in its match with the CDF obtained

from the realizations. Figure 6.16 illustrates the comparison for the empirically determined

values ofneff shown in Table 6.5. The better fit at the smallest scale of fluctuation is to be

expected since at very small scales the field consists of a setof (almost) independent random

variables and thus satisfies the conditions under which (6.37) applies. Not surprisingly, an

improved match is obtained using a two-parameter Type I extreme value distribution having

the double exponential form

Fmax(b) = expf�e−α(b−µ)g, (6.38)

where the parametersα andµ, estimated by an order statistics method developed by Leiblein

[38] using the simulation data, are presented in Table 6.5 for each scale of fluctuation. The

comparison between the simulation-based cumulative distribution and that predicted by the

Type I extreme value distribution is shown in Figure 6.17.

Table 6.5 Empirically determined effective number of independent samples

neff and parameters of the Type I extreme distribution (6.38).

Scale neff α µ

0.5 2900 3.14 3.41

1.0 900 2.49 3.05

2.0 180 2.05 2.52

3.0 70 1.78 2.15

4.0 35 1.62 1.86
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Figure 6.16 Observed cumulative distribution of the global maximum of each realization
compared to the one-parameter extreme value distribution given by (6.37).
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Figure 6.17 Observed cumulative distribution of the global maximum of each realization
compared to the Type I distribution given by (6.38).
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Chapter 7

Soil Liquefaction Study

7.1 Introduction

This chapter is devoted to a probabilistic liquefaction case study in which a soil de-

posit, located at the Wildlife Management Area in California, is represented by a three-

dimensional stochastic model and subjected to earthquake shaking. The earthquake motions

used as input to the model are realizations of a space-time field generated according to the

methods presented in Chapter 5. Four cases will be investigated by varying the following

two model parameters:

1) The evolutionary spectral density functions of the inputmotion are estimated us-

ing an actual time history recorded at the site and a set of unconditioned correlated

ground motions are produced (see Section 5.6). In recognition of the major effect

earthquake intensity has on the likelihood of liquefaction, a second set of input mo-

tions is obtained simply by scaling the first.

2) The scale of fluctuation governing the stochastic soil properties is varied from a ‘best

estimate’ to a significantly higher value to investigate itseffect on the spatial distri-

bution of liquefaction.

All other parameters are held constant within each case, including the starting pseudo-random

number generator seed, so that direct comparison of the results can in principle be carried

out. This is desirable since only nine realizations are analyzed for each case and the vari-

ance of estimates is in general quite high. The number of realizations considered is held

to a minimum since the analysis of each realization is quite time consuming, owing to the

non-linear nature of the computations. The study was performed on a Cyber 205, a serial

vector supercomputer. It should be pointed out that a Monte-Carlo analysis such as this is

ideally suited to parallel architecture computers which could accomplish the same result in

a small fraction of the time with little modification of the code.
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The major contribution of this chapter is its development ofstochastic spatial analysis

of liquefaction potential. The trends discovered in the spatial distribution of liquefaction

indices and their statistics are believed to be general results but the actual values obtained

are site or model specific. Many more analyses such as this areneeded at other sites and for

other earthquakes before statements about liquefaction likelihood can be confidently made.

7.2 Wildlife Liquefaction Site

An earthquake of magnitude Ms = 6.0, on April 26, 1981 in the Imperial Valley near

Westmorland, California, caused a significant amount of damage – in many cases by liq-

uefaction. This prompted a detailed geological survey of the valley and the selection of a

site for the installation of accelerometers and piezometers to record ground motions and

pore-water pressure changes during future earthquakes. The site chosen was the Wildlife

Management Area located 3 km south of Calipatria in the Imperial Wildfowl Management

Area and lying on the west side of the incised flood plain of theAlamo River, as shown

in Figure 7.1. Penetration test and samples were taken by theU.S. Geological Survey [5]

identifying seven geological units in the upper 26.5m of which the three topmost units were

considered to be the most significant as they lie within a zoneof high liquefaction probabil-

ity. A section across the flood plain showing these three units is seen in Figure 7.2 and the

arrangement of the instrumentation is depicted in Figure 7.3. The instrumentation was in-

stalled in 1982 and consisted of surface and down-hole (7.5m depth) accelerometers and 6

pore-water pressure transducers. Also shown in Figures 7.2and 7.3 are the cone penetration

test (CPT) results at a few lateral positions as a function ofdepth. Although there appears to

be significant vertical variation, the lateral variation isrelatively small, consistent with the

sedimentary (layered) nature of the deposits.
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Figure 7.1 Location of Wildlife Management Area and epicenters of the Elmore Ranch
(Ms = 6.2) and Superstition Hills (Ms = 6.6) events.

Within the upper three units, a closer examination by Holzeret al. [29] revealed five

geological soil strata to the level of the downhole accelerometer identified as follows:

1) Layer 1 (0.0 to 1.2m): very loose silt

2) Layer 2 (1.2 to 2.5m): very loose silt

3) Layer 3 (2.5 to 3.5m): very loose to loose sandy silt

4) Layer 4 (3.5 to 6.8m): loose to medium dense silty sand

5) Layer 5 (6.8 to 7.5m): medium to stiff clayey silt

Table 7.1 contains the estimated and measured soil properties for each layer as compiled

by Keane and Prevost [34]. The water table level was at a depthof 1.2m and forms the

boundary between Layers 1 and 2.
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Table 7.1 Material parameters for the layered soil deposit at Wildlife site as

estimated by Keane and Prevost [34].

Layer 1 2 3 4 5

Depth (m) 0.0 to 1.2 1.2 to 2.5 2.5 to 3.5 3.5 to 6.8 6.8 to 7.5

Shear Wave
Velocity 99 99 116 116 130
(m/sec)

Total
Density 1600 1940 1970 1970 2000
(kg/m3)

Shear Modulus
(solid) 1.57�107 1.47�107 2.08�107 2.08�107 2.70�107

(N/m2)

Bulk Modulus
(solid) 2.61�107 2.44�107 4.50�107 4.50�107 5.83�107

(N/m2)

Coefficient of
Permeability — 1.0�10−5 1.0�10−5 1.0�10−4 1.0�10−6

(m/sec)

Poisson’s Ratio 0.25 0.25 0.30 0.30 0.30

Void Ratio 0.6799 0.7955 0.7400 0.7400 0.6878

Porosity 0.4047 0.4431 0.4253 0.4253 0.4075

Friction Angle 21.3◦ 20.0◦ 22.0◦ 22.0◦ 35.0◦

Dilation Angle 21.3◦ 20.0◦ 19.0◦ 18.0◦ 5.0◦

Reference Mean
Normal Stress 1.15�104 2.95�104 4.10�104 6.10�104 8.00�104

(N/m2)
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Figure 7.2 Cross-section of flood plain at the Wildlife site. Lower figure shows a closeup
of the strata and CPT measurements at a number of locations.
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Figure 7.3 Location of instrumentation at the Wildlife site.

The random medium representation of the soil properties andthe deterministic finite

element program used to analyze the statistical nature of liquefaction at the Wildlife site are

described in the following sections. Recognizing that little information concerning spatial

variation of the soil properties and the earthquake ground motion is available, the model

is necessarily idealized requiring many of its parameters assumed. For the same reason, a

detailed sensitivity analysis was judged to be both too expensive and unwarranted. Only the

intensity of the earthquake excitation and the scales of fluctuation of the soil properties were

selected as parameters to be varied for the purpose of sensitivity analysis, as discussed in

further detail in the next section.
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7.3 Stochastic Soil Model

Soil properties are well known to exhibit high spatial variabilities in most natural de-

posits. For this study, five soil properties expected to havethe greatest impact on liquefac-

tion likelihood and site response were selected to be modeled as three-dimensional random

fields. They are,

1) permeability,k,

2) porosity,n,

3) modulus of elasticity (solid phase),E,

4) Poisson’s ratio (solid phase),ν,

5) dilation angle,Φ.

Beyond CPT tests performed at a small number of spatial locations, the available published

site information [5, 29] contains barely enough data to establish the mean properties listed

in Table 7.1. Estimates of the second moment statistical nature of the above properties must

therefore come from a combination of engineering judgementand a review of the literature.

Before discussing the specific models to be used, the generation method deserves some at-

tention. In all cases the random material properties will beobtained through appropriate

transformations of 3-D zero-mean unit-variance homogeneous Gaussian fields, realizations

of which will be obtained using the three-dimensional LAS method. LettingQi(x) represent

theith property listed above andz the depth below the surface,

Qi(x) = Ti

�
ui(z) + si(z)Zi(x)

�
, (7.1)

whereui(z) is the mean,si(z) is the standard deviation, andTi is a transformation taking

the Gaussian process into the distribution appropriate forpropertyi. Notice that such a for-

mulation allows trends in the mean and variance as a functionof depth to be incorporated.

Furthermore, if the fieldZi is generated completely independently ofZj for j 6= i (as they

will be), thenQi will be independent ofQj . A point-by-point correlation between the prop-

erties can be achieved by writing

Qi(x) = Ti

 
ui(z) + si(z)

npX
j=1

LijZj(x)

!
, (7.2)

wherenp is the number of random properties andL is a lower triangular matrix obtained by

Cholesky decomposition of the inter-property correlationmatrix,�,L �LT = �. (7.3)
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If the transformationTi is linear then the components of� are

Σij =
E
�
QiQj

�� E [Qi] E
�
Qj

�
σiσj

, (7.4)

whereσ2
i is the variance of theith property. If the transformationTi is not linear, as is usually

the case, then (7.4) does not apply and the correlationsΣij must be chosen approximately

(for example, by linearization ofTi at the mean). This formulation has been implemented

in the computer model and represents a tractable means of introducing correlation between

soil properties.

7.3.1 Permeability

A soil’s permeability is perhaps the single most important property influencing lique-

faction. Water trapped within the soil structure carries anincreasing fraction of the stress

as the soil densifies during shaking. Eventually the inter-granular stresses may become so

low that relative movement between particles becomes possible and the medium effectively

liquefies.

The mean, depth dependent permeabilities for the Wildlife site were estimated by Keane

et al. [34] and are listed in Table 7.1. The soil permeability is assumed to be lognormally

distributed and so the transformationT1 is the exponential

k(x) = exp

(
µln k + σln k

npX
j=1

L1jZj(x)

)
, (7.5)

whereµln k andσ2
ln k are the mean and variances of the logarithm of permeability,respec-

tively. Both are functions of depth.

A review of the literature concerning the spatial variability of soil properties [3, 13, 14,

15, 19, 23, 22, 24, 33, 40, 44] reveals that little is known about the variability and scales

of fluctuation of soil permeability. Denoting byµk the mean of the permeability and by

σ2
k its variance, Gomez-Hernandezet al. [22] use a coefficient of variation (σk/µk) of 1.0

while de Marsily [44] quotes typical values ranging from 0.5to 1.5. Gelhar [23] estimates

that the standard deviation of lnk varies from 1.2 to 1.7 for unsaturated soils. Table 7.2

shows the variabilities chosen for this study which are roughly in the range indicated by

these three researchers. The variance of permeability in the 4th layer (from 3.5 to 6.8m

depth) is assumed to be somewhat higher than that of the otherlayers for demonstrative

purposes.
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Table 7.2 Parameters used in the modeling of soil permeability,k, at the

Wildlife site.

Depth (m) µk µln k σ2
ln k

0.0 - 1.2 1�10−5 -11.7 0.6

1.2 - 2.5 1�10−5 -11.7 0.6

2.5 - 3.5 1�10−5 -11.9 0.8

3.5 - 6.8 1�10−4 -9.7 1.0

6.8 - 7.5 1�10−6 -14.1 0.5

The covariance function used to model the spatial variability of all the random soil prop-

erties is of a simple exponential form parameterized byθ, the scale of fluctuation,

B(τ1, τ2, τ3) = σ2 exp

��2
θ

�jτ1j +pτ 2
2 + τ 2

3

��
, (7.6)

with associated variance function given by (4.41). In the vertical direction, de Marsily ex-

pects the scale of fluctuation of soil permeability to be in the order of 1m and so, initially, a

vertical scale of fluctuation,θv, of 1m is used. Scales of fluctuation in the horizontal direc-

tion,θh, are highly dependent on the uniformity of the stratification. It appears from Figures

7.2 and 7.3 that the layers are fairly uniform and so a ratio ofhorizontal to vertical scales

of θh/θv ' 40 was selected implying a horizontal scale of fluctuationθh ' 40m. This is

in the same range as Vanmarcke’s [66] estimate of 55m for the compressibility index of a

sand layer. Although compressibility and permeability aredifferent engineering properties,

it is felt that the scale of fluctuation is largely dependent on the geotechnical process of layer

deposition rather than the actual property studied. Based on this reasoning, all the random

soil properties are modeled using the same scale of fluctuation as well as the same form of

the covariance function.

The case studies will be repeated using a larger scale of fluctuation ofθv = 5 and the

ratio of horizontal to vertical scales will be held constantat about 40. In the following, we

will refer only to the vertical scale of fluctuation when defining the cases.

Figure 7.4 shows a typical realization of the permeabilities obtained for the Wildlife site

using the means and variances given in Table 7.2 and verticalscale of fluctuationθv = 1.0

m. This realization was produced using the three-dimensional LAS algorithm discussed in

Chapter 4. Changes in mean with depth are clearly evident. The figure shows 4 adjacent

columns of the 32� 32� 32 realization. In order to obtain the lateral scale of fluctuation of

about 40 times the vertical scale, the field was first generated as a 7.5m cube then stretched

in the lateral directions to a size of 320�320m giving each cell dimensions 0.23m in height
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by 10� 10m laterally. Using this transformation, the final horizontalscale of fluctuation

is θh = 42.7θv.
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Figure 7.4 Typical realization of soil permeabilities over depth using vertical and horizontal
scales of fluctuation ofθv = 1 andθh = 42.7 m respectively. Four adjacent
columns of the soil model are shown.

7.3.2 Porosity

Porosity has little direct influence on the occurrence of liquefaction but is related to soil

density which in turn affects the initial vertical stressesin the medium as well as the shear

wave velocities. The average porosity,n, over depth at the Wildlife site is assumed constant

at 0.42. Recognizing thatn must be bounded, a transformationT2 (see 7.2) must be found

to take a normally distributed variate into a bounded distribution. One such transform is

X = T2(Y ) =
1
2

�
1 + tanh

�
Y

2π

��
, (7.7)

which is a one-to-one mapping ofY 2 (�1,1) intoX 2 (0,1) whereY is obtained from

the random fieldsZ according to (7.2)

Y (x) = u2(z) + s2(z)
npX
j=1

L2jZj(x). (7.8)

The probability function corresponding to (7.7) forY � N(0, s2) is

fX(x) =

p
π
2

x (1� x)s2

exp

8<:�1
2

 
π ln

�
x

1−x

�
s2

!2
9=; , x 2 (0,1), (7.9)
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which is symmetric aboutx = 1
2. Figure 7.5 illustrates this distribution for a variety of

variances.
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Figure 7.5 Probability density function of the bounded function (7.7)for four different vari-
ances.

A further improvement can be made to (7.7) by introducing variable bounds. In this

case ifX 2 (a, b) then (7.7) becomes

X = a + (b� a)T2(Y ). (7.10)

For this site, it is assumed thatn 2 (0.22,0.62) and thatu2 = 0 ands2 = 1.0 so that

n = 0.22 + 0.4T2(Y ). (7.11)

The upper bound forn is chosen so that the soil does not initially ‘float’ in the water by

requiring

(1� n)ρs � ρw > 0, (7.12)

whereρs andρw are the solid and fluid phase mass densities, respectively. The mass den-

sity ρs was taken to be 2687kg/m3 [34] below the water table giving an upper bound onn

of 0.627. Because it is well known that soil porosity is related to permeability, a value of

Σ12 = 0.5 was assumed in the model to reflect their mutual correlation. Figure 7.6 shows a

realization of the porosities (corresponding to Figure 7.4) in four adjacent columns of the

field using the above relationships and parameters.
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Figure 7.6 Typical realization of soil porosities over depth (θv = 1 m). Four adjacent
columns of the soil model are shown.

7.3.3 Elastic Modulus and Poisson’s Ratio

In terms of the shear moduliG, bulk moduliB, and Poisson’s ratioν, appearing in Ta-

ble 7.1, the mean elastic moduli can be calculated as a function of depth. Assuming the

elastic moduli to follow a lognormal distribution, the calculated means,µE, and parameters

of the distribution,µln E andσln E, are shown in Table 7.3 where the variances,σln E, of the

log-moduli are assumed. The elastic moduli are then obtained using the exponential trans-

formation

E(x) = exp

(
µln E + σln E

npX
j=1

L3jZj(x)

)
. (7.13)

Figure 7.7 illustrates a typical realization of the elasticmoduli over depth for four adjacent

columns of the soil model.

Poisson’s ratio is chosen to be a bounded variate,ν 2 (0.075,0.475), according to (7.7)

with constant mean 0.275 ands4 = 1.0 where nowY is given by

Y (x) = s4

npX
j=1

L4jZj(x), (7.14)

so that

ν = 0.075 + 0.4T4(Y ), (7.15)

and the transformationT4 is the same asT2 in (7.7). A typical realization of Poisson’s ratio

in four adjacent columns of the soil model can be seen in Figure 7.8.
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Table 7.3 Parameters used in the lognormal distribution model of the soil elas-

tic moduli,E, at the Wildlife site.

Depth (m) µE (N/m2) µln E σ2
ln E

0.0 - 1.2 3.9�107 17.1 0.8

1.2 - 2.5 3.7�107 17.1 0.6

2.5 - 3.5 5.4�107 17.4 0.8

3.5 - 6.8 5.4�107 17.2 1.2

6.8 - 7.5 7.0�107 17.7 0.8
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Figure 7.7 Typical realization of soil elastic moduli over depth (θv = 1m). Four adjacent
columns of the soil model are shown.
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Figure 7.8 Typical realization of soil Poisson ratios over depth (θv = 1m). Four adjacent
columns of the soil model are shown.

7.3.4 Dilation Angle

The relationship between the dilation angle,Φ, and the friction angle,φ, determines

whether the soil subsequently dilates or compacts upon shaking. If the ratioΦ/φ exceeds

1.0 then only compaction occurs, otherwise initial compaction is followed by dilation. Since

dilation does not result in increasing pore water pressures, this ratio is of considerable in-

terest in the analysis of a liquefiable medium. To reduce the number of random variables

considered, the friction angle is assumed fixed at the valuesgiven in Table 7.1 and the di-

lation angle is assumed to be random following a lognormal distribution with means and

variances listed in Table 7.4. Figure 7.9 shows a typical realization of the dilation angle

over four adjacent columns of the field. A summary of the random soil properties appears

in Table 7.5.

Table 7.4 Parameters used in the modeling of soil dilation angle,Φ, at the

Wildlife site.

Depth (m) µΦ µln Φ σ2
ln Φ

0.0 - 1.2 21.3◦ 2.95 0.2

1.2 - 2.5 20.0◦ 2.90 0.2

2.5 - 3.5 19.0◦ 2.84 0.2

3.5 - 6.8 18.0◦ 2.77 0.3

6.8 - 7.5 5.0◦ 1.51 0.2
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Figure 7.9 Typical realization of soil dilation angles over depth (θv = 1m). Four adjacent
columns of the soil model are shown.

Table 7.5 Summary of random soil properties used in the soil model.

Property Distribution Description

Permeabilityk lognormal mean and variance
functions of depth

Porosityn bounded constant mean and variance,
correlated with permeability

Elastic ModulusE lognormal mean and variance
functions of depth

Poisson’s Rationν bounded constant mean and variance

Dilation AngleΦ lognormal mean and variance
functions of depth

7.4 Finite Element Model

Realizations of the soil mass are excited by earthquake motions applied at the base of

each soil column and analyzed using a one-dimensional finiteelement model developed by

Prevost [55] called DYNA1D which represents the current state-of-the-art. The soil mass

is divided up into 64 columns arranged on an 8� 8 grid and each column consists of 32

elements (33 nodes) vertically. The size of each element is 0.23m vertically and 10� 10

m horizontally. Realizations of the random soil properties are obtained by column-wise ex-

traction from a set of 32� 32 � 32 realizations of the random fields as discussed in the

previous section. Which columns are to be extracted dependson the horizontal scale of
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fluctuation to be used, however for the example being run here, an adjacent 8� 8 group of

columns is extracted and stretched horizontally to achievethe desired lateral scale of fluctu-

ation. The choice of an 8�8 grid is arbitrary but a larger grid size will substantiallyincrease

the required computer time.

Soil columns are then analyzed individually by DYNA1D, implying that 64 runs of

DYNA1D are required for each realization of the soil mass. The runs are made indepen-

dently and so the only link between the soil columns is through their correlated properties.

It is unknown how the coupling between columns in a fully three-dimensional dynamic anal-

ysis would effect the determination of liquefaction potential, however it is believed that the

analysis proposed herein represents the best approximation to the fully three-dimensional

analysis at this time.

The finite element model DYNA1D employs multiple yield levelelasto-plastic consti-

tutive theory to take into account the non-linear, anisotropic, and hysteretic stress-strain be-

havior of the soil as well as the effects of the transient flow of the pore water through the

soil media [55]. The code was written so that the material constitutive parameters are ob-

tained internally from conventional soil properties, suchas those discussed in the previous

section. Each finite element is assigned soil properties obtained from realizations of the

random properties and from the set of deterministics properties. Below the water table, the

element nodes have four degrees of freedom: two for the solidphase and two for the fluid

phase, to accommodate both the vertical and lateral motion of each phase. Above the wa-

ter table, the soil is assumed to be dry and only two degrees offreedom are needed to fully

describe the motion of the soil.

DYNA1D was ported to the CYBER 205 supercomputer and optimized for use both

on the supercomputer as well as within the framework of a Monte-Carlo type analysis. Al-

though the run times were considerably improved through explicit optimization, DYNA1D

still consumed some 90 to 95 percent of the total run time. Thus it is essential to reduce

the work performed by DYNA1D without degrading the accuracy. These reductions will be

noted in the following paragraphs.

Earthquake motions applied to the base of each soil column are realizations of a space-

time process generated according to the procedures given inChapter 5. Only one compo-

nent of motion is used, modeled after the North-South component of the Superstition Hills

event. Preliminary results by Keane and Prevost (not published) indicate that including the

East-West and vertical components makes little differenceto their computed site response

(the North-South component had much larger amplitudes), and using it alone, they obtain

remarkably good agreement with the observed site response.The original recorded N-S

component had an apparent duration of about 40 seconds and a time increment of 0.02 sec-

onds. In an effort to reduce the computational overhead, 1024 time steps are used here with a
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time increment of 0.02 seconds giving a duration of 20.48 seconds. The four power spectral

density functions shown in Figure 5.6 are employed to governthe simulated time histories,

each spanning a time window of 5.12 seconds. To investigate the effect of earthquake inten-

sity, a second case is considered in which the original ground motions are scaled by a factor

of 0.7.

Figure 7.10 shows a typical set of input acceleration time histories at each of the four

corner columns of the 8� 8 grid. The space-frequency correlation function is (see 5.28)

ρωk
(rij) = exp

��ωkjrij j
2πcs

�
, (7.16)

with a shear wave velocityc = 130m/sec (see Layer 5, Table 7.1) and scale parameter

s = 5. It can be seen that over the relatively short distances between the corner points, the

input motions are very similar.

The surface response obtained from the DYNA1D analysis of a realization of a single

column of soil is shown in Figure 7.11. For this particular example, the element at a depth

of about 2.2m liquefied after about 13 seconds of motion. In the surface response, this is

evident from the drastic reduction in acceleration as the liquefied layer absorbs the motion.

The spurious high frequencies apparent in the post-liquefied response are artifacts of the

DYNA1D analysis – the convergence tolerance was set at a relatively high value (0.1) to

reduce computations and the maximum number of iterations was limited to 20. Prior to

liquefaction these choices result in negligible error. Forthe unstable conditions at or near

liquefaction the algorithm obtains poor solutions which tend to fluctuate unpredictably. As

the interest here is primarily in the onset of liquefaction,the details of the post-liquefaction

response are considered unimportant.
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Figure 7.10 Realization of base acceleration time histories at the fourcorner columns of the
80� 80m soil model.
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Figure 7.11 Surface response computed by DYNA1D for a particular soil column realiza-
tion.

7.5 Definition of Liquefaction

From the one-dimensional finite element analysis discussedabove, the excess pore wa-

ter pressure,ui, is obtained for each elementi as a function of time. The ratioqi = ui/σ
′
oi,

whereσ′
oi is the initial vertical effective stress in theith element, is commonly thought of as

the parameter governing the occurrence of liquefaction [20] and will be referred to herein

as the liquefaction index. Whenqi reaches a value of 1, the pore water is carrying the load

so that soil particles become free to slip and liquefaction takes place. It is also possible for

liquefaction to take place at values ofqi slightly less than 1, it only being necessary that most

of the lateral strength or bearing capacity is lost. Fardis and Veneziano [19] suggest that the

liquefied fraction of theith element of soil,ηi, be calculated as

ηi = P

�
ui

σ′
oi

� 0.96

�
(7.17)

144



for undrained and partially drained effective stress models. The probability on the right hand

side can be evaluated through a sequence of simulations. Fardis then went on to evaluate the

risk of liquefaction,L, as the probability that the maximum ofηi over the depthz is close

to 1,

L = P
h
max

z
(ηi) � 1

i
. (7.18)

For individual soil columns where interaction with adjacent soil is ignored, such an approach

is reasonable since the occurrence of liquefaction at a given layer will result in the loss of lat-

eral resistance at the surface. Ohtomo and Shinozuka [61] have a slightly different approach

involving summing the liquefaction indicesq over depth to obtain the vertically averaged

liquefaction indexQ, Q =
1
h

Z h

0

u(z)
σ′

o(z)
dz, (7.19)

whereh is the total depth of the modeled column. In this way the effect of the vertical extent

of a liquefied region can be incorporated into a risk analysis. The question to be answered

is how important is the vertical extent of liquefaction? While it certainly has some bearing

on the liquefaction risk, it is easy to imagine a situation inwhich a thin layer some distance

below the surface becomes completely liquefied while adjoining layers above and below

remain stable. Such a condition would yield a relatively lowvalue ofQ even though all

lateral stability at the surface may be lost. On the other hand, the vertical extent of liquefied

regions may be more important to the occurrence of sand boilsand vertical settlement.

In the three-dimensional situation, neither approach was deemed entirely suitable. The

occurrence of highqi indices within an individual column will not necessarily imply liq-

uefaction at the site if adjacent columns retain sufficient strength. Likewise if a particular

layer is found to have highq values over a significant lateral extent, then the liquefaction risk

could be high even though the average for the site (and the layer) may be low. In this study,

the lateral spatial extent of liquefied regions is assumed tobe the more important factor in

the determination of liquefaction risk for a site. For each realization, the analysis proceeds

as follows

1) compute the ratioqij(tℓ) = ui/σ
′
oi for each elementi in thejth column at each time

steptℓ and repeat for all the columns,

2) compute the sum

Qiℓ =
1
A

ncX
j=1

qij(tℓ)∆Aj

whereA is the total area of the site model,∆Aj is the area of thejth column andnc

is the number of columns;Qiℓ is theith layer average stress ratio at each time step

tℓ.
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3) determine the indicesi∗ andℓ∗ which maximizeQiℓ. The indexi∗ now represents

the depth of the plane with the maximum likelihood of liquefying at the timetℓ∗ and

qi∗j(tℓ∗) is the corresponding two-dimensional field of stress ratios (indexed byj).

4) determine the excursion areas defined by

Aq =
ncX
j=1

IA

�
qi∗j(tℓ∗)� q

�
∆Aj

for a variety of levelsq 2 (0,1) along with other statistical measures discussed in

Chapter 6. The indicator functionIA(�) is defined by (6.2).

Repeating the above steps for a number of realizations allows the estimation of the spatial

statistics of the liquefaction indicesq on the horizontal plane of maximum liquefaction like-

lihood. In particular, the excursion areasAq will be evaluated forq = f0.1,0.2, . . . ,0.9g.
To reduce computational costs, DYNA1D analysis of an individual column is discontin-

ued if any of the ratiosqi = ui/σ
′
oi exceed 0.96. There are a number of reasons for this: First

for qi approaching 1, DYNA1D requires more iterations to convergeon a solution (as might

be expected since the shear resistance is approaching zero). Secondly, once ratios above

about 0.96 are exceeded at a level, that level begins to absorb all the motion and liquefac-

tion indices above that level no longer increase. As also mentioned by Fardis and Veneziano

[19], this appears to be a reasonable cutoff point.

In summary, liquefaction of a column will be defined as occurring when the liquefac-

tion indexqi exceeds 0.96 in some element (at which point the analysis of that column is

discontinued). The horizontal plane having the highest average liquefaction index is then

found and the statistics of those indices determined. This plane will be referred to as the

maximal plane. It is recognized that when liquefaction doestake place it is not likely to be

confined to a horizontal plane of a certain thickness. At the very least the plane could be

inclined, but more likely the liquefaction would follow a undulating surface. This level of

sophistication is beyond the scope of this initial study andso we confine ourselves herein to

the assumption that liquefaction will occur along horizontal planes.

146



7.6 Monte-Carlo Analysis

Figure 7.12 illustrates two realizations of the maximal plane. Contours are drawn at
q indices of 0.3, 0.5, 0.7, and 0.9. In both examples a significant portion of the area has
q indices exceeding 0.9 and thus the likelihood of liquefaction is deemed to be relatively
relatively high.
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Figure 7.12 Contour maps of the planes having the highest average stressratioq drawn from
two realizations of the soil mass and analyzed by DYNA1D. Contours are drawn
at q values of 0.3, 0.5, 0.7, and 0.9. Notice the significant areaswith q > 0.9.

The four cases considered are summarized in Table 7.6. In thefollowing, we will refer
to the first set of simulated ground motions as Event 1 and to the ground motions scaled by
a factor of 0.7 as Event 2.

Table 7.6 Ground motion scaling factors and vertical scales of fluctuation con-

sidered in the probabilistic liquefaction analysis.

Case Input Motion Scale of Number of
Scaling Factor Fluctuation Realizations

1 1.0 1.0 9

2 1.0 5.0 9

3 0.7 1.0 9

4 0.7 5.0 9

The average liquefaction index for the maximal plane,Qi∗ℓ∗, is derived from each real-
ization and again averaged over 9 realizations to obtainQ̄. Table 7.7 presents these results
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for the 4 cases along with the standard deviation ofQi∗ℓ∗ (σQ) and the average depth to the

maximal plane (̄D). Even for Event 1, the average liquefaction index,Q̄, is quite low in-

dicating that it is not the best measure of liquefaction risk(given the knowledge that the

Wildlife site is highly liquefiable). It may have some meaning when compared tōQ values

obtained for other sites and earthquakes, but only as a relative measure.

Table 7.7 Average liquefaction indicesQi∗ℓ∗ of the maximal planes are aver-

aged over the nine realizations to obtainQ̄. The standard deviation

of Qi∗ℓ∗, σQ, is estimated for each case and shown along with the

average depth,̄D, to the maximal plane.

Event Scale Q̄ σQ D̄

1 1.0 0.481 0.252 2.90

1 5.0 0.478 0.227 3.02

2 1.0 0.173 0.129 3.14

2 5.0 0.184 0.113 3.57

The average area of the maximal plane exceeding a threshold liquefaction indexq, Āq, is

shown in Figure 7.13 and the standard deviation of theAq estimates is shown in Figure 7.14.

The excursion areāAq is obtained by averaging theAq values over the nine realizations for

each case. At the thresholdq = 0.9, the coefficient of variation of excursion areas is quite

high (1.0) but the trend in Figure 7.13 is evident;

1) the scale of fluctuation has little effect on the average excursion areas̄Aq,

2) the intensity of the input motion has a significant effect on the excursion areas. A

30% reduction in input motion intensity reduced the liquefaction index correspond-

ing to Āq = 0.15AT from 0.9 to about 0.3, a three-fold reduction.

It appears that the likelihood of liquefaction of Event 2 is quite low. To some extent, this

is substantiated by the fact that the Wildlife site did not liquefy during the Elmore Ranch

event (Ms = 6.2 compared to the Superstition Hills event, Ms = 6.6) [34]. Figure 7.13

suggests a possible approach to the evaluation of liquefaction risk which is again based on

the knowledge that the Wildlife site is highly liquefiable: determine the average area of

the maximal planes which exceed a liquefaction index of 0.9 and associate a high risk of

liquefaction to the site if this area exceeds 10 to 15% of the total area. Such a rule of thumb

needs to be substantiated and improved through the analysisof other sites and earthquakes.

Figure 7.15 shows the average number of isolated excursionsabove the liquefaction in-

dexq for each case study and Figure 7.16 shows the corresponding cluster measure. The
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cluster measures associated with very low thresholds (q � 0.2) have been ignored (see Sec-

tion 6.9) since the excursion areas in these cases are essentially the same as the domain area.

Both figures exhibit a much more pronounced effect arising from changes in the scale of fluc-

tuation. Typically, the scale of fluctuationθ = 5 halved the average number of excursions

and substantially increased the cluster measure. This implies that for the same total area ex-

ceeding a certain indexq, the regions show higher clustering at higher scales of fluctuation.

In turn higher clustering implies a higher likelihood of liquefaction since there are fewer

pockets of ‘resistance’ within the excursion region. Notice that Event 2 typically has higher

mean values ofΨ since it has fewer excursions at high thresholds (a single excursion, or no

excursions, corresponds toΨ ' 1). The likelihood of liquefaction thus cannot depend on

the cluster measure alone; it must also take into consideration the total excursion area above

a high threshold.

Given the fact that the Wildlife site was known to have liquefied during the Superstition

Hills event, the following tentative summary of the resultsof this chapter can be made;

1) The likelihood of liquefaction appears to be most easily quantified by the total area

of the domain whose liquefaction indices exceed some threshold indexq∗. For this

example it appears that the threshold index should be taken as q∗ ' 0.9 and a high

likelihood of liquefaction associated with mean total excursion areasAq∗ in excess

of about 10 to 15% of the total domain area. This criteria quantifies the effect of the

earthquake intensity.

2) The likelihood of liquefaction can be modified by the cluster measure – as the cluster

measure decreases, the liquefiable regions become separated by pockets of resistance

and the likelihood of liquefaction decreases. This correction incorporates the effect

of the scale of fluctuation on the likelihood of liquefaction.

Both of these measures of the likelihood of liquefaction need considerable empirical cal-

ibration before adoption can be considered. However the analysis of a single site and the

layout of the methodology is an important start.
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Figure 7.13 Average area of the maximal plane,Āq, having liquefaction indices in excess of
the indicatedq thresholds. Averaging is performed over 9 realizations foreach
line.
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Figure 7.14 Estimated standard deviations,s, of the excursion areasAq.
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Figure 7.15 Estimated number of isolated excursion areas,N̄q, above the liquefaction index
thresholdsq. Each line represents the average over 9 realizations and the coef-
ficient of variation of the estimate averages about 1.0.
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dex thresholdsq. Each line represents the average over 9 realizations and the
coefficient of variation of the estimate averages about 0.5.
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Chapter 8

Conclusions and Recommendations

Concerning existing simulation techniques, which are evaluated in Chapters 2 and 3,

the following conclusions can be drawn;

1) if sufficient care is taken in the discretization of the field, the FFT (spectral formu-

lation) method is accurate, computationally efficient, andsimple to use. The major

drawback to the method is that realizations have symmetric covariances, a problem

which can be alleviated by generating fields larger than required and ignoring the

excess.

2) the proposed FFT covariance formulation represents an attempt to reduce errors aris-

ing from poor discretization schemes. Although the approach improves the variance

estimate under such conditions, it introduces a streaked appearance to the realiza-

tions and still leads to a symmetric covariance structure. It is recommended that the

use of the FFT method be restricted to properly discretized fields.

3) when used in higher dimensions, the Moving Average (MA) method suffers from dif-

ficulties in determining suitable weighting functions for arbitrary covariance func-

tions and from computational inefficiency.

4) the Turning Bands Method (TBM) requires an equivalent one-dimensional covari-

ance or spectral function which is obtained through the solution of an integral equa-

tion. While solutions exist for a number of processes, this requirement renders the

method difficult to use in the general case. In addition, realizations produced by

TBM have a streaked appearance if an insufficient number of turning bands are used.

In three dimensions, the minimum number of bands to use has not been determined

(visualization problems hinder such a determination).

As an alternative and complement to these methods, a technique called Local Average

Subdivision (LAS) is introduced in Chapter 4 which producesrealizations of locally aver-

aged random processes in one, two, or three dimensions. The main features of the LAS

method are

1) it is easily conditioned both on known data and on portionsof the simulated field.

The latter allows for changes of resolution in sub-regions of the field,an ability useful
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in detailed investigation of local areas and in the use of thefield as input to a finite

element model.

2) it generates local averages of the underlying process that are scale dependent and thus

exhibit the correct first- and second-order statistical nature at any resolution. This

contrasts with traditional methods where the discrete values represent point samples

drawn from the continuous process. Although such point samples are often assumed

to be constant over the interval, changes in resolution are not reflected in the statisti-

cal nature of the samples. The local averaging property of the LAS method renders

its realizations ideal for use as input to finite element codes using efficient, low-order

interpolation functions.

3) knowledge of the variance function for the process considerably simplifies the algo-

rithm and improves its accuracy. This function can be obtained through the integra-

tion of the covariance function (rather than through an integral equation).

4) the LAS method is found to run faster than the FFT approach (uncorrected for sym-

metric covariance) in one dimension and about 1.5 to 2 times slower in two and three

dimensions.

5) as implemented, the method is restricted to homogeneous,isotropic, Gaussian ran-

dom fields. Second-order statistics estimated from LAS realizations show the cor-

rect convergence to the exact over the entire field and realizations have the desired

appearance.

In Chapter 6, the LAS method is employed in a simulation-based study of the statistics of ex-

cursions and extrema of two-dimensional Gauss-Markov processes. The simulation-based

estimates of the mean total excursion area, mean number and area of isolated excursions,

and the integral geometric characteristic of the excursionfield are compared with existing

theories and matched to semi-empirical relationships. A cluster measure is introduced that

is a means of quantifying the degree to which excursions are clustered within the domain.

Concerning extrema statistics, a Type I extreme value distribution function with empirically

derived parameters is found to match very well the estimatedextrema distribution obtained

by simulation. The methodology developed in Chapter 6 showsconsiderable promise both

as a means of obtaining useful semi-empirical results and asa guide to the discovery of ex-

act theories. The approach paves the way for a much more detailed study in which other

common processes are examined over a wider range of parameters.

Best linear estimation techniques in the frequency domain are incorporated in a new ap-

proach to the simulation of optionally conditioned stationary or non-stationary space-time

processes and applied to earthquake ground motion simulation in Chapter 5. This method

is used along with the LAS algorithm in a Monte-Carlo analysis of site liquefaction risk in
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Chapter 7. The soil is modeled as a three-dimensional stochastic medium and input ground

motions come from a space-time random field. Four cases are considered corresponding

to two different levels of input motion intensity and two scales of fluctuation of the random

soil properties. Nine realizations are evaluated for each case. The study is largely concerned

with the spatial distribution of the liquefaction indices over horizontal planes deemed to be

the most likely to liquefy. Three excursion characteristics of the liquefaction indices are

estimated; the mean total area of excursions above a range ofthreshold indices, the mean

number of isolated excursions, and the corresponding cluster measures. The mean total area

(or area fraction) of excursions above some critical liquefaction index may be a useful indi-

cator of liquefaction potential at a site. An improved prediction of liquefaction risk could be

made by considering the cluster measure – a low value would indicate that liquefied ‘pock-

ets’ are separated by more resistant regions and so the likelihood of liquefaction decreases.

Conversely, a high value implies that the liquefied regions are clumped together, raising the

likelihood of liquefaction.

A number of similar liquefaction studies of different sitesand different earthquakes are

required before the relationship between the spatial distribution of liquefaction indices and

liquefaction risk can be confidently stated. The proceduresdescribed in Chapter 7 lay the

groundwork for such future applications. It should be notedthat the Monte-Carlo type anal-

ysis used in this probabilistic study is ideally suited to parallel architecture computers with

little modification of the code. Each realization could be analyzed on separate CPU’s, vastly

decreasing the time required to carry out the study (which was a significant limitation here).
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Appendix A

Some Additional Results for Multi-Dimensional FFT Simulation

A.1 2-D Covariance Formulation

Use of the known covariance function,

Bkℓ = E
�
ZijZi+k,j+ℓ

�
(A.1)

in (2.48) and (2.49) leads to

E [Amn]2 =
1

(K1K2)2

K1X
k=1

K2X
ℓ=1

δkℓBk−1,ℓ−1

K1−k+1X
i=1

K2−ℓ+1X
j=1

(Cim,jnCi+k−1,m,j+ℓ−1,n

+Cim,j+ℓ−1,nCi+k−1,m,jn) (A.2)

E [Bmn]2 =
1

(K1K2)2

K1X
k=1

K2X
ℓ=1

δkℓBk−1,ℓ−1

K1−k+1X
i=1

K2−ℓ+1X
j=1

(Sim,jnSi+k−1,m,j+ℓ−1,n

+ Sim,j+ℓ−1,nSi+k−1,m,jn) (A.3)

where,

Cim,jn = cos
�

2π(i−1)(m−1)
K1

+ 2π(j−1)(n−1)
K2

�
(A.4)

Sim,jn = sin
�

2π(i−1)(m−1)
K1

+ 2π(j−1)(n−1)
K2

�
(A.5)

δkℓ =

8<: 1
2 whenk = ℓ = 1
1 whenk = 1 orℓ = 1
2 otherwise

Defining the following four functions

Xmn =
1

(K1K2)2

K1X
k=1

K2X
ℓ=1

δkℓBk−1,ℓ−1(K1 � k + 1)(K2 � ℓ + 1)C1
mkC

2
nℓ (A.6)

Ymn =
1

(K1K2)2

K1X
k=1

K2X
ℓ=1

δkℓBk−1,ℓ−1S
1
mkS

2
nℓ (A.7)

Vmn =
1

(K1K2)2

K1X
k=1

K2X
ℓ=1

δkℓBk−1,ℓ−1(K1 � k + 1)C1
mkS

2
nℓ (A.8)
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Wmn =
1

(K1K2)2

K1X
k=1

K2X
ℓ=1

δkℓBk−1,ℓ−1(K2 � ℓ + 1)S1
mkC

2
nℓ (A.9)

which can be evaluated using a series of Fast Fourier transforms, where

Cα
mk = cos

�
2π(m−1)(k−1)

Kα

�
(A.10)

Sα
mk = sin

�
2π(m−1)(k−1)

Kα

�
, (A.11)

then the variances of the Fourier coefficients can be expressed as

E [Amn]2 = RmnXmn � P 1
mC2

n

S2
n
Vmn � P 2

nC1
m

S1
m
Wmn + ImnYmn (A.12)

E [Bmn]2 = R̄mnXmn + P 1
mC2

n

S2
n
Vmn + P 2

nC1
m

S1
m
Wmn � ImnYmn (A.13)

where,

Rmn =

�
2 if m = 1 or 1 +K1

2 and n = 1 or 1 +K2
2

1 otherwise

R̄mn =

�
0 if m = 1 or 1 +K1

2 and n = 1 or 1 +K2
2

1 otherwise

Imn =

�
C1

mC2
n

S1
mS2

n
� 1 if m = 2,3, . . . , K1

2 and n = 2,3, . . . , K2
2

0 otherwise

P α
m =

�
1 if m = 1 or 1 +Kα

2
0 otherwise

Cα
m = cos

�
2π(m� 1)/Kα

�
(A.14)

Sα
m = cos

�
2π(m� 1)/Kα

�
(A.15)

A.2 3-D Spectral Formulation

In Chapter 2 the procedure for obtaining the spectral formulation variances of the

Fourier coefficients was explored. Following a similar procedure for the 3-D FFT simu-

lation,

Zijk =
K1X
ℓ=1

K2X
m=1

K3X
n=1

nAℓmnCiℓ,jm,kn + BℓmnSiℓ,jm,kn

o
(A.16)

where,

Zijk = Z
�

(i� 1)∆x1, (j � 1)∆x2, (k � 1)∆x3

�
(A.17)
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Ciℓ,jm,kn = cos
�

2π(i−1)(ℓ−1)
K1

+ 2π(j−1)(m−1)
K2

+ 2π(k−1)(n−1)
K3

�
(A.18)

Siℓ,jm,kn = sin
�

2π(i−1)(ℓ−1)
K1

+ 2π(j−1)(m−1)
K2

+ 2π(k−1)(n−1)
K3

�
(A.19)

The variances of the independent, zero-mean, normally distributed Fourier coefficientsAℓmn

andBℓmn can now be expressed as

E [Aℓmn]2 = 1
16 δ

A

ℓmn∆!�Gd
ℓmn +Gd

ℓmN +Gd
ℓMn +Gd

Lmn +Gd
ℓMN +Gd

LmN +Gd
LMn +Gd

LMN

�
(A.20)

E [Bℓmn]2 = 1
16 δ

B

ℓmn∆!�Gd
ℓmn +Gd

ℓmN +Gd
ℓMn +Gd

Lmn +Gd
ℓMN +Gd

LmN +Gd
LMn +Gd

LMN

�
(A.21)

where,

∆! = ∆ω1∆ω2 ∆ω3

L = K1 � ℓ + 2

M = K2 �m + 2

N = K3 � n + 2

Gd
ℓmn = Gd(ω1ℓ, ω2m, ω3n) (see Equation 2.52)

δA

ℓmn =

�
2 if ℓ = 1 or 1 +K1

2 andm = 1 or 1 +K2
2 and n = 1 or 1 +K3

2
1 otherwise

δB

ℓmn =

�
0 if ℓ = 1 or 1 +K1

2 andm = 1 or 1 +K2
2 and n = 1 or 1 +K3

2
1 otherwise

A.3 3-D Covariance Formulation

Using the inverse relationships for the 3-D FFT leads to the determination of the Fourier

coefficientsAℓmn andBℓmn in terms of the known covariance function

Bijk = E
�
ZpqrZp+i,q+j,r+k

�
,

as follows

E [Aℓmn]2 =
1

(K1K2K3)2

K1X
i=1

K2X
j=1

K3X
k=1

K1X
p=1

K2X
q=1

K3X
r=1

Bp−i,q−j,r−kCiℓ,jm,knCpℓ,qm,rn (A.22)

E [Bℓmn]2 =
1

(K1K2K3)2

K1X
i=1

K2X
j=1

K3X
k=1

K1X
p=1

K2X
q=1

K3X
r=1

Bp−i,q−j,r−kSiℓ,jm,knSpℓ,qm,rn (A.23)

whereC andS are defined by (A.18) and (A.19) respectively. If the field is assumed to be

quadrant symmetric then (A.22) and (A.23) reduce to

E [Aℓmn]2 =
1

(K1K2K3)2

K1X
i=1

K2X
j=1

K3X
k=1

δijkBijkh
A(i, j, k, ℓ,m, n) (A.24)
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E [Bℓmn]2 =
1

(K1K2K3)2

K1X
i=1

K2X
j=1

K3X
k=1

δijkBijkh
B(i, j, k, ℓ,m, n) (A.25)

wherehA andhB are functions of trigonometric functions,

hA = Ra
ℓmn(K1 � i + 1)(K2 � j + 1)(K3 � k + 1)C1

iℓC
2
jmC

3
kn� P a

ℓmn(K1 � i + 1)(K2 � j + 1)C1
iℓC

2
jmS

3
kn� P b

ℓmn(K1 � i + 1)(K3 � k + 1)C1
iℓS

2
jmC

3
kn� P c

ℓmn(K2 � j + 1)(K3 � k + 1)S1
iℓC

2
jmC

3
kn

+Qa
ℓmn(K1 � i + 1)C1

iℓS
2
jmS

3
kn

+Qb
ℓmn(K2 � j + 1)S1

iℓC
2
jmS

3
kn

+Qc
ℓmn(K3 � k + 1)S1

iℓS
2
jmC

3
kn

+Rb
ℓmnS

1
iℓS

2
jmS

3
kn (A.26)

hB = R̄
a
ℓmn(K1 � i + 1)(K2 � j + 1)(K3 � k + 1)C1

iℓC
2
jmC

3
kn

+ P a
ℓmn(K1 � i + 1)(K2 � j + 1)C1

iℓC
2
jmS

3
kn

+ P b
ℓmn(K1 � i + 1)(K3 � k + 1)C1

iℓS
2
jmC

3
kn

+ P c
ℓmn(K2 � j + 1)(K3 � k + 1)S1

iℓC
2
jmC

3
kn�Qa

ℓmn(K1 � i + 1)C1
iℓS

2
jmS

3
kn�Qb

ℓmn(K2 � j + 1)S1
iℓC

2
jmS

3
kn�Qc

ℓmn(K3 � k + 1)S1
iℓS

2
jmC

3
kn�Rb

ℓmnS
1
iℓS

2
jmS

3
kn (A.27)

and the functionsCα andSα are defined by (A.14) and (A.15). The coefficients in (A.26)

and (A.27) are given by

δijk =

8>><>>: 1
2 wheni = j = k = 1
1 wheni = j = 1 or i = k = 1 orj = k = 1
2 wheni = 1 orj = 1 ork = 1
4 otherwise

Ra
ℓmn =

�
2 whenℓ = 1 or 1 +K1

2 andm = 1 or 1 +K2
2 and n = 1 or 1 +K3

2
1 otherwise

R̄
a
ℓmn =

�
0 whenℓ = 1 or 1 +K1

2 andm = 1 or 1 +K2
2 and n = 1 or 1 +K3

2
1 otherwise

Rb
ℓmn = F 1

ℓ + F 2
m + F 3

n � F 1
ℓF

2
mF

3
n
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F α
p =

(
0 whenp = 1 or 1 +Kα

2
cos(2π(p−1)/Kα)
sin(2π(p−1)/Kα) otherwise

P a
ℓmn =

�
F 3

n whenℓ = 1 or 1 +K1
2 andm = 1 or 1 +K2

2
0 otherwise

P b
ℓmn =

�
F 2

m whenℓ = 1 or 1 +K1
2 and n = 1 or 1 +K3

2
0 otherwise

P c
ℓmn =

�
F 1

ℓ whenm = 1 or 1 +K2
2 and n = 1 or 1 +K3

2
0 otherwise

Qa
ℓmn =

�
F 2

mF
3
n � 1 whenℓ = 1 or 1 +K1

2
0 otherwise

Qb
ℓmn =

�
F 1

ℓF
3
n � 1 whenm = 1 or 1 +K2

2
0 otherwise

Qc
ℓmn =

�
F 1

ℓF
2
m � 1 whenn = 1 or 1 +K3

2
0 otherwise

Making use of these relationships, (A.24) and (A.25) can be calculated through a series of

Fast Fourier transforms in much the same manner as was illustrated for the 2-D case.
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Spectral Analysis of One-Dimensional LAS Processes

B.1 Spectral Analysis

The spectral analysis of realizations produced by the one-dimensional LAS method will

be accomplished through a Fast Fourier Transform of the sequence to obtain the complex

Fourier coefficientsXk as in (2.18),Xk =
1
K

KX
j=1

Zje
−i2π(k−1)(j−1)/K , (B.1)

and then taking the spectral estimate of the single realization, Ĝ, at the frequencyωk to be

Ĝ(ωk) = jXkj2 (B.2)

for k = 1,2, . . . ,K. Since the analysis is performed on simulations, no smoothing of the

Fourier estimate will be made. The variance of the spectral estimate will be reduced by

averaging overNf realizations to obtain

Ḡ(ωk) =
1
Nf

NfX
j=1

Ĝ(ωk), (B.3)

whereḠ is the desired estimate at the FFT frequencies

ωk =
2π(k � 1)(K � 1)

KL
, (B.4)

andL is the physical length of the process.

An alternate method of estimating the spectral power is the so-called Maximum Entropy

(ME) approach, details of which can be found in Burg [11] and Anderson [4]. This method

will also be used as a comparison in the following analyses.
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B.2 Ornstein-Uhlenbeck Process

The Ornstein-Uhlenbeck process has a simple exponential covariance function,

B(τ ) = σ2 exp

��2jτ j
θ

�
, (B.5)

and corresponding spectral density function

G(ω) =
4σ2θ

π(4 + θ2ω2)
. (B.6)

Vanmarcke [25] expresses the spectral density function of the local average process,GD(ω),

in terms ofG(ω)

GD(ω) = G(ω)

�
sin(ωD/2)

(ωD/2)

�2

, (B.7)

whereD is the averaging dimension. Figure B.1 shows the estimated spectral density func-

tions using the FFT and ME methods versus the exact given by (B.7). The simulated pro-

cess has a physical length of 5 subdivided into 256 intervalsgiving an averaging length of

D = 5/256. A scale of fluctuation ofθ = 1
2 was used and the spectral estimates were aver-

aged over 500 realizations. Both the FFT and ME estimates show excellent agreement with

the exact.
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Figure B.1 Spectral estimates of the locally averaged Ornstein-Uhlenbeck process forθ = 1
2

averaged over 500 realizations.
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B.3 Damped Oscillatory Noise

The damped oscillatory noise used to investigate the required neighborhood size in Chap-

ter 4 has an oscillatory covariance function of the form

B(τ ) = σ2 cos(λτ ) exp

��2jτ j
θ

�
, (B.8)

where we usedλ = 8. The corresponding exact spectral density function of the locally

averaged process is

GD(ω) =
2θσ2

π

�
1

4 + θ2(λ� ω)2 +
1

4 + θ2(λ + ω)2

� �
sin(ωD/2)

(ωD/2)

�2

. (B.9)

The estimated and exact spectras are compared in Figures B.2and B.3 for neighborhood

sizes of 3 and 5 respectively. Again averaging of the 256 point process (L = 5) was per-

formed over 500 realizations although in this case a scale offluctuation ofθ = 4 was used

(smaller scales of fluctuation are less interesting since the oscillations in the covariance are

too rapidly damped out). As with the covariance estimate, a neighborhood of 5 gives much

better agreement between the exact and estimated functions. Notice that for this process,

the FFT estimate seems to be preferable to the ME estimate.
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Figure B.2 Spectral estimates of the damped oscillatory noise forλ = 8 andθ = 4 using a
neighborhood size of 3.
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Figure B.3 Spectral estimates of the damped oscillatory noise forλ = 8 andθ = 4 using a
neighborhood size of 5.

B.4 Fractional Gaussian Noise

Perhaps the most interesting process to obtain spectral estimates of is that of fractional

Gaussian noise as defined by Mandelbrot and van Ness [41]. Theprocess itself is obtained by

performing a small amount of averaging of fractional Gaussian motion over some distance

δ and then taking the derivative. The resulting covariance function is

B(τ ) =
σ2

2δ2H

hjτ + δj2H � 2jτ j2H + jτ � δj2H
i
, (B.10)

in which the parameterH is the self-similarity parameter. This covariance function is de-

fined for 0< H < 1 (in fact forH = 1, it loses positive-definiteness). The corresponding

spectral density function was derived by Mandelbrot and vanNess for smallδω to be

GD(ω) = 2VH

�
π(2H � 1)H

Γ(2� 2H) cosπ(H � 1)

�
(2πω)1−2H

�
sin(ωD/2)

(ωD/2)

�2

, (B.11)

whereΓ(�) is the gamma function andVH is defined by

VH =
1

[Γ(H + 1
2)]2

�
1

2H
+
Z 0

−∞

h
(1� s)H−

1
2 � (�s)H−

1
2

i2

ds

�
, (B.12)
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which, unfortunately, is a divergent integral forH > 0.5. Monin and Yaglom’s [] work

leads to the following spectral density function correctedfor the local average process,

GD(ω) =
Γ(1 + 2H) sinπH

πω2H−1

�
sin(ωD/2)

(ωD/2)

�2

, (B.13)

which is tractable and the relationship we will take as the exact. For a process with physi-

cal length of 5 (D = 5/256), Figure B.4 shows the exact versus estimated spectral density

function averaged over 500 realizations of fractional Gaussian noise withH = 0.95. The

spectra is plotted on a log-log scale to demonstrate theω−β type noise (β = 2H � 1). The

slope of the line is about�0.9 as expected. Figure B.5 illustrates the similar nature of the

process when the physical length is taken to be 500 rather than 5. Now the size of the LAS

cell isD = 500/256 and the frequency range over which the FFT estimate is made is much

narrower. Nevertheless, if anything, the FFT spectral estimates are closer to the exact. The

curve in the tail of the exact spectral density arises due to the local averaging correction

factor which becomes significant for wavelengths approaching the size of the LAS cell.
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Figure B.4 Spectral estimates of fractional Gaussian noise with self-similarity parameter
H = 0.95 and a physical process length of 5 divided into 256 intervals.
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Figure B.5 Spectral estimates of fractional Gaussian noise with self-similarity parameter
H = 0.95 and a physical process length of 500 divided into 256 intervals.
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