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Abstract

Increased interest in realistic modeling of natural phesoanleads naturally to their
description as random processes in space and time. Metliggmerating realizations
of multi-dimensional random processes, specifically th&t Faurier Transform, Turning
Bands, and Moving Average algorithms, are critically eaéda and means of improving
accuracy and computational efficiency are suggested. Astermative and complement
to these methods, a technique called Local Average SulbmiMEAS) is introduced which
produces realizations of locally averaged random prosassme, two, or three dimensions.
The main advantage of the LAS method is that it can be easilgitoned on known data
and that changes in resolution of the field are properly sspread statistically.

The LAS method is employed in a simulation-based study ofsthéstics of excur-
sions and extrema of two-dimensional Gauss-Markov presesEmpirical relationships
for the average number of isolated excursions and theisaeapresented and compared
with existing theories. A measure related to the degreeusteting of the excursions is also
proposed. Some common extreme value cumulative distoib@iinctions are compared to
the simulation-based distributions.

Best linear estimation techniques in the frequency domegrirecorporated in a new
approach to the simulation of optionally conditioned stiaéiry or non-stationary space-time
processes and applied to earthquake ground motion simwlakhis method is used along
with the Local Average Subdivision algorithmin a liquefaatrisk case study where the soil
iIs modeled as a three-dimensional stochastic medium andlgnpund motions come from
a space-time random field. The liquefaction analysis isgoeréd by a non-linear multi-
phase finite element model for which the LAS realizationsideally suited as they give
random properties representing the average over eachmleme
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Chapter 1

Introduction

1.1 General

One of the most magnificent and perhaps disturbing aspebeairiverse around us
is its “randomness”. Whether or not the universe is trulyd@n is still an open question
(which may be largely philosophical in nature). However gractical level its staggering
complexity alone renders it unknowable in exact detail amel must settle for approxima-
tions. It is this uncertainty that leads naturally to theresgntation of nature through an-
alytical or numerical models of random phenomena. Such mddee great importance
in applications ranging from reliability estimation, apization, and even human thought.
The use of these models is not yet commonplace, howeverdheegenumber of reasons for
this: First of all they depend heavily on extensive datab&sensure that they are reasonably
realistic. This data is often not available for a specificlegapion and can be expensive to
obtain. Secondly the solution of complex problems usindyaical models has often proved
to be difficult if not impossible. The advent of high-speedgaters is beginning to allow
the solution of many of these but the techniques are as yajararal knowledge. Finally
the theory governing all but relatively simple random pgsss has not been well devel-
oped. For example, although it is known that many ‘failue® initiated at extrema, little
is known about the statistics of extrema in more than one igo& nor how to incorporate
such statistics into the analysis or design of a system.

The paucity of data is particularly evident for multi-dinsgéonal processes. A geotech-
nical engineer attempting to evaluate the reliability adating will find very little informa-
tion dealing with the spatial variability of soil propesieSimilarly the spatial distribution
of wind speeds in many natural settings is poorly undersésad the distribution of defects
or micro-cracks in solids. Although no attempt is made hret@address this lack of data, it
may be that the availability of useful multi-dimensionatdam models will encourage the
necessary data collection.

Itis the formulation and solution of complex stochasticipemns to which this disserta-
tion is primarily devoted. In general if the analytical stdun to a problem cannot be found,
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the very powerful Monte Carlo approach can in principle alsvbe used. In many ways
Monte Carlo simulations are analogous to real life — for egi@much of our knowledge

about the safety of structures is based on years of fulessahulations’, i.e. the construc-
tion and observation of thousands of buildings. Of courseutbe of computer simulation
Is much less expensive, not to mention the risk to humanhgé such full-scale ‘testing’

entails. Optimization problems also often entail the gatien of many realizations of the
phenomena being modeled. For both of these issues reliabblecurate simulation tech-
niques are essential.

With this in mind, the first goal of this thesis is to evaluatel @amplement a variety of
random field generators. To accomplish this the generalgpties of the types of random
fields to be simulated are examined in this chapter followlwgvork of Yaglom [71], Adler
[2], Pugachev [57], and Vanmarcke [25]. In Chapter 2 the atmn of random fields in
one, two, or three dimensions using Fourier Transform tieghes is explored. Emphasis is
placed on implementation issues such as means of improgaugacy. While the computa-
tional speed of Fast Fourier transform simulations is irepike, considerable care must be
taken to ensure reasonable accuracy. In Chapter 3, thenfuBainds and Moving Average
techniques are investigated. The Turning Bands techngattributed originally to Math-
eron [45]. Practical application and implementation issiadow the work of Mantoglou
and Wilson [43] and Tompson and Ababou [64]. Although thenig Bands method can
be exceptionally efficient, bands or streaks are apparghteinealizations. Also an equiv-
alent one-dimensional spectral or covariance structurs bridetermined through an inte-
gral equation. This reduces the method’s value as a genemabge easy-to-use simulator.
The Moving Average approach shares this drawback with thraiiig Bands Method — a
weighting function must be determined through an integgaila¢ion. Once this has been
found, generation of one-dimensional process via the Mp#wrerage method is relatively
efficient and accurate. However in higher dimensions, thinaottbecomes extremely cum-
bersome and was abandoned due to its high cost. Chapteoduots a technique dubbed
‘Local Average Subdivision’ (LAS) of producing one, two, three-dimensional realiza-
tions of ‘local average’ random processes. The LAS metheedés on the knowledge of
a so-called variance function which was developed and tigaged in considerable detail by
Vanmarcke [25] and is an alternative to the specificatioreabad-order properties of ran-
dom processes through their covariance functions. Thelldveaage Subdivision method
is found to offer considerable accuracy, efficiency, aloniipwhe ability to condition the
field easily. In Chapter 5, the FFT techniques are combingi hmiear estimation theory
to enable the production of a set of spatially correlated stationary time histories (which
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could represent ground motion at a series of points) andwgiticonditioning of the field
(if some ground motions are known).

The final two chapters of the dissertation apply the simoathethods proposed in
Chapters 4 and 5 to illustrate that the methods work and teldpymethodology for future
studies. In particular, Chapter 6 looks at some of the sizgief excursions and extrema of
the two-dimensional locally averaged Gaussian procesagavirst-order Markov correla-
tion function, herein referred to as the Gauss-Markov @esce&xisting theories concerning
statistics of excursions are presented and compared tobttmed through the analysis of
a sequence of realizations. Empirical relationships aveldped which more closely fit the
data over a range of thresholds and scales of fluctuationpt€h@ presents a liquefaction
case study in which a soil mass is modeled as a three-dimeisendom field subjected
to earthquake excitation. A Monte-Carlo analysis is penfed employing a non-linear fi-
nite element code written by Prevost [55] for two differeattaquake intensities and two
different soil models.

1.2 Basic Properties of Random Fields

In the following Z is defined to be a random variable taking values from the)set
which is the sample space. Now Igthe an arbitrary set of elements,, z,,...}. Then
the scalar random proce&sis defined over the sét to be the family of random variables
Z(x,), Z(x,), . . . corresponding to all elemenis, «,, . .. in the set€. In general, the sef
will be considered to be infinite, made up of points in someesgd’. ThusZ(x) can be
thought of as a random function énand is said to be fully specified if for artyelements
x, T, ..., x, inthe setf the cumulative distribution function

Fayaya, (00, 0) = P[Z(x) <b, Z(x,) <b,, ..., Z(x,) <b] (11)

is given.

The random functior¥ (x) is called strictly homogeneous if the distribution fuocts
(1.1) are invariant under the translationi.e., if

Frpiraprr, aper (O by 0) = Foyzy 2, (B, 0y 0)). (1.2)

In particular, homogeneity implies that all the one-dimenal distribution functions
(k = 1) are the same and independent of position

Fy,(b) = F(b), Va, €&, (1.3)
3



and that all the two-dimensional distribution functione anly dependent on lags and di-
rection
Fwiawj (bi7 b ) = Fwi—wj,()(bia b ) (14)

The complete description of a random function given by (. Lisually far too complex
to deal with easily and so we shall restrict ourselves heoesidescription based on just the
first two moments of the probability distribution. Using&tjes integrals these moments
are defined as follows

m(x) = E[Z(x)] = /Q bdFy(b) (1.5)

B, ) + m(z)m(x,) = E [2(z)2(x,)] = / / bbdF o (bb),  (L6)

wherem(z) andB(z;, z;) are usually referred to as the mean and covariance fursctéen
spectively. If the mean defined by (1.5) is independent ¢(thus constant) and if the co-
variance function defined by (1.6) is dependent on just thekal direction, i.e., if

E[Z(z)] =m,
(1.7)
E [Z(x)Z(x))] - m* = B, - x,),

thenZ is said to be weakly homogeneous or homogeneous in the wide st this work,
the word homogeneous will always be meant in this sensehé&umiore if the covariance
function is also independent of direction,

E [Z(z;))Z(z;)] — m®* = B(|z; — z,]), (1.8)

thenZ is isotropic.

In general the mean and covariance functions will not urligdescribe the random
function Z(x), as all the higher-order moments are needed. This is net timwever, of a
Gaussian or normal process which is completely describékdsfirst and second moments
and for which there is no difference between strict homotjgaad wide-sense homogene-
ity. Because of this and since a large number of random fonstencountered in practice
are at least approximately Gaussian, we will restrict duesgto the study of homogeneous
Gaussian processes. Gaussian processes can often bertratsinto non-Gaussian pro-
cesses with little loss in accuracy [72] allowing full (aibo@pproximate) stochastic repre-
sentation of a large class of phenomena. In addition we alvedlys consider the Gaussian
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process to have mean zero — a mean function can always bga&dddd. Thus the only in-
formation needed about the homogeneous pragéskis carried in the covariance function
B(T).

Examining now some of the properties of the covariance fandB(r) for homoge-
Nneous zero-mean processes, one sees from the definitigrih@t 7

B(0) >0, (1.9a)
B(-7) = B(7), (1.95)
|B(T)| < B(0), (1.90)

where property (c) follows from the inequality
E[Z(x+7) £ Z()* =E [Z%x +T) £ 2Z(x + 7)Z(x) + Z*(z)] > 0. (1.10)

If, in addition to property (1.9b), the covariance functiBifr) is an even function with
respect to each component of the lag veeter (;,...,7,), i.e.,

B(r,...,7,....,7)=B(1,...,—T,...,T,), (2.11)

foranyk € {1,2,...,n}, thenB(7) is said to be quadrant symmetric (g.s.)[25]. Functions
possessing this property are fully defined if the functioknewn only over the lag-space
guadrant of positive lags.

Equation (1.7) also implies that the inequality

Z B(t; — 1)aa, > 0 112
jk=1
holds for anym real numbers,, a,, ..., a,, and anyr,, 7, ..., T,. This follows from the
relation

Z B(t; — 1)a;ay, = Z E [Z(Tj) Z(Tk)] a;ay,

J,k=1 J,k=1

m 2
=1
and soB(7) is a positive definite function. Khinchin [35] also showatthe converse result
istrue, i.e., every positive definite function of a real (aeigral) argument is the covariance
function of a homogeneous random process (or sequence).
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1.3 Spectral Representation of Homogeneous Processes

In the following it is useful to allow the random functidf(x) to take values from the
set of complex numbers. In this ca8éxr) can be expressed as

Z(x) = R(x) +iQ(x), (1.13)

whereR(z) andQ(x) are real zero-mean random functions. The associatediaacarfunc-
tion also becomes complex in general and is given by

B(r) =E [Z(z + 1) Z(@)] . (1.14)

where the overbar denotes the complex conjugate. Propétti@a) and (1.9¢) remain valid
but (1.9b) becomes

B(—1) = B(1) (1.15)
and the inequality (1.12) showing positive definitenesobezs
Z B(1; — 1.)a;a; > 0, (1.16)
4.k=1

wherea,, a,, . . ., a,, are arbitrary complex numbers.

Animportant result by Khinchin [35] allows the covariancaétion of any mean-square
continuous homogeneous zero-mean random process to lessggrin the form of an in-
tegral

B(r) = /_ g d¥(w), (1.17)

whereX(w) is a real non-decreasing bounded function. A sufficienddemn for mean-
square continuity of/(x) is that the covariance functioB(7) be continuous at the point
7 = 0. In the following, we will assume that this condition igiséed. If the absolute value
of the correlation function decreases sufficiently rapa#yr| — oo such that

/ ) |B(r)|dT < o0 (1.18)

—00

then the spectral distribution functidf{w) can be written

z(w):/:/:---/_: S(w)dw, (1.19)

wherew,, w,, . .. ,w, are the components af. The functionS(w) is called the spectral den-
sity function of the procesg(x) and the condition that(w) be non-decreasing implies that
S(w) > Oforallw. The use of (1.19) in (1.17) leads to the Wiener-Khinchiatiehships

B(r) = /_OO T S(w)dw, (1.20)

[e.9]
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o0

S(w) = ﬁ/ e T B(r)dr. (1.21)

—00

The restriction (1.18) is satisfied by most covariance fiomstof practical interest. One
notable exception is that of the fractional noise proceseldped by Mandelbrot and van
Ness [41] and discussed in Chapter 4. Introducing now a rarfasd 11/ (w) with orthog-
onal increments satisfying

E[W(w)]=0 (1224)

E [W(w)W(w)] =5(w) (1.220)

E [W(Aw)W (Aw) ] = Z(Aw) (1.22c)
E[WAw)W(Aw,)] =0  if Aw;NAw; =¢ (1.22d)

where¢ denotes the empty sefw = (v, w,+Aw,] X+ - X (w,, w, +Aw, ] IS ann-dimensional

n)n

interval starting at the point.(,w,, ...,w,), and

Y(Aw) =X ((w,w, + Aw] X -+ X (w,,w, + Aw,]) (1.23)

n) n

is the amount of spectral power contained in the intefval For a mean square continuous
homogeneous zero-mean random process, the spectraleefatesn theorem tells us that
Z(x) has the following mean square integral representation

Z(z) = / T T (), (1.24)

Notice that if (1.19) holds then BV (dw) W (dw)] = S(w)dw.

The importance of (1.24) is that it allows a realization of ffeld Z(x) to be created
simply by generating a sequence of realizations of the nandariablelV (dw) according
to the distribution given by (1.22a-1.22d) and summing thgm Notice thatil (dw;) is
independent ofV (dw;) if < Z j. Infact if Z(z) is defined on a regular lattice then (1.24)
becomes

Z(x,,) = /7r T @I (dw)

K

Jim ];_:K e W(Awy), (1.25)



where it is recognized that the sum is actuallyradimensional sum and each component

w;, of the vectorw,, has value
km

?.
In practiceK is taken as a finite number large enough to adequately thevsddthe fre-

Wik =

(1.26)

guency interval {7, 7] so that little loss in accuracy occurs.

If Z(x) is mean square continuous, homogeneous, and takes valoe#e real num-
bers only, then (1.6) implies that(+) must also be real. This in turn implies thgft—w) =
S(w) since the imaginary part of (1.20) must drop out. For suckahprocess (1.24) can
be written as

K

Z(@)= lim 3" {A(Awk) cos - wy) + B(Aw,) sin - wk)}, (1.27)

k=—K

where A(Aw;,) and B(Aw,) are independent identically distributed random intefuak-
tions with

E [A(Aw)] = E[B(Aw)] =0
E [A(Aw)]? = E [B(Aw)]? = S(wi) Aw (1.28)
E [A(Awy) A(Aw;)] = E [B(Awy) B(Aw,)| =0 ifk#j

in the limit asAw — 0.

1.4 Local Average Processes

Virtually all the information gathered concerning the vebaround us comes to us in the
form of an average. The human eye cannot resolve infinitel detcd so delivers averages
at some scale of resolution - more averaging being perforfimresbome of us than others!
Similarly both laboratory and field measurements usuaflyagent averages over some re-
gion. Itis thus appropriate to investigate the propertigsuiodom processes that have been
averaged over some domain. L&i(x) be defined as the averageA(tr) over some domain
D of size|D| =T,T,--- T, centered at,

1'1+T1/2 :En+Tn/2
Zo@= gy [ [ 2 ) de
‘ | x1—T1/2 n—Tn/2
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Obviously, if Z(x) is a zero mean function then so4s,(x). The covariance between lo-
cal averages can be derived by considering two averagingusnof sizelD,,| and|Dg|
centered at the points, andx; and taking expectations,

E[ZD@(a:a)Zm,(.ffcﬁ)]=DQ;DB| / /D ELZ©)Zm) dedn  (1.29)

which for a homogeneous process is equivalent to
1
Bp,p,(xy — x =7/ /Bg— d€ dn. 1.30
D Dﬁ( 5) |Da‘ ‘D5| o, ( 77) n ( )

Letting | D,| = |Dg| = |D| and takinge,, = x5 = (&, %,..., L), the point variance of the
homogeneous procegs,(x), B,(0), can be shown to change with the averaging region
according to

1 T Ty Tn Tn
Bo@=pa [ [ [ B e m)ddn e ddn,, (13D
| ‘ 0 0 0 0
a 2n-fold integral. Equation (1.31) can also be written in thario
BD(O) =0 ’Y(Tla T27 R 7Tn)7 (132)

wherec? = B(0) is the point variance af (x). The functiony(D) is called the variance
function of the proces& and is essentially defined by (1.32). It relates the poinavae
of the process to the variance of the averaged process The variance function can
thus be viewed as a measure of the reduction of the pointnaaig under local averaging.
Formally,

et = oz [ [ e e 6 g,

(1.33)
T T,
- Di|2/_T "'/_Tn<T1| - ‘&‘) (‘Tn| - \fno (&, ..., 6,)dE, - dE,,,

wherep(r) = B(t)/0® The fact thap(—7) = p(7) was used to reduce (1.33) from a-2
fold integration to am-fold integration. It can be easily seen from (1.32) and¥)LtBat if
|D| =0 theny(0) = 1. Also since X p(r) < 1then 0< A(T3,...,T,) < 1.

The covariance between two local averages (1.30) can alexdressed in terms of the
variance function; ifD,, is a cube centered at, with volume|D,,| = T, T, T, and D a cube
centered at ; with volume|Dg| =T/ T, T, then

o2 3 3 3
23|D ||D ‘ ZZZ(_ly(_l)k(_l)g|Djk€|27(T1j7T2kaTsé)-
B j=0 k=0 ¢=0
(1.34)

BDQDﬁ (wa - wﬁ)



The dimensiong;; are shown in Figure 1.1 anf),,| = 7,7, T%. The general relationship
for then-dimensional case is

) 3 3
g . .
—_ 1 2
BDaDﬁ(a:O‘ _wﬁ) - Zn‘D ||D ‘ZZ(_]')] (_1)]n|D]1j2]n‘ fy(lepuTnjn)
Bl =0 ja=0
(1.35)
X3
T
,,,,,,,,,,Tf — A
A AN D, =TT,T,
| gy
|
Ta1 ! 1 E T
ol 20 L |
32 <k =fF-=-=%
33 | |
R S SR 7
N N AN T’
AR SN X
[ [ AN 1 1
- — - 777{7 < *k ! N A
T21§ N N T2\ RN 3
T20§ . N e -
NV kN
ST ™

N Tiy >
= Tz

Figure 1.1 Distances characterizing the relative location of the nwaD,, and
Dy in three-dimensional space (courtesy of Vanmarcke [25]).

Another useful measure of the statistics of random fieldbasstale of fluctuatiod
defined by Vanmarcke for one-dimensional processes to be

g = tlim T~(T). (1.36)
This limit will exist if

lim 7 B(r) =0 (1.37)

|T|—o0

If (1.37) is satisfied, an alternative relationship givihg scale of fluctuation is

0= ;/000 B(r)dr, (1.38)

which can be seen to be a measure of how rapidly the correlatiaction falls off to zero.
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1.5 Parameter Estimation and Ergodicity

In the following chapters where several methods of simagptandom fields are pre-
sented, a means of evaluating the output of an algorithmssngisl. This will be accom-
plished by comparing the estimated covariance functioh e known (or assumed) co-
variance function. A one-dimensional estimator will bedusclusively since it can al-
ways be applied in various directions to estimate the nadiftiensional covariance structure.
Since all the simulation techniques used will employ a knaem mean over the ensemble
the following unbiased estimator along a line will be used

N—j

B(]A:c)——ZNl ZZ(kAx)Z((k+y)Ax) j=0,1,...,N—1 (139)

whereN is the number of realizations of the process over which toemes NV is the num-
ber of discrete field points along the line in question andsiliescript onZ signifies that

it is a realization. It is assumed that the field points aresggaced and are at locations
(Azx,2Az, ..., NAz) to simplify notation. It is easy to see that for a known mearoz
process, B B(7)] = B(7).

Another aspect of the evaluation of a simulation algoritbntd rate of convergence to
the desired mean and covariance structure. If ahomogenodism process is ergodic then
its mean and correlation function can be found from a singgdization ofinfinite extent

m=E[Z@)] = lim %| /D Z(z)dz, (1.40)

B(r)+m*=E[Z(x+7)Z(x)] = ‘DIETOO % /D Z(x+71)7Z(x)dz. (1.41)

In order to guarantee the validity of the above relationshiwo conditions must be imposed
on the homogeneous random functié(e). For Gaussian processes these conditions are

|DII|TOO D|/B(7')d7' 0, (1.42a)
|ly'm D|/ \B(T)|?dT =0, (1.42p)

which are clearly met if
lim B(r)=0. (1.43)

T—00

Thus ergodicity implies that the correlation between pos#parated by a large distance is
negligible. A realization obtained from a particular aligfom is said to be ergodic if the

11



desired mean and correlation structure can be obtained esjunations (1.40) and (1.41)
respectively. Of course realizations of infinite extentmeger produced and so one cannot
expect a finite realization to be ‘ergodic’ (the word losesamiag in this context). In fact
for finite-domain realizations averaging must be performoeer the whole space of out-
comes in order to exactly calculateand B(7). Although some algorithms may produce re-
alizations which more closely approximate the desiredssies when averaged over a fixed
(small) number of realizations than others, this becomesttemof judgement. Thereis also
the argument that since most natural processes are far figodie, why should a simula-
tion of the process be ergodic? In general this issue wilf belmentioned in passing. All
comparisons between the statistics estimated from thizagiahs of a given algorithm and
the exact will be computed using (1.39) and will note the naendsf realizations over which
averaging was performed. It is usually easy to tell if thenested statistics are correctly
approaching the desired statistics.
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Chapter 2

Fourier Transform Techniques

2.1 One-Dimensional Processes

Much of the theory involving Fourier transform techniquesswleveloped in the context
of time series analysis and can be found in Brillingeal.[8] and Priestley [56]. Although
these works are directed primarily towards the spectrdiaiseof time series, they contain
the basic concepts pertinent to simulation using Fourgrsiorms. Through the spectral
representation theorem, it was shown in Chapter 1 that a sggaare continuous, homoge-
neous real process can be expressed as a sum of sinusoidbe Bore-dimensional case,
the proces<(x) can be defined as

Z(z)= > {Ay coswy) + By sin(wy)}, (2.1)

k=—K

which, for finite K, is an approximation to the exact proce&s,defined by (1.27). For
numerical work, this approximation can be made as close sisedeby increasing< and
the frequency range. Throughout this and following chaptiee symbolZ will be used
to denote the algorithmic process. The coefficieAitsand 5, are independent zero-mean
random variables which are taken to be Gaussian. Theirn@sare determined by the
spectral density function of the process,

E[Ai]* = E[B]* = S(Awy), (2.2)

and A, LA; if & # j (similarly for B,). To make the following explanations clearer, the
interval function notation used in Chapter 1 and in (2.2) molw be abandoned and yw
we will henceforth mean the length of the interval so thak)&ill be written

E [Ax]* = E[Bi]* = S(wi) Aw, (2.3)
and forw, < w, < -+ < wg, the interval lengtlAw,, is defined by

Awy, = %(wk+1 — Wg—1)- (2.4)
13



This interval is usually taken to be constant, however inescoases, such as when the spec-
tral density function changes rapidly, the ability to charsgpectral resolution is valuable.
On the other hand, doing so eliminates (in general) the usleeofFast Fourier Transform
techniques to be discussed here and so we will considerghadncy interval length to be

constant.

SinceS(—w) = S(w), the one-sided spectral density functiGfw) can be defined as
Gw)=25w), w=>0 (25)

such that the point variance?, is preserved when integrating over the positive frequesnci

only,
o’ = /_Z S(w)dw = /OOO G(w)dw. (2.6)

Using the one-sided power spectral density function, (2ah) be written in terms of the

non-negative frequencies

Z(x) = { Ay cosfwy) + By sin(wy)}. (2.7)

k=1

The variance of4, and5;, become

E [-’41]2 =E [81]2 = %G(wl)Awu
(2.8)
E[A) =E[B.]? = G(wp)Aw, k=23,....K

where it was assumed that = 0. The simulation thus involves generating realizatians f
A, andB, in (2.7).

An equivalent way of writing (2.7) is

K
Z(x) =) Cy cosfuwy + Dy), (2.9)

k=1
in which ®,, is a random phase angle uniformly distributed on the intgt&7] andC,, is
Rayleigh distributed with
14



E[C] = /53G(wp)Aw, (2.10)
E [C]? = 2G(wi) Aw. (2.11)

Taking(,, to be deterministic, as proposed by Shinozuka and Jan [62],

Ck =/ ZG(wk)Aw, (212)

yields a process with the exact (in the limit) spectral poateezach frequency reflected in
every realization. This formulation has the advantage oveming more rapidly to the
desired statistics but the upper boundAgfr) over the space of outcomes is

K
Z <Y V26w Aw (2.13)
k=1

which may be an unrealistic restriction. As itis often theemal properties of (z) which
are of interest, (2.7) will be used with random coefficientthie following.

Consider now the special case of the discrete progess Z(z;), 7 = 1,2,..., K
where the coordinates; and the frequencies;, are selected according to

. . L .
2r(K -1
wk=(k—l)Aw=(k—1)%, k=12... K, (2.15)

whereL is the physical length of the proceds € x,). The coefficients can be combined
to form a single complex coefficient

Xk = Ak — ZBk, (216)

which leads to the discrete Fourier transform (DFT) pair

K
Z = Z X, 216 -1/K (2.17)
k=1
1 K
X, = = Z Z,e 2= 0G-D/K (2.18)
j=1
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It can be seen thaf ., ; = Z; and so the process is periodic with period” where

Furthermore ifZ is real then
1 & ‘ 1 & ,
A= 230 Zicos(BEPD) B =23 Zsin(BERED) (220)
=1 =1
= -AK—k+2 = _BK—k;+2'

From a practical point of view, the generation of a procegh@form of (2.17) can be
accomplished using the very efficient Fast Fourier Tramsf(#FT) algorithm developed
by Cooley and Tukey [16]. FFT algorithms are commonly avddd30, 58, 52, 73] and
efficient implementation issues are discussed in somel dgt&Nobile and Roberto [51],
Harris et al.[28], Skinner [63], McClellan and Rader [47], and Polgfeal.[54]. For one-
dimensional processes on scalar machines, the FFT progvem lgy Newland [50] was
employed which used a standard radix-2 butterfly (restfittigorocesses of lengti2 On
the CYBER 205 supercomputer, a vectorized FFT routine floelMAGEYV library based
on a prime factor algorithm\ = 2°375") was used.

The considerable savings in computer time that the FFT gligoaffords does not come
without a price. Care must be taken to ensure that the statadtthe process are preserved
reasonably accurately. Firstof allitis easy to show thatthvariance function of areal FFT
process is symmetric about a lagf2. Writing By = B(kA:c) to denote the covariance
function of the FFT process (for this prodf=0,1,..., K — 1),

A

B =E [202,)]

K
-E ZX exp{ (27r(é+k (G — 1) ZX—exp{ wff%(mfl)}

j=1

K
=Y E [ ] exp{i (ZUH0) } 2.21)

7=1
where use was made of the fact tha@l@-/’\f—m} = 0 forj #m (overbar denotes the complex

conjugate). Similarly one can derive

K

o= > E [T exp{—i ()

7=1
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= B, (2.22)

since E[X;X;] is real. The covariance function of a real process is alddmeghich case
(2.22) becomes simply

A

By 1. = B,. (2.23)

This property is illustrated in Figure 2.1 for a process vehdssired covariance function is
the simple exponential (Ornstein-Uhlenbeck process)
7|

B(r) =o%e = (2.24)
AN
-
Estimated Covariance
- N Desired Covariance BY= "2
©
g
)
O
g ©_
-: o
@
>
@)
O <
g
N
g
o
I I I I
0 1 2 3 4 5
Lag T

Figure 2.1 Comparison of estimated and exact covariance function fomoa
cess generated using the Fast Fourier Transform (average@@0
realizations).

It can be seen that for relatively long scales of fluctuatign(where the covariance
function decreases slowly compared to the process lengtiysical field size greater than
that required must be selected and the excess ignored. énajérihe distance™* is defined
to be the lag at which the covariance function decreases gmituale to a sufficiently small
value (say 0.1) then the minimum field size,;,,, can be determined approximately from
the desired field sizé as

Lypin ~ L+ 77 (2.25)
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For the Ornstein-Uhlenbeck process with covariance foncti
2l7|

B(r) =oc%e 7, (2.26)
the value ofr* can be taken equal to the scale of fluctuation,
" =40. (2.27)

so that for such a proceds,;, = L + 6 implying that a field size of at least 9 should have
been used for the process shown in Figure (2.1) and the kasufots ignored.

The second problem associated with the use of the FFT metmtbldo with the dis-
cretization of the frequency axis. Figure (2.2) illusteag example in which an overly
coarse frequency increment results in a poor estimationeopoint variance. The spectral
density function shown is that corresponding to the Ornst#ilenbeck process (2.26) with
0=4.

0 _
—
G(w)Aw2 B(r) = o?e%/?
4520
G = T arew)
— —
_2n(K - 1)
. Aw = — KT
3
Q)
0
ps
G(w,)Aw
\ G((L)S)A(L)
© — | : — T | W
0 1 2 3 4 5
Wy W, W3

Figure 2.2 Example of overly coarse frequency discretization resgit a poor
estimation of point variancd(= 5 andd = 4).

The frequency incremetw = 27(K — 1)/ KL = 2r /T must be small enough so that
the sequencéG(w,)Aw, G(w,)Aw, ... adequately approximates the exact spectral density
function, particularly in regions whex@&(w) changes rapidly. This represents a further lim-
itation on the minimum size of the field,,,;,, and its discretization.

In the following sub-sections two methods of improving teewacy of the simulation
using the FFT approach are suggested. Both aim at apprargmabre closely the true
point variance of the process, the most important of its searder statistics.
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2.1.1 Spectral Formulation

If the processZ(x) is to be real, a review of Equation (2.20) shows that the sand
coefficients A, _,+, and B, _;., must be determined by their counterpads and 55, for
k=23,...,%. Thisin turn implies that4, andB,, need only have realizations generated
for themoverk =1,2,...,1+% according to

E [-’41]2 = %G(wl)Aw7

E[AJ =E[B) = 1Gwi)Aw, k=23 ..., (2.28)

=

E [A1+K/2]2 = G(Wk)Aw

with the added requirement thét = B,, ., = 0.

The variances of the coefficientls, andB;, can be obtained in a more consistent fashion
using the inverse relationships (2.20)

K K
E[AL]*= % > > E[Z; 2] cos(>-0i=) cos (=00 (2.29)

j=1 ¢=1

using the exact covariance[E; Z,] which is given by (1.20) for a zero-mean process. A
discrete approximation to (1.20) is

K
E [Z;2)] ~ Aw) _ G(w,)cos(2n20=0) (2.30)

m=1

Substituting (2.30) into (2.29) leads to

K K K
E[A] = ZZZG(wm)cos (2 R0=0) Oy Cg
7=1 ¢=1 m=1
Aw K K K
2 Z Z Z G(wm){Cm]Ck]CmECké + Sm]Ck] mZCkZ}
j=1 ¢=1 m=1

Aw K K K
A Z G(wm) Z CinjCr; Z CrneChe
m=1 j=1 =1

Aw K K K
272 2 G@n) Y SiCry ) SmeCir, (2.31)
m=1 ]:1 =1

where
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ij = COS(W) ,

Skj = S|n(%)

To reduce (2.31) further, use is made of the following twanittees

D3 sin(ZD) oo HU=56-3) = o
k=1
K 0, ifm#j

2) ) cos(ZmDED)cos(ZUEY) = & 5 ifm=jorK —j+2
h=l K, ifm=j=1orl+%

By identity (1), the second term of (2.31) is zero. The firsirtés also zero, except when
m=korm =K — k+ 2, leading to the results

1G(wp) Aw, if k=1
E[AL) =1 HG(wr) + Gwr_p)}Aw, ifk=2... K (2.32)
G(wp)Aw, ifk=1+%

remembering that fok = 1 the frequency interval iSAw. An entirely similar calculation

leads to
if k=1lorl+%

07
EL5d"= { HG(wp) + Gwrp)} Aw, ifh=2,.. . K (2.33)

The generation of coefficients using (2.32) and (2.33) ardjytmmetries

AK—k+2:~AkJ7 k:2737"'7

N2

(2.34)
Bka+2:_Bk7 k:2737"'7

Nl

gives considerably better point variance estimates whed usthe FFT simulation of real
processes than obtained using (2.28) and represent a nésibation by the author to the
art of FFT simulation. In fact the relationships (2.28) aot valid when the symmetry re-
lationships (2.34) are used in (2.17) to produce real psE®s

If an analytical form of7(w) is known then an even better approximation can be obtained
by usingG*(w;,) in (2.32) and (2.33) defined as

wk+%Aw

G*(wp) = / Gw)dw, (2.35)

wkféAw
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which is just the area under the power spectral density imegtithin the interval of length
Aw centered ab,,. Although thisimprovement should yield better point vada estimates,
it was not implemented in the code. The philosophy held byatlt@or is that these algo-
rithms should be as simple as possible for the user, regujuist the specification of the
functional form ofGG(w) or supplying discrete estimates@{w). The use of (2.35) would
require either the user to evaluate the functional forre’ofor the desired+(w) or the nu-
merical integration of7(w) at each frequency step. In higher dimensions, the lattgidco
become ponderous. The following technique leads to an im@&gkrpoint variance estimate
at a fraction of the overhead.

2.1.2 Covariance Formulation

Equation (2.29) suggests an entirely new approach to tleerdetation of the statistics
of the coefficients4, andB,. Instead of introducing the discrete approximation (2.8t)
known covariance function can be used,

1 K K
B[S = 75 3D _E (%2 CiiCue
j=1 ¢=1
1 K K
=522 By CrCie
7J=1 (=1
o2 K 2 K-1 K-—j
e Z [Cre” + 7= B; CreCl s (2.36)
=1 j=1 =1
similarly,
1 K K
E(BY =72 D) ElZZ] Si;5u
§=1 ¢=1
1 K K
=52 B0 SiSu
7=1 ¢=1
2 K 2 K-1 K-—j
K2 [Skel® + K2 Z B; Z SkeSk,e+js (2.37)
=1 j=1 =1

where the notatio®3; = B(jAx) was employed. The additional trigonometric identities

K K ifk=lorl+%
3 CiChre =
) ; rEe {K if =23, %

2
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0 ifk=1lorl+%&

K
4) Z SkeSke = { %
=1

K ifr=23,. .. %

K—j K—j if k=1
5) Y CuCrpwy =3 3K =j = DChjs— Si;/Su} Fh=23....%
=1 (—1Y(K — ) ifh=1+%

= 0 ifk=1orl1+&
6) Z SktSk,t+j = 1 , . K
=1 UK = = 1)Ch jur — Sk jua/ Sk} TE=23,...,5

allows the reduction of (2.36) and (2.37) to

2+ 5K - ) B if o= 1
E[A =1 fe+ 5 XS Bil(K — j — 1)Chjus — S/ Sl if k=23, 5 (2.38)
R Yn CU (K -)B) Th=1+%
. [0 if k=1lorl+%
K T2 j=1 ][( -] 1)C]€’j+1 — Sk,jﬂ/Skl] if k= 2, 3, ey Ty

Equations (2.38) and (2.39) can be evaluated using a pawefse FFT’s making the cal-
culation of the variances very efficient. Letting

1 . 1)
Xi =7 Y " 6;B;_y(K — j + 1)cos(Z=00-1)
j=1

(2.40)
1 K
= H 2n(k—1)(G-1
Y= > 6, B;_sin(Z=00=1)
j=1
where
d:{% if j=1
’ 1 otherwise
then the variances of the Fourier coefficients can be exptess
E[AL) = Ex Xy — FiYa,
(2.41)

E[BL)’ = Gp Xk + F1.Y;,

where
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=
I

{2 ifk=1orl+%
1 otherwise

G

{O if k=1lorl+%
1 otherwise

cos(2r(k—1)/K)

0 ifk=1orl+%
Ek =
sin(2r(k—1)/ K)

otherwise

The process shown previously in Figure 2.1 was generated tigs procedure which guar-
antees that the estimated point variance will tend to thigeepoint variance no matter what
frequency interval is used.

It should be noted at this point that in order to eliminatesimetry in the estimated
covariance function of the simulated process, all the joiatments A, A,.], E [ A 5B,.]
and E[5,, B,,] which arenotzero when using (2.17) (as can be easily verified using (2.20)
in @ manner similar to the above) must be included. This, kewes a formidable task
involving the prior simulation of the correlated (and crassrelated) processe$, ands,,.
It will be assumed that these joint moments are zero and aaoyn for the symmetry in
the estimated covariance function will be made by adjudiivegsize of the process using
(2.25) and ignoring the excess.

2.2 Multi-Dimensional Extensions

Following the results of Section 2.1, the discrete Four@nsform of the 2-D discrete
real processZ;; ~ Z(-)Ax,, i-1)Ax,) is

K1 K>
Zij — Z Z {-Amn Cos(zn(z‘—}()l(m—l) + 27r(j}%)2(n71)) +B,,, sin (ZW(i—}()fm—l) + 27r(j}%)2(n71))}

m=1 n=1

(2.42)

in which the Fourier coefficientd,,,, andB,,,, are assumed to be independent zero mean
normally distributed random variates. Equation (2.42)l wé evaluated using a two-
dimensional FFT algorithm. On scalar machines, the 2-D Fi&$ woded using a radix-
2x2 butterfly algorithm following the concepts discussedggeon and Mersereau [18].
This algorithm was found to run in about 80% of the time reegdiioy the usual row-column
decomposition algorithm. In three dimensions, a radixx@algorithm was coded that runs

in about 50% of the time required for the 3-D row-column coBeth of these algorithms
require that the number of field points in each direction béngger power of 2. On the
CYBER 205 supercomputer, the vectorized multi-dimendibRa algorithms provided by
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the MAGEVFFT library were used. Other implementation issofthe multi-dimensional
FFT are discussed in [9, 31, 59].

Higher dimensional FFT’s involve additional summationd associated terms in the
trigonometric functions of (2.42). For illustrative puges, the two-dimensional process
will be concentrated on here and the corresponding resulthé three-dimensional case
just stated. The inverse transforms corresponding to 2#2

1 Ky Ki

-Amn KK ZZZ COS(ZTI’(Z 1)(m—1) + 27 (j— 1)(n 1))’ (243)
=1 j=1

B,.. K K Z Z Z;;sin Zﬂ(i*}()fmfl) + Zﬂ(j‘;)z(”‘l)) : (2.44)
=1 j=1

which imply that the following planar symmetries must apfaireal processes

AK17m+2,K27n+2 = Amn )

(2.45)
-AKl—m+2,n = -Am,KZ—n+27
for m,n = 2,3,..., & whereK, is eitherK, or K, appropriately. In addition the line
symmetries
AZ,K27n+2 = Aé,na
(2.46)

-AKl—m+2,€ = -Am,éu

apply over the same rangein, n, and for¢ = 1 or/ = 1 + £=. Similar relationships
exist for the coefficients3,,,, except that they are anti-symmetries, I8, 10 x,—n+o =
—B,,, and so on. The planar and line symmetries are shown graphic&ligure 2.3. Thus
in two dimensions, the Fourier coefficients must be gendrater the two darker shaded
quadrants of Figure 2.3 and the 4 half-lines aléng 1 and/ = 1 + £« the rest of the
coefficients obtained using the symmetry relations. If thecess is quadrant symmetric
then the additional symmetry relation

AKl—m+2,n = Amn (247)

applies and so only one quadrant of thg,, andB,,,, coefficients need be specified.

24



K1

Figure 2.3 Fourier coefficient symmetry over the plane of their indideashed
arrows denote symmetric half-lines and double arrows gesyn-
metric planes.

The three-dimensional symmetries are similar excepthigatoefficients must be speci-
fied over 4 quadrant volumes, 6 half-planes corresponditigtmdexeg = 1andl = 1+£¢
(o = 1,2,3), and the 12 half-lines corresponding to the edges of th]e{l%] x [1,1+
%] x [1,1+ %] cube. Again, if the process is quadrant symmetric addaisgmmetries
in the coefficients apply and only one quadrant volume neespbeified.

The variances of the Fourier coefficients can be obtained ffe inverse transforms
(2.43) and (2.44) as

Ky Ky, Ki K>

E [~’4mn]2 = @ Z Z Z Z E [ZZJZICZ] Cim,jnckm,lm (248)

i=1 j=1 k=1 ¢=1
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K1 K, Ki K

1
E[B,.]° = m Z Z Z Z E [Zz'jZke] Sim,jnSkm,n- (2.49)

i=1 j=1 k=1 ¢=1

where,

Clm,jn = COS(Z=Ym=1) . 2n(=2e=1))

SimJn = Sin(ZW(i—}gfm—l) + 27r(j*]%)2(n—1)) .

Assuming the covariance of the process, = B(jAx,, kAz,), to be quadrant sym-
metric which in turn implies that the spectral density fumet S(w,, w,), is also quadrant
symmetric, the discrete approximation to (1.20) becomes

K1 K>

E [Z;Z10] ~ AwiAw, Y Y Gy, wan)COS(ZL R ) cos (22000 - (2,50)
m=1 n=1
whereG(w) = 2"S(w), for a process irk", is the uni-quadrant spectral density function.
When (2.50) is substituted into (2.48) and (2.49) the foitay(spectral formulation) vari-
ances of the Fourier coefficients are obtained

( Awi AwrGH Wy, wh), m=11+ % andn=11+ %
%Awlsz(Gd(wm, wy) + GYwp, Wicy—n+2)), m=11+ %
E[Amn]l” = 4 2 A0 Awp( G W, wn) + GHwie,—mszs ), n=11+% (251)
%Awlsz(Gd(wm, wy) + GYwp, Wicyn+2)
L + GUwie, 2, Wn) + GUWie,ms2, Wicy—ne2)),  Otherwise.

The variances oB,,,,, are identical except at the four corner points whByg, = 0,m,n =
1,1+%=. The superscript denotes the correction made Gfw) to account for the discrete
nature of the spectral density function: /irdimensional space, set
G(w)

2d
whered is the number of components®f= (w,,w,, .. .,w,)which are equal to zero. (Inthe
one-dimensional case, this was accomplished by usingresiféquency interval at, = 0.)

Gl w) =

(2.52)

Using the actual covariance function in (2.48) and (2.48jteto the variances of the
Fourier coefficients in the so-called covariance formolatiThese results, along with the
spectral formulation results for three-dimensional psses, are shown in Appendix A.

As in the one-dimensional case, the problems associatédtinét multi-dimensional
FFT simulation methods have to do with discretization offtegquency space and symme-
try of the estimated covariance function. The former uguaHlds to poor estimation of the
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point variance of the process and can be solved either bgasarg the size of the field or by
employing the covariance formulation. The latter problem only be solved by increasing
the field size in each component direction using (2.25) aedlifectional scales of fluctua-
tion (see Vanmarcke [25] for definitions of directional ssabf fluctuation). Figures 2.4 and
2.5 represent sample functions of the 2-D process genenabed the spectral formulation
and covariance formulation respectively for a processrugihie target covariance function
of the continuous Markov process

2
B(r,,1,) =0? eXp{—E\/Tf+T§} , (2.53)

with associated spectral density function

40%c2

G(wy,w,) = (2.54)

T (4 +62(w? + w§)> d

In these processes, the directional scales of fluctudtier), = § = 4 are quite large com-
pared to the 5 5 physical size of the field shown in Figures 2.4 and 2.5. lEg@.6 and
2.7 show the estimated and exact covariance functions éosplectral and covariance for-
mulations respectively. Notice that although the phydmadth of each side of the field is
only 5, the horizontal scales on Figures 2.6 and 2.7 are langgh to cover the length of
the diagonal since the covariance is also estimated in thedtan. It can be seen that the
spectral formulation (without the correction given by 2.8mgnificantly over-estimates the
point variance of the process. Although the covariance @ation correctly captures the
pointvariance, its sample function has a somewhat strggipdarance similar to what might
be obtained if aliasing were present. The use of symmetrigeiFourier coefficients elim-
inates direct aliasing but it is possible that the Fouri@nsform of the covariance function
(see 2.40) is introducing some aliasing of the covariantesitre.

When shorter scales of fluctuation are used, both the stregipearance of the covari-
ance formulation and the poorly estimated variance of tleetsal formulation tend to dis-
appear and so, under these conditions, the spectral fotioruig preferred for its simplicity.
Figures 2.8 and 2.9 show sample functions for the spectthtavariance formulations re-
spectively using scales of fluctuatién= 6, = 6 = 1. In this case Figures 2.10 and 2.11
show the correct point variance in the estimated statismcsFigure 2.9 has lost much of
its striated appearance.

A comment should be made at this point about the renderirfgesitrealizations which
consist of 256x 256 discrete points. In all cases, a grey scale mapping @ ins&hich
the minimum value of the realization is mapped to white aredrttaximum to black. No
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direct smoothing is performed and the printer is actualgpliiying a 256x 256 grid of
squares each having an associated grey level. Color regdeviere experimented with, but
it was found that extreme care had to be exercised in thetgeiexf palettes and brightness
levels (for each realization) in order to pick out detailstsas striations and streaks. Grey
scale renderings seem to give these details with littlaieuPrinting and reproduction of
these realizations is also sometimes troublesome. \@amsitn toner and drum quality can
give apparent artifacts which may be misleading — partrtyta the reader of a third-hand
copy! Nevertheless, the visual appraisal of these greleseaderings was considered by
the author as being an essential means of establishing #ikyopf an algorithm, in terms
of individual realizations, that was superior to color reridgs or contour plots.

Figure 2.12 show the estimated statistics for a three-déimeal process of physical
size 5x 5 x 5 using the target covariance function

2
B(1,, 75, 7) = o exp{—g \V T+ 73 +7—32} ) (2.55)

with @ = 4 using the spectral formulation. The dashed lines aregtimated covariances
along various directions within the 5 5 x 5 cube (i.e. vertical, horizontal, depth, plane
diagonals and body diagonal). It can be seen that the poir@nee is significantly over-
estimated by the spectral formulation due to the ratheeléngguency increment. Figure
2.13 shows the estimated statistics of the same proceds (kg the covariance formu-
lation. A much better estimate of the point variance is glgdiusing this method. When
shorter scales of fluctuation are used in the 3-D case, bgthitims yield good estimates
of the covariance structure as illustrated in Figures 2rith¥2a15, using the spectral and co-
variance formulations respectively, fo= 3. This suggests that, in general, it is best to use
a sufficiently large field (compared to the directional ssal&fluctuation) when simulating
via the FFT algorithm.

Although the examples discussed above are isotropic pesethe programs written
to perform the simulations are only restricted to quadrgniraetric processes. As an il-
lustration of an anisotropic process, Figure 2.16 showsrgkafunction of a 2-D process
with the target covariance function

B(r,,1,) =0o? exp{—\/<20—?>2 + (20—:2)2} , (2.56)

with 0, = 0.8, 6, = 0.2. Figure 2.17 shows the equivalent process simulated tisengo-
variance formulation and Figures 2.18 and 2.19 show themeased statistics averaged over
100 realizations. It can be seen that anisotropy is handleguately by the FFT algorithms.
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2.3 Summary

To obtain reasonably good realizations using an FFT algworiit is suggested that the
following simple guidelines be followed;

1) ensure that the size of the field to be simulated is largger that required and that the
excess is ignored. How much larger depends on the scale aidhkimn of the process
but could be as much as twice the size in any direction.

2) ensure that the spectral density above the Nyquist tihitz is negligible. This repre-
sents a limitation on the resolution of the field.

3) ensure tha\w = 27/T is small enough to adequately capture rapid changes in the
spectral density function. Using the covariance formaolatliscussed above or explic-
itly determining the area under the spectral density flomcéit each frequency step are
possible alternatives to this criteria.
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Figure 2.4 Sample function of a 2-D field (spectral formulation) withvaa-
ance function given by (2.53) fat = 4. For such a large scale
of fluctuation, the process varies relatively smoothly and gets
larger dark and light regions.
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Figure 2.5 Sample function of a 2-D field (covariance formulation) wativari-
ance function given by (2.53) for= 4.
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Covariance

Exact Covariance
-------- Horizontal Covariance
Vertical Covariance
“.\.— — — - Diagonal Covariance

15
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|

|

Figure 2.6 Estimated statistics of a 2-D field (spectral formulatioitjmeovari-
ance function given by (2.53) fér= 4. Statistics are averaged over
~ 100 fields.

Exact Covariance
———————— Horizontal Covariance
To) - — - — Vertical Covariance
I — — — - Diagonal Covariance

Figure 2.7 Estimated statistics of a 2-D field (covariance formulatwith co-
variance function given by (2.53) fér= 4. Statistics are averaged
over 100 fields.
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Figure 2.8 Sample function of a 2-D field (spectral formulation) withvea-
ance function given by (2.53) fér= 1. Notice the increased ‘rough-
ness’ corresponding to a shorter scale of fluctuation.
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Figure 2.9 Sample function of a 2-D field (covariance formulation) wativari-
ance function given by (2.53) far= 3.
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Figure 2.10 Estimated statistics of a 2-D field (spectral formulatioftjmeovari-

ot
—

-0.5

ance function given by (2.53) fér= 1. Statistics are averaged over
100 fields.

Exact Covariance
———————— Horizontal Covariance
Vertical Covariance
Diagonal Covariance

Lag

Figure 2.11 Estimated statistics of a 2-D field (covariance formulatmith co-

variance function given by (2.53) fér= 3. Statistics are averaged
over 100 fields.
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Figure 2.12 Estimated statistics of a 3-D field (spectral formulatioftjmeovari-
ance function given by (2.55) fér= 4. Statistics are averaged over

L:' 50 fields.

Exact Covariance

-0.5

Lag

Figure 2.13 Estimated statistics of a 3-D field (covariance formulatmith co-
variance function given by (2.55) for= 4. Statistics are averaged
over 50 fields.
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Figure 2.14 Estimated statistics of a 3-D field (spectral formulatioftjmeovari-
ance function given by (2.55) for= 1. Statistics are averaged over
UH? 50 fields.
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Figure 2.15 Estimated statistics of a 3-D field (covariance formulatmith co-

variance function given by (2.55) fér= 3. Statistics are averaged
over 50 fields.
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Figure 2.16 Sample function of an anisotropic 2-D field (spectral foratian)
with covariance function given by (2.56) féy = 0.8 andd, = 0.2.
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Figure 2.17 Sample function of an anisotropic 2-D field (covariance folan
tion) with covariance function given by (2.56) fér= 0.8 andd, =
0.2.
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Figure 2.18 Estimated statistics of an anisotropic 2-D field (spectmahiulation)
T with covariance function given by (2.56) féy = 0.8 andd, = 0.2.
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Figure 2.19 Estimated statistics of an anisotropic 2-D field (covareafarmu-
lation) with covariance function given by (2.56) fér = 0.8 and
6,=0.2.
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Chapter 3

Moving Average and Turning Bands Methods

3.1 Introduction

In this chapter, two simulation methods will be investighateat both depend on the
solution of certain integral equations for their implensgidn. The first is the Moving Av-
erage technique which is usually combined with the AutofBegjve method to form what
is called an ARMA model. The auto-regressive techniqueliesgenerating values of a

process along a line based on past values of the process,

Z(x;) = aW; + zp: b; Z(zi—;), (3.1)
=1

in whicha andb; are coefficients determined by the desired first and secauel-statistics
of the process andl; is a discrete white noise process having zero mean and umt va
ance. Although auto-regression is a very efficient meansoémting one-dimensional
processes, it does not have a simple interpretation in hjhreensions since the ‘past’ of a
point Z(x,, x,) has little meaning. For this reason, the auto-regresesfaiiques have not
been pursued in this work and only the moving average tedesigvhich are well defined
in higher dimensions, have been considered. It should bedrtbt Naganumat al.[49]
have developed an ARMA model for two-dimensional procefisaisdefines the ‘past’ as
lying in the lower left quadrant below the point in questigithough there is some ques-
tion as to the validity of such an assumption, they achievg geod results in matching the

estimated covariance structure with the desired whichesribre important criteria.
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3.2 Moving Average Method

The Moving Average (MA) technique of simulating random msees is a well known
approach involving the expression of the process as ang&efan underlying white noise
process. Formally, i (x) is the desired process then

Z(x) = / T O AW+ o), (3.20)

or equivalently,
() = / F(E — 2)dW (©). (3.20)

inwhichdW (€) is the incremental white noise process at the locatiaith statistical prop-
erties

E [dW(£)] =0,
E [dW (&)]? = dE, (3.3)
E [dW(€&)dw(¢)] =0, ifeZ¢,

and f (&) is a weighting function determined from the second ordatistics of Z(x)

E [Z(x) Z(z + 7)) = / N / T HE— o) J(E€ — z - T)E [AW(E)dW(E)] .

- / T HE— @) (€ - o - T)dE. (3.4)

If Z(x) is homogeneous, then the dependence disappears, and (3.4) can be written in
terms of the covariance function (note by 3.3 thgt#x)] = 0),

Br= [ r - n)ie (35)
Defining the Fourier transform pair corresponding{g) in R* to be,
1 o .
P)= e [ 1O e (3.60)
ﬂ@z/wF@W”%@ (3.6b)

then by the convolution theorem (3.5) can be expressed as
B(r) = (27r)"/ FW)F(—w)e ™7 dw, (3.7)
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from which a solution can be obtained from the Fourier tramafof B(1),

o

1 |
F)F(-w) = oy /_ B(r)e T dr. (3.8)

Note that the symmetry in the left hand side of (3.8) comesuabdae to the symmetry
B(t) = B(—7). Itis still necessary to assume something about the oelstiip between
F(w) and F'(—w) in order to arrive at a final solution through the inversasfarm. Usu-

ally the functionF’(w) is assumed to be either even or odd.

Weighting functions corresponding to several common angdsional covariance func-
tions have been determined by a number of authors, notabimdland Huijbregts [32] and
Mantoglou and Wilson [43]. In higher dimensions, the catioin of weighting functions
becomes quite complex and is often done numerically thréiglfis. The non-uniqueness
of the weighting function and the difficulty in finding it, gaxularly in higher dimensions,
renders this method of questionable value to the user whoesit be able to handle arbi-
trary covariance functions.

Leaving this issue for the moment, the implementation ofNe method is itself a
rather delicate problem. For a discrete process in one difoen(3.2a) can be written

Z; = Z fj Wi ;s (3.9)
j=—o0
wherelV; ; is a discrete white noise process taken to have zero meaméndrtance. To
implement this, the sum must be restricted to some rangsually chosen such thdt , is
negligible,
p
2= Wiy (3.10)
J=—p
The next concern is how to discretize the underlying whiis@process. Iz is the incre-
ment of the physical process such tiat= Z (-1 Ax) andAuw is the incremental distance
between points of the underlying white noise process, sueth t

Wi ; = W(vAz + jAu), (3.11)

thenf; = f(jAu) and Au should be chosen such that the quotiert Az/Aw is an inte-
ger for simplicity. Figure 3.1 illustrates the relationsiietween”; and the discrete white
noise process. For finitAu, the discrete approximation (3.10) will introduce someerr
into the estimated covariance of the realization. Thisrezem often be removed through
a multiplicative correction factor as shown by Journel antgjlbtegts [32] but in general is
reduced by taking\u as small as practically possible (and thues large as possible).
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Figure 3.1 Schematic representation of the moving average processeilio
mension.

Once the discretization of the underlying white noise pssand the rangehas been
determined, the implementation of (3.10) in one dimenssajuite straightforward and usu-
ally quite efficient for reasonable values af In higher dimensions, the method rapidly
becomes cumbersome. Figure 3.2 shows a typical portion eDalBcrete procesg;,
marked by X’s, and the underlying white noise field, markedibis. The entire figure rep-
resents the upper right corner of a 2-D field. The procgsss now formed by the double

summation

P p2

Zij = Z Z St Wi j ke (3.12)
k=—p1 t=—p>
wheref,, is the 2-D weighting function and’; ; , , is the discrete white noise process cen-

tered at the same position &s. Thei and; subscripts ofl” are for bookkeeping purposes

so that the sum is performed over a centered neighborhoad@tk white noise values.
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Figure 3.2 Two-dimensional moving average process; is formed by sum-
ming the contributions from the underlying white noise @®&in
the shaded region.

In the typical example illustrated in Figure 3.2, the disizagion of the white noise
process is such that= Au/Ax = 3 and a relatively short scale of fluctuation was used so
thatp = 6. This means that if &, x K, field is to be simulated, the total number of white
noise realizations to be generated must be,

N,, = (1 + 2, + (K, — 1)) (1 + 2, + 1 (K, — 1)) , (3.13)

or in the neighborhood of-(<)* for a square field. This can be contrasted immediately with
the FFT approach which requires the generation of abatirandom values for a quadrant
symmetric process (note that the factor of one-half is a@gumence of the periodicity of
the generated field). When= 3, some 18 times as many white noise realizations must be
generated for the moving average algorithm as for the FFhaaetAlso the construction

of each field point requires a total of(Z 1)y additions and multiplications which, for the
not unreasonable example given above, is1369. This means that the entire field will be
generated using’*(2p + 1) or about 11 million additions and multiplications for a 200
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200 field. Again this can be contrasted to the two-dimengiBR& method (radix-2, row-
column algorithm) which requires somé4log, K or about 2 million multiply-adds. In
most cases, the moving average approach in two dimensioshifowad to run at least 10
times slower than the FFT approach. In three dimensionsntheng average method used
to generate a 64 64 x 64 field withp = 6 was estimated to run over 100 times slower
than the corresponding FFT approach. For this reason, acd the weighting function
is generally difficult to find, the moving average method agmegal method of producing
realizations of multi-dimensional random fields was abawedidby the author.

It can be noted in passing that the two-dimensional ARMA nhedggested by Na-
ganumet al.[49] requires about 50 to 150 multiply-adds (depending @ntyipe of covari-
ance structure modeled) for each field point. This is aboat@times slower than the FFT
approach. While this is quite competitive for certain caaace functions, the correspond-
ing run speeds for three-dimensional processes are estin@be 15 to 80 times slower
than the FFT approach depending on the choice of parameterd:.

3.3 Turning Bands Method

The Turning Bands Method (TBM), as originally suggested atiron [45], involves
the simulation of isotropic random fields in two- or high@émdnsional space by using a
sequence of one-dimensional processes along lines cgabsrspace. With reference to
Figure 3.3, the algorithm can be described as follows,

1) choose an arbitrary origin within or near the domain offtakl to be generated,

2) select a liné crossing the domain having a direction given by the uniteeaf which
may be chosen either randomly or from some fixed set,

3) generate a realization of a one-dimensional procggs;), along the line having zero
mean and covariance functidf(r;) where¢; andr; are measured along lirig

4) orthogonally project each field poim§, onto the line; to define the coordinatg,; =
x;, - u,; of the one-dimensional process valtigs,.;),

5) add the componers;(&;;) to the field valuez(x;,) for eachxy,

6) return to step (2) and generate a new one-dimensionaégsalong a subsequent line
until L lines have been produced,

7) normalize the fieldZ(x,,) by dividing through by the factoy/L.
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Z,(&x)

Figure 3.3 The Turning Bands Method: contributions from the line pssé&(¢;)
atz, - u; are summed into the field proce8ge) at ;..

Essentially, the generating equation for the zero-measretrs proces€ (x) is given by

L
Z(ay) = % S 2y w,) (3.14)
=1

which can be an exceptionally fast algorithm, particulasythe number of dimensions of
the process increases. It depends on knowledge of the amendional covariance function,
B,(r). Once this is known, the line processes can be produced ssime efficient 1-D
algorithm such as auto-regressive, moving average, or é¢finiques.

The covariance functiom,(7) is chosen such that the multi-dimensional covariance
structureB,,(7) in R* is reflected in each realization or over the ensemble. For two
dimensional isotropic processes, Mantoglou and Wilson ¢#& the following relation-
ship betweerB,(7) and B,(§) for r = | 7|,

2 [ By

Bz(’f’):; S 7\/@

a7

d, (3.15)



which is an integral equation to be solved 8B)(&). In three dimensions, the relationship
between the isotropiB,(r) and B,(£) is particularly simple,

5O = 7 (€849). (316)

Mantoglou and Wilson supply explicit solutions for eithbetequivalent one-dimensional
covariance function or the equivalent one-dimensionattspkdensity function for a variety
of common multi-dimensional covariance structures. Iripalar for the exponential type

covariance function,
B,(ry,1,) =0° exp{ — %x/rf + 722}, (3.17)

the corresponding one-dimensional one-sided spectraltgdanction is shown to be
2wo*6?

Gl(W) = 7[4 N 02w2]3/2 .

(3.18)

In this implementation of the TBM, the line processes wenestmcted using a 1-D
FFT algorithm as discussed in Chapter 2. Line lengths wessarinto be twice that of the
field diagonal to avoid the symmetric covariance problenereht with the FFT method.
To reduce errors arising due to overly coarse discretiaaifdhe lines, the ratio between
the incremental distance along the lin&s,, and the minimum incremental distance in the
field along any coordinate)z, was selected to bAu/Az = 1. Figure 3.4 represents a
realization of a 2-D process with covariance function gign(3.17) in which the mid-
point of each line was located at the center of the domain adllwatrated in Figure 3.3. The
finite number of lines used, in this case 16, results in alstitappearance of the realization
which is more pronounced if fewer lines are used and lessyonmoeed as the number of lines
increases. These artifacts are still evident using 32 libes as shown in Figure 3.5, are
almost invisible when using 64 lines (the use of number adimhich are powers of 2 is
arbitrary). Since the 16 line case runs at about the same sisebe 2-D FFT approach, the
elimination of the streaks in the realization comes at agpoicrunning about 3 to 5 times
as slow as the FFT method. Other origin locations were tnetliding the use of all four
corners (the particular corner selected as an origin degggrah which quadrant the unit
vectoru,; points into) with no particular success in improving theegmance of realizations
for a small number of lines.

The orientation of the lines can either be chosen randombetacted from a set of
prescribed directions which evenly divide the unit ciratesphere. In three dimensions, the
maximum number of lines which will subdivide the unit sphieite equal solid angles is 15
[32]. If more lines are desired (as is likely to eliminate #teeaking phenomena) then the
sphere can only be approximately subdivided. Both of thiezegéons shown in Figures 3.4

48



and 3.5 were created using evenly spaced lines on the wlé.cBy using an ‘ergodic’ uni-
dimensional generator (see Equations 2.9 and 2.12), Mimtagd Wilson state that evenly
oriented lines will produce an ergodic realization. Thiseaon was tested to a limited
extent by the author, as shown in Figures 3.6 and 3.7, andsifeeand that while neither
approach yielded a strictly ergodic process over the liddt@main, the use of evenly spaced
lines did render estimated statistics which converged sdraemore quickly to the desired.
This is more evident when the scale of fluctuation is reldfil@rge, as in Figure 3.6. No
particular difference was evident between those reatingiroduced with an ‘ergodic’ 1-D
FFT line generating algorithm (2.9) and those produced a/ition-ergodic’ generator (2.7).
Perhaps more importantly, the use of evenly oriented lindaged the streaks apparent in

the realizations.

Note that the Turning Bands Method does not suffer from thersgtric covariance
structure that is inherent in the FFT approach. Howevemd#oessity of finding an equiva-
lent 1-D covariance or spectral density function througiméegral equation along with the
streaked appearance of the realization when an insufficienber of lines are used makes
the method less attractive. In two dimensions, the effigiesfdhe method was found to
be reasonably competitive with the 2-D FFT algorithm, rumgnat about the same speed
if streaks are acceptable or 3 to 5 times slower if the straak$o be eliminated. Since it
is difficult to visualize 3-D realizations, no tests were tarevaluate their appearance and
so no estimate of the number of lines required to eliminataking was done. One could
presume that a similar ‘density’ of lines is required in thB 8ase as in the 2-D case and so
the speed comparisons between the 3-D TBM and 3-D FFT approay be roughly the

same as in the 2-D case.
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Figure 3.4 Sample function of a 2-D field via TBM using 16 lines with co-
variance function given by (3.17) fér = 4. Notice the banded or
streaked appearance.
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Figure 3.5 Sample function of a 2-D field via TBM using 64 lines with cavar
ance function given by (3.17) f@r = 4. The streaked appearance
has largely disappeared.
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16 evenly oriented lines: Non-ergodic 1-D FFT generator

Covariance

Covariance

Covariance

Covariance

Figure 3.6 Comparison of estimated statistics of 2-D fields generai@dBM using scale
0 = 4 for randomly versus evenly oriented lines and ‘ergodirsus ‘non-
ergodic’ generation of the line processes. Solid lines tketihe exact covariance
and dashed lines represent estimated horizontal, veréindldiagonal covari-
ances averaged over 10 realizations.
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16 evenly oriented lines: Non-ergodic 1-D FFT generator

Covariance

Covariance

Covariance

Covariance

Figure 3.7 Comparison of estimated statistics of 2-D fields generai@d@BM using scale
0 = 1 for randomly versus evenly oriented lines and ‘ergodirsus ‘non-
ergodic’ generation of the line processes. Solid lines tketihe exact covariance
and dashed lines represent estimated horizontal, veréindldiagonal covari-
ances averaged over 10 realizations.
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Chapter 4

Local Average Subdivision

4.1 Introduction

In this chapter a fast and accurate method of producingzagadns of a discrete local
average random process is presented. The motivation fbr @u@pproach arises out of
a need to account for the fact that most engineering measumtsnare only defined over
some finite domain and thus represent a local average of tpegy. For example, soil
porosity is ill-defined at the micro-scale — it is measuradgisamples of finite volume and
the variability of the values obtained is often significgatifected by the volume tested. The
same is true of strength measurements, say, of concreteleydi, or radar measurements of
cloud densities (see also Rodriguez-Iturbe [60]). A prypefined local average process is
therefore more easily related to actual measurements madg acale and those measures
more easily incorporated.

A further advantage of the method proposed herein is thatdeally suited to stochas-
tic finite element modeling using efficient, low order, iqgelation functions. Each discrete
local average given by a realization becomes the averagegyowithin each discrete el-
ement. In this context, the ability to easily change theltggm of a region of the domain
while maintaining internal consistency gives finite eletmandelers the freedom of chang-
ing mesh resolution in regions of interest.

The concept behind the Local Average Subdivision (LAS) epph arose out of the
stochastic subdivision algorithm described by Carperdi2yrdnd Fournieet al.[21]. Their
method is limited to modeling power spectra havingd form and suffered from problems
with aliasing and ‘creasing’. Lewis [39] generalized th@agach to allow the modeling of
arbitrary power spectra without eliminating the aliasirg@uch midpoint displacement al-
gorithms involve recursively subdividing the domain by geating new midpoint values
randomly selected according to some distribution. Oncesehpthe value at a point re-
mains fixed and at each stage in the subdivision only half o gin the process are deter-
mined (the others created in previous iterations). Aligsinses because the power spectral
density is not modified at each stage to reflect the incredsyagist frequency associated
with each increase in resolution. Voss [53, Chap. 1] atteohpd eliminate this problem
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with considerable success by adding randomness to allgairgach stage in the subdivi-
sion in a method called ‘successive random additions’. Hewéhe internal consistency
easily achieved by the midpoint displacement methodsr(#i®lity to return to previous
states while decreasing resolution through decimatiotgrgely lost with the successive
random additions technique. The property of internal cirscy in the midpoint displace-
ment approach implies that certain points retain theireyéfuoughout the subdivision and
other points are created to remain consistent with them regpect to correlation. In the
LAS approach, internal consistency implies that certagioms maintain a constant aver-
age throughout the subdivision. The property of internalststency is important because
it allows the process to be easily conditioned.

The method proposed here solves the problems associatedheistochastic subdi-
vision methods and incorporates into it concepts of locakraying theory. The general
procedure is presented first for a one-dimensional statyomecess characterized by its
second-order statistics. The algorithm is illustrated I@rastein-Uhlenbeck process, hav-
ing a simple exponential correlation function, as well aslisactional Gaussian noise pro-
cess as defined by Mandelbrot [41]. The simulation proceiurgo and three dimensions
is then described. Finally some comments concerning thaévelefficiency of the method
are made.

4.2 One-Dimensional Local Average Subdivision

The construction of a local average process via LAS esdgriaceeds in a top-down
recursive fashion as illustrated in Figure 4.1. In Stageflobal average is generated for the
process. At Stage 1, the domain is subdivided into two regidmose ‘local’ averages must
in turn average to the global (or parent) value. Subsequages are obtained by subdivid-
ing each ‘parent’ cell and generating values for the resgltwo regions while preserving
upwards averaging. Note that the global average remairgairthroughout the subdivi-
sion — a property that is ensured merely by requiring thaatleeage of each pair generated
is equivalent to the parent cell average. This ‘constanteayes is also a property of any cell
being subdivided — such internal consistency allows fopstneconditioning of the process.
Specifically, the algorithm proceeds as follows;

1) generate a normally distributed global average (lab&&ih Figure 4.1) with mean
zero and variance obtained from local averaging theory,

2) subdivide the field into two equal parts,

3) generate two normally distributed valueg, and 2%, whose means and variances are
selected so as to satisfy three criteria:
a) thatthey show the correct variance according to localkaweg theory,
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b) that they are properly correlated with one another,
c) thatthey average to the parent val€Z; + 23) = Z%.
That is, the distributions of and 22 are conditioned on the value 6F,

4) subdivide each cell in stage 1 into two equal parts,

5) generate two normally distributed value® and 22, whose means and variances are
selected so as to satisfy four criteria:
a) thatthey show the correct variance according to locaikaweg theory,
b) that they are properly correlated with one another,
c) thatthey average to the parent valdg? + 22) = Z1,
d) thatthey are properly correlated wifif and Z2.
The third criteria implies conditioning of the distributie of 22 and 22 on the value
of Z1. The fourth criteria will only be satisfied approximately bgnditioning their
distributions also or£3.

and so on in this fashion. The approximations in the algoridtobme about in two ways:
first, as was already mentioned, the correlation with adjacells across parent boundaries
is accomplished through use of the parent values (whichisgady known having been pre-
viously generated). Second the range of parent cells onhabicondition the distributions
will be limited to some neighborhood. The remainder of thiamter is devoted largely to
the determination of these conditional Gaussian distiobgtat each stage in the subdivi-
sion and to an estimation of the algorithmic errors. In tHewing, the term ‘parent cell’
refers to the previous stage cell being subdivided and iwitkIl’ means within the domain
defined by the boundary of the parent cell. The synth@ used to denote the algorithmic
process and to denote the exact process throughout.

Stage 0 Z7

Stage 1 Zi Z;
Stage 2 Z7 Z3 Z3 Z;
Stage 3 | 22| Z3| Z3| Z3| z2| z§| 23| Z§

Stage 4 l l

Figure 4.1 Top-down approach to the LAS construction of a random pioces

Consider first a continuous stationary scalar random fancfix) in one dimension, a
sample of which may appear as shown in Figure 4.2, and definenaid of interest [077]
within which a realization is to be produced. Two commentsusthbe made at this point:
First, as it is currently implemented the method is restddio stationary processes fully
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described by their second-order statistics (mean, vagiand autocorrelation function or,
equivalently, spectral density function). Second, thedsubsion procedure depends on the
physical size of the domain being defined since the dimersrenwhich local averaging
is to be performed must be known.

F\ J\m | /\/\\ﬂ I AAMVﬂ
VWV

Ty

0 T

i

\4

7|

Figure 4.2 Sample function of an Ornstein-Uhlenbeck process With) = e~z .

The average of (x) over the domain [07] is given by

0 — l 4
Z) = T/o Z(z)dzx, (4.1)

whereZ? is a random variable whose statistics
E[Z] =E[Z], (4.2)

T rT 2 T
El@] =5 [ El2©z¢) dae =12+ 5 [ @ -nBOr 43

can be found by making use of stationarity and the fact B{aj), the covariance function
of Z(t), is an even function of lag according to (1.9b). Assuming(t) to be a mean-
zero Gaussian random function then (4.2) and (4.3) givecserfii information to generate
a realization ofZ? which becomegZ? (Stage 0) in the LAS method.

Consider now the general case where siag&nown and stagéet 1 is to be generated.
In the following the superscriptdenotes the stage under consideration. Define

T

T:§,

i=012,..., 1L, (4.4)
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where the desired number of discrete local averages in #igation isN = 2%, and define
Z} to be the average df(z) over the interval{—1)T" < = < kT" centered at, = (k—3)T",

i.e. .
kT

Zy =% / Z(x)dx (4.5)
(k—1)T%
where E[Z,i] = E[Z] = 0. The target covariance between local averages sepdmatad
nT*, n > 0, between centers is
ET? (k+n)T*
elzizi)=E () [ | z©z¢cax
(k=T (k+n—1)T"

T (n+1)T*
= (&) B(¢ - £)dede'
/]
nT? (n+1)T"
= (#)" / (€ — T BE)d¢ + ()’ / (0T — €)B()dE. (4.6)
(n—1)T" nT*

A much simpler formulation is possible by introducing thexcept of a variance function
defined by (1.33) for the 1-D process as follows

T T T

(1) = () B( — €)deds’ = 2(;%)° [ (T - [*)B()dr,  (47)
[l [

whereo? = B(0). Vanmarcke [25] has determined this function for a \gired processes.
In terms of the variance function, (4.6) becomesifor 0O

E [ Z/i Z]i +n} = 072 [(nfl)zv((nfl)Ti) — 2029(nT?) + (n+ 1Py ((n+1)77) | (4.8)

| j*1
2j-1 2] 2141 | 2j+2

Figure 4.3 1-D LAS indexing scheme for stagdtop) and stage+ 1 (bottom).

With reference to Figure 4.3, the construction of stagel values given stageis ob-
tained by estimating a mean thj} t and adding a zero mean discrete white noj'éﬁ/vj"l
having varianced*)?,

Zit = Myt + AW, (4.9)
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where the symboE is used to denote the algorithmic process which will be ar@pp
imation toZ. The best linear estimate for the meafj;* can be determined by a linear
combination of stagévalues in some neighborhogd- n, ..., j +n,

Jtn

Mt =Y aj; 2 (4.10)
il

Multiplying (4.9) through byZ,, taking expectations and using the fact tHgt™ is uncor-
related with the stagevalues allows the determination of the coefficiemia terms of the
desired covariances,

Jtn

E(zZ,) =Y a,E[2.2)], (4.11)
vt

i.e., a system of equationsy(= j — n,...,j + n) from which the coefficients!, ¢ =
—n,...,n, can be solved. Notice that the exact proc&ds used when evaluating expec-
tations. The covariance matrix multiplying the vectat} is both symmetric and Toeplitz
(elements along each diagonal are equal). ijl ~ N(0,1), the variance of the noise
term is ¢'*)2 which can be verified by squaring (4.9), taking expectatiansl employing
the results of (4.11)

Jtn

(€Y =E[Z] - Y a,E[Z5Z]. (4.12)
b n

The adjacent cell valuez;;* , is determined by ensuring that upwards averaging is pre-
served — that the average of each stagéd pair equals the value of the stagearent,

zZin =2z Zin (4.13)

2_] Y
which incidentally gives a means of evaluating the croagetovariances

E 2" 7] = 3B (23" Zon] + 3B (25" Za] - (4.14)

2m—1
All the expectations in Equations (4.11) to (4.14) are eatdd using (4.6) or (4.8) at the
appropriate stage.

For stationary processes, the set of coeffici¢ni$ andc’ are independent of position
since the expectations in (4.11) and (4.12) are just depemaelags. The generation pro-
cedure can be restated as follows;

1) fori=0,1,2,..., L compute the coefficients:’}, ¢ = —n, ..., n using (4.11) and the
coefficientsc’** using (4.12),

2) starting with; = 0, generate a realization for the global mean using (4.8 43),
3) subdivide the domain,
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4) foreachj = 1,2,...,2, generate realizations f(ﬂZ+l andZ,;*, using (4.9) and (4.13),

5) increment and, if not greater thah, return to step 3.

Because the LAS procedure is recursive, obtaining st&adevalues using the previous
stage, itis relatively easy to condition the field simply Ipgsifying the values of the local
averages at a particular stage. So, for example, if the gioban of a process is knoven
priori, then the stage 0 valu&’ can be set to this mean and the LAS procedure started at
stage 1. Similarly if the resolution is to be refined in a dertagion, then the values in that
region become the starting values and the subdivision redwatnthe next stage.

Although the LAS method yields a local average process, vihemwliscretization size
becomes small enoughitis virtually indistinguishableiriine limiting continuous process.
Thus the method can be used to approximate continuous funscais well.

Finally it should be noted that the calculation of the coedfitsa andc need only be
done once for a particular process. Subsequent realizataomthen be produced extremely
efficiently by starting at step 2 in the procedure listed a&ov

4.2.1 Accuracy

Itis instructive to investigate how closely the algorithppaoximates the target statistics
of the process from one subdivision to the next. Assumingtage values come from the
exact process, the LAS scheme can be written

Jjtn
Z@ =MW Y a7, (4.15)

k=jn
Zit, =270 — Z (4.16)

It is easy to see that the expectationzis zero since E[Z,ﬂ = 0, as desired, while the
variance is

jtn
k=j—n
jn jtn
= (M) + Z aj, j Z . j ZkZZ
k=j—n l=j—n
Jjtn Jjtn
Zz+1 Z a'k ] Zz+1 ] Z ai:,jE [Zzz;-l Z]ﬁ:]
k=j—n k=j—n
= E[(Z)]. (4.17)
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in which the coefficients™* anda’ where calculated using (4.11) and (4.12) as before. Sim-
ilarly, the ‘within cell’ covariance at lag"** is

jtn Jtn
E[zyn 2 =E | (22 - Wi = Y ai, Z) (Wit Y g Z))
k=j—n l=j—n
Jjtn )
=2Y a, ;E|[2,Z]] -E[(Z}")]
& n

= 2E (2 2]] - E (23]
=E[Z;, 23], (4.18)

using the results of (4.17) along with (4.14). Thus the cievare structure within a cell is
preserveexactlyby the subdivision algorithm. Some approximation does pactoss cell
boundaries as can be seen by considering

jtn+l

j+n
e (25 2] = | (w5 37 ) (2 W= Y i)

k=j—n l=j—n+1l

jtn Jtn+l jtn

—ZZ%] Z/%Z;ﬂ Zaejlzak] ZkZé

k=j—n l=j—n+1l k=j—n
jn+l
=E (2 Zy0) B2 Zih) - Y ey E 207 (4.19)
=j—n+1
The algorithmic error in this covariance comes from the tastterms. Using a neighbor-
hood size ofr = 1, the discrepancy between (4.19) and the exact covariankestrated
numerically in Figure 4.4 for a zero mean Ornstein-Uhleklj@ocess having covariance
and variance functions

B(r) = 0? exp{ —@} , (4.20)

v(D) = 28;2 [ZTD + exp{%} — 1] , (4.21)

whereD is the averaging dimension (in Figure 414,= T™"). Although Figure 4.4 shows
awide range in the product’2/0 (and thus a wide range in effective cell sizes), the error is
typically very small.
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To address the issue of errors at larger lags and the palgsddierrors accumulating

from stage to stage, it is useful to look at the exact verstisiated ensemble statistics of

the process. Figure 4.5 illustrates this comparison folQhestein-Uhlenbeck process. It

can be seen from this example and from the fractional Gausgisgse example to come,

that the errors seem to be self-correcting and the algoittborrelation structure tends to

the exact correlation function when averaged over seveadizations. The within-cell rate

of convergence of the estimated statistics to the exa%jswhereNf is the number of

realizations. The overall rate of convergence of the LA3izatons to the exact statistics

is about the same.

—
g _ Exact Correlation
———————— LAS Correlation
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Figure 4.4 Comparison of algorithmic and exact covariance betweescadf cells across

a parent cell boundary for varying effective averaging tee@D /6.
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Figure 4.5 Comparison of exact and estimated covariance functiof fod averaged over
200 realizations.

4.2.2 Boundary Conditions and Neighborhood Size

When the neighborhood sizer(2 1) is greater than 1n( > 0), the construction of
values near the boundary may require values from the preatage which lie outside the
boundary. This problemis handled by assuming that whatdragpputside the domain,[D]
is of no interest and uncorrelated with what happens withendomain. The generating
relationship (4.9) near either boundary becomes

J+q
Z =Wt Y a2 (4.22)
k=j—p

wherep = min(n, j — 1), ¢ = min(n, 2 — j) and the coefficients; need only be determined
for ¢ = —p,...,q. The periodic boundary conditions mentioned by Lewis [3®] ot ap-
propriate if the target covariance structure is to be prxesksince they lead to a covariance
which is symmetric about la@'/2 (unless the desired covariance is also symmetric about
this lag).

In the implementation of the 1-D LAS method, a neighborhoizeé sf 3 was used
(n = 1), the parent cell plus its two adjacent cells. Becausdeftop-down approach,
there seems to be little justification to using a larger nieagghood for processes with co-
variance functions which decrease monotonically or whretra@latively smooth. When the
covariance function is oscillatory, a larger neighborhiso@quired in order to successfully
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approximate the function. In Figure 4.6 the observed andréteal covariances are com-

pared for a process with

B(7) = 0? cosfur)e %/, (4.23)

which has the corresponding variance function

20°
D?(4 + 02w?)?

(D) = {e*ZD/e [(4 — 6°w?) coswD — 40w sinw D] + 22 (4+6%w?) — 4 +92w2}.
(4.24)
Considerable improvement in the model is obtained whenghberhood size of 5 is used
(n = 2). This improvement comes at the expense of taking abdaetas long to gener-
ate the realizations. Many practical models of natural ph@mna employ monotonically

decreasing covariance functions, often for simplicityd ao then = 1 implementation is

usually preferable.
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Figure 4.6 Effectof neighborhood size for a)= 1 and b):» = 2 on the modeling of damped
oscillatory noise (4.23) with = 4 andw = 8.
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Fractional Gaussian Noise

As a further demonstration of the LAS method, a self-sinplarcess called fractional
Gaussian noise was simulated. Fractional Gaussian n@sg ($ defined by Mandelbrot
and Ness [41] to be the derivative of fractional Brownian imo{fBm), obtained by aver-
aging the fBm over a small interval The resulting process has covariance and variance

functions

0,2

B(r) = 5520 T+ 52 =27+ |7 — 52 (4.25)
B |D + 5‘2H+2 _ 2‘D|2H+2 + ‘D _ 5|2H+2 _ 252H+2
V(D)= D2(2H + 1)(2H + 2)52H ’ (4.26)

defined for O< H < 1. The cas&f = 0.5 corresponds to white noise affl — 1 gives

1/f type noise. In practicé is taken to be equal to the smallest lag between field points
(6 = T/2)to ensure thatwheH = 0.5 (white noise),B(7) becomes zero for alt > 7'/2~.

A sample function and its corresponding ensemble statistie shown in Figure 4.7 for
1/f type noise = 0.95). The self-similar type processes have been demorstogte
Mandelbrot [42], Voss [68], and many others [48, 53, 69] tard&eresentative of a large
variety of natural forms and patterns, for example musitates, crop yields, and chaotic

systems.

Estimates of the power spectral density function of thetivaal Gaussian noise, along
with the oscillatory and exponential noises discussedezadbtained from the LAS real-
izations can be found in Appendix B. As with the covariandeweates, they show excellent

agreement with the exact.
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Figure 4.7 a) Sample function of Af type noise f/ = 0.95) and (b) corresponding esti-
mated versus exact covariance structure (averaged oveedbgations).
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4.3 Multi-Dimensional Extensions

In two dimensions, a rectangular domain is defined and theigigion proceeds by di-
viding rectangles into 4 equal areas at each stage. In argheeserve the exact ‘within cell’
covariance structure, three random noises are added @ dhtbe cell quadrants and the
fourth quadrant is determined such that upwards averagimgeserved. Figure 4.8 presents
the 2-D LAS scheme for the first 3 stages in which the centeacifiiéocal average is marked
with a different symbol for each stage. The generatingiggiahips are,

Ny
i+l — i+1 — it 1+1 % %
Zl - sz,zk = Cn lek + E aélzm(é),n(é)a
(=1
Ny
i+l — i+l — gt i+l i+l i+l % %
Zz - “2j,2k—1 = Cy 17k +022 szk + § aZZZm(Z),n(Z)v
=1
(4.27)
Nay
i+l — i+l — gt i+l i+l i+l i+l i+l % %
Zs - “2j—12k = Cx 17k +032 szk +033 35k + E aészm(é),n(é)a
=1
i+l — i+l — % i+l i+l i+l
Z4 - “2j—12k—1 T 4ij T “252k T “252k—1 T “25—12k>

wherelV is a discrete zero-mean, unit variance Gaussian white rmmide(¢), n(¢) are
indexing functions traversing in a fixed patternthg = (2n, +1) x (2n, +1) neighborhood

of Z;k In this implementatiorn;,, = n,, = 1 and the boundary conditions are handled in the
same fashion as for the 1-D case. The coefficiénfs} can be calculated from the linear
equations

Ny
E[Z5a Znwnw) = D nE [Znwno Zmene) p=L12... ny
=1
Ny
E [ sz-*‘,;kfl an(p),n(p)] = agE [an(z),n@) Z;n(p),n(p)] ) p=12,...,ny (4.28)
=1
Ny
E [Z a0 Znwnm] = D 46E [Ziwn© Zme)ne) p=1,2... ng
=1

in which the matrices on the right hand sides are symmetticdlonger Toeplitz in general.
The coefficient matrix** is assumed to be lower triangular satisfying

c™ (™" =R, (4.29)

whereR is symmetric and given by
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Nxy

R, =E[Z"Z7™] - Z by E [ 72 miny 257 rs=123 (4.30)

using the indexing notation defined at the extreme left &{}%. Notice that the assumption
of homogeneity vastly decreases the number of coefficibatsteed to be calculated and
stored sincga},.} andc™™* become independent of position. As in the 1-D case, the eoeffi
cients need only be calculated prior to the first realizatitiney can be re-used in subsequent
realizations reducing the effective cost of their caldolat

O ©) o O
4 2 4 2
+ +
4 2
O ©) (6] O
3 1 3 1
gl
O O O O
4 2 4 2
+ +
3 1
O ©) o O
3 1 3 1

Figure 4.8 First three stages and indexing scheme of the 2-D LAS alguar(stage 0 £,
stage 1 = +, and stage 2o3.
The expectations used in equations (4.28) to (4.30) can tezrdimed from the two
dimensional variance function of the process

E [Z]Zk Zji’+m,k+n} = %0‘2 |:(m71)2(n71)2’yi (mfl,nfl) — 2(m71)2n2’yi(mfl,n) + (mfl)z(nﬂ)z’yi (mfl,n+1)
— 2m2(n—1)2’yi(m,n—1) + 4(mn)2fyi (m,n) — 2m2(n+1)2’yi(m,n+1)
+ (m+12(n—12y" (m+1n—1) — 2m+1)%n2y" (m+1,n) + (m+1)2(n+1)2y" (m+1,n+) (4.31)

where~(m») was used to denotg(m;, »73), T andT} being the dimensions of the indi-
vidual averaging rectangles at stagé-or a quadrant symmetric covariance structt(e,
is defined by Vanmarcke [25] to be

(Dl,Dz)—< DD) / /(|D DDy — 1B Bl n)drdn,  (4.32)

—D; —
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Figure 4.9 shows a sample function of a process with covegiimction

B(r, 1) = 0" exp{— /77 + 73}, (4.33)
for 6 = 4, which was generated using the approximate varianceitumc
1
(D1, D) = 5 [HDIUDLID) +5(D)3 (D D)) (4.34)
where,
- 34 —2
D\z2| ¢
~(D;)= |1+ (72) , (4.35)
_ _ 2
D\z| °
ADID)) = |1+ (9—) , (4.36)
L il

2
0, =s; lca +(1-c,) exp{— (%) }] : (4.37)

For the exponential covariance function (4.33), the value,cshould be taken a5.
Other forms of this approximate 2-D variance function akegiby Vanmarcke [25, Chap.
6]. The estimated covariances along three different doestare seen in Figure 4.11 to
show very good agreement with the exact (4.33). Figure qdW/s a sample function of
the same process fér= 1 and its corresponding estimated statistics are shown i€y
4.12.

Although the within-cell covariance structure is reflecee@ctly by the LAS method,
the overall statistics of anisotropic processes are rathanly preserved. The generated field
tends to become isotropic with a scale of fluctuation equéiéaninimum scale specified.
Atthis time, itis better to create the anisotropy throughktgarocessing of an isotropic field:
generate an isotropic field using a single scale of fluctnatma stretch the resulting field in
the direction of the other directional scale of fluctuatiombtain an ellipsoidal correlation
structure.

In three dimensions, the LAS method involves recursivelydstiding rectangular par-
allelepipeds into 8 equal volumes at each stage. The gamgratationships are essentially
the same as in the 2-D case except now 7 random noises arenibedubdivision of each
parent volume at each stage

Nxyz

S
Z=Y GRWEN Y akZgaown  S=L2...7 (4.38)
r=1

(=1
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Zin =8z, — Z Zin (4.39)

inwhich Z** denotes a particular octant of the subdivided cell centeré’giim. For aneigh-
borhood sizey,,,., of 3 x 3 x 3, Figures 4.13, 4.14, and 4.15 show exact versus estimated

statistics for a process having isotropic covariance

2
B(TlaTzaTs):Uz exp{—5(71|+ V 7_22+7_32>} . (4.40)

Notice that (4.40) has a partially separable form. This isyve@essary but is a form used in
Chapter 7 for modeling of soil. The approximate variancefiom corresponding to (4.40)

is given by

’Y(Dlv D27 D3) = ’Y(Dl)’Y(Db D3)7 (441)

where~(D,, D,) is given by (4.34) with appropriate changes in subscriptsgD,) by

(4.35).

When compared to Figure 4.13, Figure 4.14 illustrates theeahiconvergence of the

estimated statistics to the exact as the number of reaizsits increased.
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Figure 4.9 Sample function of the 2-D LAS generated process given (838j4vithd = 4.
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Figure 4.10 Sample function of the 2-D LAS generated process given [88jwith 6 = 1.
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Figure 4.11 Comparison of estimated and exact covariance structuteedfAS generated

1.5

0.5

2-D process (4.33), with = 4, averaged over 10 realizations.

Exact Covariance
Estimated Horizontal
Estimated Vertical
Estimated Diagonal

Lag

Figure 4.12 Comparison of estimated and exact covariance structuteedfAS generated

2-D process (4.33), with = 1, averaged over 10 realizations.

Implementation and Efficiency

In order to calculate stage 1 values, the values at stagmaust be known. This implies

that storage must be provided for at least/¥ values whereV = 2~ is the desired resolution
ofthe process in one dimension. The implementation desgtierein stores all the previous
stages, a storage requirement af(2 1) in 1-D, 4(N x N)in2-D,and (N x N x N)in
3-D. This allows rapid ‘zooming out’ of the field. The coeféiaits{a'} andc’, which must
also be stored, can be efficiently calculated using LU fazation (see Equation (4.29)) and
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Covariance

successive backsubstitutions (see Equation (4.28)). ©bplitz property of the matrix in

Equation (4.11) was not taken advantage of for neighborisams greater than 3.

The LAS method is also fairly competitive with the FFT apmioaiscussed in Chap-
ter 2. Table 4.1 compares times of the two methods running@ybar 205 (CDC) super-
computer for one, two, and three-dimensional realizatitmene dimension, using a neigh-
borhood size of 3, LAS runs slightly faster than the FFT appho Both methods have neg-
ligible setup times for the coefficient calculations. In tdimmensions, the LAS approach
took about 1.5 times longer than the FFT method and the tiraensional case took about
twice as long. It should be pointed out that these compasiaom made to the uncorrected
FFT simulation. If the symmetric covariance structure igected in the FFT simulation
by increasing the field size, then the performance of theirdirtiensional LAS method is

seen to approach and even surpass that of the FFT method.
Lo
—

\ ——— Exact Covariance

8 10

Lag

Figure 4.13 Comparison of estimated and exact covariance structuneafAS gener-
ated 3-D procesd, = 4, averaged over 10 realizations. Estimates, shown
dashed, are made in various directions through the volume.
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Figure 4.14 Comparison of estimated and exact covariance structuneafaS gener-

ated 3-D procesd, = 4, averaged over 50 realizations. Estimates, shown
dashed, are made in various directions through the volume.
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Figure 4.15 Comparison of estimated and exact covariance structuteedfAS generated

3-D processf = 3, averaged over 10 realizations. Estimates, shown dashed,
are made in various directions through the volume.
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Table 4.1 Comparison of execution times on a Cyber 205 super-computer

Type Size Number of Time (seconds)
Simulations Setup Generation
1-D FFT 256 200 0.0013 0.1803
1-D LAS 256 200 0.0017 0.1486
2-D FFT 256x 256 100 0.1265 15.2002
2-D LAS 256x 256 100 0.1156 23.0100
3-D FFT 64x64x 64 50 0.1517 48.7742
3-D LAS 64x64x 64 50 6.1740 100.5700
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Chapter 5

Space-Time Processes

5.1 Introduction

In this chapter attention will focus on spatial processegwbvolve in time and thus
belong to a class of space-time homogeneous Gaussian rdndatons. The function may
represent, for example, one component of earthquake gnmatidn spatially distributed
over some area. Improved dynamic analyses of multi-sugbarttures require more than
a single ground motion time history as input and an apprtpgpace-time process may
be used to this end. For instance, the motion experienceach&yier of a bridge is likely
to be somewhat different than that at other piers; the furthe piers are separated, the
greater the likely difference in their support motions. Alsgh-frequency components of
earthquake ground motion will tend to be weakly correlatedpace and low-frequency
components highly correlated. It is assumed that the datieelation structure as well as
the spectral density function at each spatial point is knawriori. These functions may be
obtained from random field theory combined with empiricabdeom dense strong-motion
accelerograph arrays [1, 7, 26, 27].

Another situation arises when accelerograms are recoidgohae points on the free
field in the vicinity of a site of interest and one wishes to gliate the ground motion at
the site. Linear estimation theory is used to simulate dertgd strong ground motions,
compatible with the known time histories, at arbitrary brggeribed locations on the free-
field surface.

The problem of generating two time histories with known srosrrelation is first ex-
amined. The concepts are then generalized to allow the atranlof spatially correlated
time series at any number of locations. Various implemeiaspects are investigated;
first, the use of the FFT algorithm as a means of generatidigaéans of random time se-
ries, and second, the use of best linear estimation tecesitgucondition the field. Finally,
non-stationary extensions to the model are described apléimented.
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5.2 Two Point Case

Consider two pointg, andx, on the ground separated by x,—x,. The correlation of
the ground motion at these two points is assumed to be desantierms of the frequency-
dependent spatial correlation functipg(r) that depends on the separation distance vector
r, and frequency. This function is real for quadrant-symmetric random figlts]. As
was shown in Chapter 1, the zero-mean Gaussian random nadtigican be expressed as
a sum of independent random amplitude sinusoids at corfségptency intervalsj\w,

K
Z,(t) = ) [ Aw COS(yd) + By sin(wt)], (5.1)
k=1
whereA,,, andB,;, are zero-mean Gaussian random variables and the syfisalised to

denote the algorithmic process which is an approximatiahédarue procesg. The true
process will be used in the evaluation of expectations. ©@enthek! component ofZ,(t),

Zu(t) = Ay, coswyt + By, Sinwyt, (5.2
whose variance is
0% = Var[Zy] = Gy(wg)Aw = E [(Ay, COSwyt + By, Sinwyt)’]
= 3E [AL] + 3B [BL], (5:3)
whereG,(w) is the one-sided power spectral density function assed¢aitha,, and
E [ ik} =E [ ik} = Gy(wp)Aw. (5.4)

Sample functions of,(¢) can be obtained by simulating,, and5,, as independent nor-
mally distributed variables with mean zero and variancesrgby (5.4).

Consider now the “two point problem”, i.e., the generatibtwm correlated time series.
At the frequency,,, the components of the motionat andx, are

Zlk‘(t) = Ay, coswt + By, Sinw,t (55)
and

Z(t) = Ay, COSwyt + By, Sinw,t. (5.6)

The component processes associated with disjoint frequatervals are always uncorre-
lated, E[Zl,C sz] = 0if j # k, by virtue of the spectral representation theorem for mean
square continuous, zero-mean, homogeneous random fidiéscoEfficient of correlation
between”Z,;, andZ,, is p,, (r) which can be formally expressed as

(’I") — E [Zlkzzk] - %E [-AlkAzk] + %E [Blk:BZk]
P Tk, VoG dw
79

(5.7)



and thus,

E [AwAz] = E[ByBo] = pu, (1) V Gu(wi)Golwi) Aw = Cllwy), (5.8)

where, for a strictly homogeneous Gaussian random field,) = G,(w). The distinction
between spectral density functions will be retained thhmug the chapter to accommodate
“nearly homogeneous” approximations and certain limitages such as spatial indepen-
dence. The joint probability density function correspamgio (5.8) is the bivariate normal
pdf,

1 -1 ai a,a, ag
= _— | = — + — X
f.AlAz (a17 a’2) 27T0'10'2 /—1 — pz exp{ 2(1 — pz) |:O'f 2p 0,0, 0_3 ) (5 9)

where we usedi,, o,, andp in place ofA,;, o,;, andp,, (r) for simplicity. Associated with
equation (5.9) is the conditional density function

B 1 1 [a,— (pZ)a,]”
frintelo) = - o0 [t | 610
which is equivalent tgfz,5,. Notice that wherp,, (r) = 0, (5.10) becomes the marginal
distribution of A, as expected. Whem,, (r) = 1, (5.10) becomes a dirac delta function
implying thatA,, = A, in the perfect-correlation case. The two correlated timesean
now be obtained by first generating realizations4grands,;, (with mean zero and variance
02.) and then generating,;, andB,;, using the conditional distribution given by (5.10).

5.3 Multiple Point Case

Equation (5.1) can be generalized to describe the timeriestat a number of locations

Z;,

Zi(t) =) [ A COSlugt) + Biy Sin(yt)]. (5.11)

k=1

Again focusing on thé&'* component, the random coefficiends, and3;;, have statistics
E[Aix] =E[Ba] =0, (5.12)
E [ fk] =E [Bfk} = Gi(wi)Aw, (5.13)

E [AinAji] = E [BiBjr] = o, (1i;) Aw/Gi(wi) G (wi) = Cij(wy), (5.14)

wherer;; = x; — ;. The covariance matri«;;(wy) is positive definite and can be diagonal-
ized to the set of positive eigenvalugs,. through the use of an orthogonal transformation
matrix Q. Using the summation convention, the defining equations are

QuCij (Wk)Qjm = @Dmkélma (5.15)
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QaQij = 0y, (5.16)

where),; is the kronecker delta, and summation is suspended on wwdedsindices. The
matrix Q also relates the variable$;, and5;;, to their uncorrelated counterpalfts,, and
mG’

Substituting (5.17) and (5.18) into (5.14) and using (i) easily seen that

0 ifi=y
Cov[Usy., Uy = _ (5.19)
Yy, ifi=j
and similarly forV;,. Thusy,, = Var[U,.], and U, U], [Vir, Vi) represent independent
sets of uncorrelated normally distributed random varsblith mean zero and variangg,.
Using this information, realizations 6f;, andV;, can be generated and the resulting values

used in (5.17) and (5.18) to obtaity, and5;;.

Equation (5.11) can be efficiently evaluated using the Fastier Transform method. If
Z,(t) is to be real, certain symmetry conditions must be appbeté coefficients as shown
in Chapter 2,

Ai k2= Ak, Big_p2=—By, Tfork=23, ..., % (5.20)

in which case the ensemble point variance is better predéroae takes,

Py (Tij) Aw /G i(wi) G (wi) fork=11+%

Cijlwr) =
%pwk(rij)Aw\/ {Giw) + G G +Giwp ) fork=23.... %
(5.21)
where
2n(k — 1) L 2n(K — k +1) 2n
Y= TRAL T TRA AT KA

The covariance matrix is only evaluated for frequenciesoup ., = 7/At. After diago-
nalizing and generating realizations for their uncoredatounterparts, the coefficiends,
andB;, are determined using (5.17) and (5.18)%or 1,2, ...,1+K /2, and the remainder
found using the symmetries (5.20). Applying an inverse FHTyeld a set of stationary
time histories representing a realization of the uncoadéd field of ground motions.
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5.4 Conditioning the Field

The procedure required to produce a random field in which safrtige time histories
are known and the others are conditioned on this knowledgeastigated in this section. It
can be accomplished through the theory of best linear esam@6, 37, 46, 70], referred to
as ‘kriging’ in the context of geostatistics [32]. The quan¥ herein represents any scalar
field value of interest, not necessarily a function of time\all be shown later, it actually
represents the Fourier coefficients derived in the prevsegsions).

Consider a discrete set of field points composed of two disjoint subsets andx ;.
The subset,,, a ={1,2,...,n,} is made up of points at which the field procesgz,) is
known, whereas the subset, 5 = {1+n,,2 +n,,...,nz +n,} contains points at which
the field proces</s(x3) is unknown, to be estimated using the following proceddriee
subscript onZ indicates that it is not a continuous function in space, butefined at the
discrete pointg,. The best linear unbiased estimateff(z;), Z;(x3), can be obtained
by kriging

Z5(xs) = Z Nap Za(®a), (5.22)

wheren,; is the set of kriging weights to be determined.

The mean of the field process[E(z)] = m(x) can be estimated from the known data
and expressed as a polynomial,

d
m(x) = Z a; fi(x). (5.23)
i=0

This allows drift in the mean to be accounted for if its funail form is known. In the
following, m(x) is taken to be either constant, linear, or quadratie,icorresponding to'0,
1%t, or 2*¢ order kriging, respectively. The conditions imposed toueaghat the estimate
Is unbiased, BZ — Z*] =0, are

> g fil@a) = filzs), i=0,1,...,d. (5.24)

If C(z;,z;)=E [Zi(mi)Zj(mj)] is defined as the covariance between the field processes at
x; andz;, then the variance of the estimate becomes,

2 Na Na Na
E [{Zo@s) - Zi@n)} | = C@a,wp) = 23 nas Cl@p, @) + DY Mgy Cwa, @)
a=1 a=l =1

(5.25)
which must be minimized subject to thé{ 1) non-bias constraints (5.24). Using the La-
grangian technique, a system af,(-d+1) linear equations in the same number of unknowns
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is obtained. The unknowns are thgweightsn,; for the given locationg ; and the { + 1)

Lagrange parameteys,

N d
Znaﬁ C(w’w wa) - Z,uzfz(w“{) = C(:B“ﬂ wﬁ)a Y= 17 27 s Ny
a=1 =0
(5.26)
Zna,@fz(wa):fl(m,@)u i:07 17"'7d'
a=1
This system has a unique solution if and only if;

1) the covariance matri&€’' is positive definite,

2) the (+1) functionsf;(x) are linearly independent on the setgfdata (this is satisfied

by the choice of constant, linear, or quadratic functions).

The system of equations (5.26) may be written in matrix form,

o} = o1, 521

where
[ CL, Cy Coo -+« Oy, 1 file)  folm)) - - o fa(x) ]
Cy Co Co CZna 1 fi(z) filz) - - - falz,)
Cnal Cnaz Cnas ’ ’ ' Cnana 1 fl(wna) fz(wna) ’ ’ ' fd(mna)
[Ka] - 1 1 1 - - - 1 0 O o - - - 0
filz) filx,) fiulxs) - - - fl(a:na) 0 0 0 o 0
L) fix,) folxs) - - - foz,,) O 0 0 o 0
fa(x.) falx,) falxs) - - - fa(z,,) O O o - - - 0
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inwhichC,,, = C(z,, z,) was used for convenience, and

(s ) (( Oz, 25)
7726 C(mbm,@)
UE%] 0(233,236)
_ nnaﬁ _ C(:Enau :EB)
{ma} =4 g (=0 g
— fl(mﬁ)
— 2 fz(wﬁ)
| "Ha L fa(zg)

As [K,] depends solely on the covariance structure and geomethednown points,
x,, it can be inverted once and used repeatedly to find the weeightfor each pointc.
The actual covariance matrix to be uséfz,,, z.,) = C,.(w;), is dependent on both spatial
distance as well as frequency. The conditioning thus ire®kriging the Fourier coefficients
at each frequency;, as follows;

1) Fourier decompose the known time histories to obtain ¢hefsknown Fourier coeffi-
cientsﬁak andl’;ak at the pointse,,,

2) krige the known Fourier coefficients to obtain estimaf% andlST;LC at the unknown
pointsz g,

3) generate the unconditional set of Fourier coefficietyisand5,, using the procedure
outlined in the previous sections for all the field poimis

4) krige the simulated Fourier coefficients over thesgto obtain the set of simulated
estimates4y, and3;, at the unknown points

5) compute the conditioned simulated Fourier coefficients the setc; to be
Aﬁk = .Aﬁk + A;k — Agk’
Bok = By, + By, — By,

Notice that the conditioned values are only generated dnveiunknown’ points since
the Fourier coefficients over the ‘known’ points are alredd{ermined in step 1.
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In this way the set of conditioned Fourier coefficients andt b for eachw,, £k =1,2,.. .,
1+% (the other half obtained using symmetry as discussed inrthéqus section) and then

an inverse Fourier transform is applied to obtain the finaditioned sample field.

5.5 Case Studies

A computer program was designed and implemented to perfoeradnditional simu-

lation of correlated earthquake ground motions. Severaingte runs were performed to
verify:
1) the ability of the program to produce properly correlagtionary time histories with

no field values knowm priori,

2) the ability of the program to produce properly conditids&tionary time histories given

one or more prescribed time histories.

The spectral density function shown in Figure 5.1 was useatlithe examples. A time
increment of 0.005 seconds and length of 1024 values gvestiistory durations of 5.115
seconds. The maximum Fourier frequency is thys, = 7/At = 628 rad/secanditcan
be seen that/(w) is negligible above this value. Howevéf(w) was derived independent
of this criteria — it was predicted given an earthquake of mitage 5.2 at a distance of 15

km according to a procedure outlined by Vanmarcke [65].

The correlation function used in the examples has the fatigwgimple isotropic and

exponential form

Py (T35) = exp{ _:;C? | } , (5.28)
wherec is the shear wave velocity in the medium (15@@sec) ands is the scale of the
process (not to be confused with the scale of fluctuafievhich in this case varies with
w). Equation (5.28) is only intended to illustrate the praged, but does show some of the
characteristics of empirical correlation functions obéal from dense accelerograph array

data.
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Figure 5.1 Spectral density function used in examples.
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Figure 5.2 shows the first 0.6 seconds of a four-point caedlanotion example, in
which no sample functions are known, for gradually decreascales. The points are lo-
cated on the vertices of a 100 metre square. For a scale dmosdme as the distance be-
tween points, the relatively high correlation shown is tekpected. At the other extreme,
for scales negligible compared to the inter-point distanttee motions appear uncorrelated.
The estimated point variance over an ensemble of realimisowvithin 5% of that predicted
theoretically by integrating:(w).

To verify the kriging algorithm, an extreme example was adered in which three field
points were assumed to be moving sinusoidally (at a singtpincy) and the fourth point’s
motion was to be simulated. The known points were located,af) coordinates of (0,0),
(0,100), and (100,0) and the fourth unknown point at (50,5@) a large scale, Figure 5.3
shows the three superimposed sinusoids followed fairlgetioby the motion at the fourth
point, as expected. Notice how the motion at the fourth ge#ebmes increasingly random
at smaller scales.

Now consider a more realistic three-point example, whengrdmown point is located
midway between two “known points” which are separated by h@@res. The motions at
the two “known points” were obtained by running the programeassuming that no points
were known and using a scale= 1.0. The resulting time histories shown at the top of Fig-
ure 5.4 become the known time histories when the third inéeliate point is introduced.
Figure 5.4 shows how the motion at the unknown point liesrégdly between the two
known motions when the scale is relatively large. As theesdatreases the motion at the
unknown point becomes increasingly random. It should bedydtowever, that because the
motions at the two “known points” are so similar, and becatsee are two of them, the
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motion at the “unknown point” appears similar even for vengrs$ scales. The relatively
high shear wave velocity of 1500 /sec used also results in higher correlation over most
frequencies of interest. In soils, the shear wave velositpuch lower and so ground mo-
tions simulated in such a medium would show greater indegrreifor the same scales and
inter-point distances. These same comments could havenhe@® about Figure 5.3.

In summary, it appears that the technique proposed hereafextive method of pro-
ducing stationary conditioned correlated time histotliles first and key step in the process
of producing compatible earthquake time histories at ¢yog@aced points. The four-point
kriged problemillustrated in Figure 5.3 with 1024 time st¢gnd thus 513 frequency steps)
takes only about 10 seconds to run on a VaXstation. Of cogrséteer of these dimensions
Is increased, an increase in required computer time is éxggarticularly as the number
of field points increases. However for most practical protdehe efficiency and accuracy
of the algorithm is excellent.
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Figure 5.2 Four point unconditional time history simulation for vargscales. Points are
arranged on the vertices of a 180square.
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Figure 5.3 Four point conditional time history simulation for varicaales with three points
known to be moving sinusoidally.
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Figure 5.4 Three point conditional time history simulation at two diént scales. The
known motion of the two points is established in the uppetmtx.
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Acceleration (m/seza

5.6 Non-Stationary Extensions

To become a useful design tool the procedures proposedsichiapter should be able
to generate more realistic earthquake ground motions.iffipkes that non-stationary mo-
tions in which both the frequency content and amplitudeevalith time would be desir-
able. Such an extension can be easily accomplished simg@yrylating the time histories
within a series of time windows each of which can be consistationary. Figure 5.5
shows an earthquake motion accelerogram recorded at tiéfd/Aliquefaction Array site,

Imperial County, California.
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Figure 5.5 North-South component of down-hole (719 earthquake acceleration motion
recorded Nov. 24, 1987 at the Wildlife Liquefaction Arratesimperial County,
California (Superstition Hills event, magnitude 6.6) shagvthe four subwin-
dow stationary approximation.

The accelerogram was triggered by the Superstition Hignemagnitude 6.6 on Nov.
24, 1987) and was measured at a depth o7 lielow the ground surface. Only the North-
South component is shown here. This time history was arbytr@divided into four equal
segments and power spectral density functions were egtilnas shown in Figure 5.6, for
the segments within each window. The power spectral dehsitgtions were estimated in
two ways. The first, shown in dashed lines in Figure 5.6, v@dldigital spectral analysis
using the FFT and a rectangular smoothing window as disdusg8lackman and Tukey
[6] and Newland [50]. An 11 data-point rectangular smoaghivindow (+5 data points)

was used to reduce the variance of the estimate. The secahddneas the maximum
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Figure 5.6 Estimates of the power spectral density function withinhe@me window ob-
tained using FFT and Maximum Entropy methods.

entropy approach outlined by Anderson [4] and Burg [11]. faimum entropy estimates
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were found to remain relatively high at low frequencies amevere arbitrarily reduced by
ignoring the firstn — 1 frequency steps and fitting a parabola toritié frequency step that
passed through the origin. Using a valuewof= 6 (3.1rad/sec) in Figure 5.6 gave maxi-
mum entropy estimates in good agreement with those obtaiagtie FFT approach. For
simulation purposes, power spectral estimates which aresentative over the ensemble
are believed to be superior. Therefore the corrected maxisntropy estimates were used
in the following simulations since they are related to maxmmlikelihood estimates [10].

The next step in the creation of a non-stationary time hydtam stationary segments
is the piecing together of the segments. This must be dorietatthe correlation between
time histories at various points in space is not effectetlrfts out that this can be accom-
plished through a simple linear combination of the timedrigbefore the join with the time
history after the join. Consider two adjacent segmentsefithe history, the first segment
starting at time«; — K. + 1)At and ending ah;At and the second segment starting at
time (n; + 1)At and ending ati{; + K.)At, whereK, denotes the length of each stationary
segment. Calling the first segme#it(¢;) and the second segmefit™(¢;), the final non-
stationary time serieg(¢,) can be obtained as follows

Z'(t), ifj<ng—n,
Z(t5) = wlng — HZ2';) + (L —wlng — 7))2™ (), Fng—n, <j<np+n,
ZM(ty), if j >ns+n,

(5.29)
wherew(7) is a discrete weighting function defined over the transitegion -n,, n,]. It
varies linearly such that(n,) = 1 andw(-n,) = 0. ThusZ(t,,) is just equal to the average
of Z'(t,,) and2""(t,,,) and has increasing contributions from the appropriatensegs as
the transition boundaries are approached. One may no&tét29) requires the knowledge
of Z'(t;) beyond the time, , andZ**(¢;) before the time, ., both of which are outside their
domains. To accommodate this, use can be made of the fachéhtne segments will be
formed via the FFT and so the periodicity relationships

Zi(tnf+j) = Zi(tj)v j >0
(5.30)
ZMty,—g) = 2"t ek—g),  J =0

apply.

In the implementation of this non-stationary extension,dfze of the transition region
n, IS chosen so that it covers a few oscillations of the motiokh@ugh (5.29) guarantees
continuity of Z(¢;) even whem,, = 0, such a small value will result in a discontinuous
derivative. The use of larger valuesof will lead to a continuous derivative. A further
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advantage to the transition averaging technique giveneabeeomes apparent when one re-
calls thatthe FFT simulation method gives a covariancesira which is symmetric about a
lag of 1 K At. Within a given segment of the simulated motiﬁ’f(tnf_Keﬂ) is almost per-
fectly correlated Wichi(tnf). The averaging with the independently simula@dl(tnf)

will reduce this correlation. However, this also implieattithe size of the windows used to
create the segments should be large compared to the scaletoftion of the process.

The technique of generating segments longer than requivédgmoring the excess
could also be used to reduce this symmetric covarianceteffieen generating uncondi-
tioned simulations. However, when generating conditisieailations, this correction can-
not be used since the known time histories cannot be aibjtrangthened within each seg-
ment. Thus, such a correcting procedure was not employdilsiimiplementation — it was
assumed that the reduction in covariance at lggat due to the averaging of adjacent in-
dependent segments of the time series was sufficient toegtacerror to tolerable levels.

Figure 5.7 shows an unconditioned four-point non-statipsanulation in which the
points are arranged on the vertices of a H08quare and a scake= 100 used. Similarly,
Figure 5.8 shows an unconditioned four-point non-statipsanulation using a scale =
10. In both cases, the shear wave velocity usedawa$30 m/sec in (5.28) which was the
average in-situ velocity measured at the Wildlife site a¢ptt of 7.5n. The non-stationary
nature of the simulated records is clearly evident, as isntreasing independence of the
four motions as the scale decreases.

To illustrate the conditional simulation of the non-staaoy motions, the original re-
corded earthquake motion was taken as known and a secondicoaldmotion was sim-
ulated as shown in Figures 5.9 and 5.10 for two differentescal’he tendency of the two
motions to become more similar as the scale increases idyceadent. However, it can
also be seen that the amplitude of the simulated motiongehaigoverned by its spectral
density function. If this differs substantially from thdttbe known motion (which it does
in the first 5 seconds of the record), then there will be amgétscaling of the simulated
motion that does not disappear even at very high sca(és which the patterns may be
identical but the amplitudes are different). This phenoanisnreduced as the number of
‘known’ records increases relative to the number of ‘unkniguoints (see for example Fig-
ure 5.3) and can also be cured by increasing the number oftingw subdivisions and/or
aligning the window boundaries with natural changes in spepower.

A potentially important conclusion that can be reached erbidsis of Figures 5.9 and
5.10 is that the method can be extended to non-homogenelissfievhich the (evolution-
ary) spectral density function is changed from point to poirspace. This may allow the
simulation of motion on a soil layer conditioned by groundtimies recorded on bedrock or
below the surface. These observations have yet to be veaifiddre beyond the scope of
the present work.
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Figure 5.7 Four point unconditioned non-stationary simulation withrts arranged on the
vertices of a 100n square for scale = 100.
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Figure 5.8 Four point unconditioned non-stationary simulation withrts arranged on the

vertices of a 100n square for scale = 10.
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Figure 5.9 Two point conditioned non-stationary simulation for scake 100.
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Figure 5.10 Two point conditioned non-stationary simulation for scake 10.
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Chapter 6

Statistics of Level Excursions and Extrema

6.1 Introduction

In both design and analysis contexts, the extremes of rargtogesses are typically
of considerable interest. Many reliability problems arérdsd in terms of threshold excur-
sions —when load exceeds strength for example. Most thegoserning extremal statistics
of random fields deal with excursion regions, regions in Whie procesg exceeds some
threshold and the few exact results that exist usually opplyaasymptotically when the
threshold level approaches infinity. A large class of randieanctions are not amenable to
existing extrematheory at all and for such processes tHgsaasaf a sequence of realizations
is currently the only way to obtain their extrema statistieghis chapter, a methodology for
simulation-based estimation of the statistics of levelegions and extrema will be devel-
oped. The treatment herein is limited to the two-dimendioase although the procedure is
easily extended to higher dimensions. Seven quantitieagay do with level excursions
and extrema of two-dimensional random fields are examined,

1) the total area of excursion regions within a given domaliy),(
2) the number of isolated excursion regiong),

3) the area of isolated excursion regiors)),

4) the number of holes appearing in excursion regiong(

5) an integral geometric characteristic defined by Adler(]3]
6) a measure of ‘clustering’ defined herein)(

7) the distribution of the global maxima.

These quantities will be estimated for a single class ofsantlnctions, namely Gaussian
processes with Markovian covariance structure (Gausskdigorocesses), over a limited
range of scales of fluctuation and threshold levels and ssttitly is by no means complete
and should be viewed primarily as a new approach to the detation of these statistics.

Hopefully the appearance of empirical relationships vedld eventually to exact analytical
results.
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Within a given domairy = [0, 73] x [0, T,] of areaA ., the total excursion ared,, can
be defined by

A, = / [V<Z(w) — ba) da, (6.1)
1%
wherebo is the threshold of interest? being the variance of the process, apd) is the
indicator function defined ol

1 ift>0

)= {o ift<0 (6:2)
For a homogeneous process, the expected valde ©f simply
E[A,] = A P[Z(0) > bo], (6.3)
which, for a zero-mean Gaussian process yields
E[A)] = A [1 - 2(0)], (6.4)

where® is the standard normal distribution function. The totalleson aread, is made
up of the areas of isolated (disjoint) excursichsas follows

Ny
A=) A, (6.5)
=1
for which the isolated excursion regions can be defined usipgint set representation
Aei = {CB eV: Z(il?) > bO’, T Q/ Aejvj 72}7

Aez’ = ['(Aei)u (6 6)

whereL(A,.;) denotes the Lebesque measure (or area) of the point.seGiven this def-
inition, Vanmarcke [25] expresses the expected area dadtisdlexcursions as a function of
the second-order spectral moments

_ Fe(bo)\? i
E[Aei]—27r< f(ba)> | Ay ~Y?, (6.7)

in which F¢ is the complementary distribution function (for a Gausgescess F“(bo) =
1-®(b)), f isthe corresponding probability density function, ahlis the matrix of second-
order spectral moments

A11 =

)\20 )\11 . (6 8)
)\ll >\02
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Equation (6.7) assumes that the threshold level is suftigirgh so that the pattern of oc-
currence of excursions tends toward a two-dimensionalsBoipoint process. The joint
spectral moments,, can be obtained either by integrating the spectral densitgtion,

Akt = / / waf S(wlu wz) dw, dw,, (6-9)

or through the partial derivatives of the covariance funttvaluated at the origin,

0B (T)] (6.10)
T=0

we== o

The above relations presume the existence of the secomd-spectral moments of
Z(x) which is a feature of a mean-square differentiable proc&ssecessary and sufficient
condition for mean square differentiability is

o] o

] = 0. (6.11)
T=0
A quick check of the Gauss-Markov process whose covariamugtibn is given by

B(1) = o® exp{— 2|7} (6.12)

verifies that it is not mean square differentiable. Most efeRisting theories governing ex-
trema or excursion regions of random fields depend on thiggety. Other popular models
which are not mean square differentiable and so remainciaioée in this respect are:

1) the ideal white noise process,
2) the moving average of ideal white noise (uniformly weeghtvindow),

3) fractal processes.

6.2 Local Average Processes

One of the major motivations for the development of localrage theory for random
processes is to convert random functions which are not nogaars differentiable into pro-
cesses which are. Vanmarcke shows that even a very smallramilocal averaging will
produce finite covariances of the derivative process. Famoadimensional local average
process/,(x), formed by averaging (x) over D = T,T,, Vanmarcke [25] presents the
following relationships for the variance of the derivatiw®cessZ,, in the two coordinate
directions,

. 2
Var | 28] = o' (DL - p(Ti| T, (6.13)
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Var [£9] = 2 o(T)L ~ (T, (614)

e
where,
29 = 5 7,(@),
WT2) = (13, 0),
WT2) =~+(0, 1),
1 7
METD=T§§6§/%0}—hmBU%nMn- (6.15)

Furthermore, he shows that the joint second-order speatralent of the local average pro-
cess is always zero fdp > 0, i.e.,

Cov [Z',gl), Z’,gz)} =0, VD>O0. (6.16)

This result implies that the determinant of the second+4sgdectral moment matrix for the
local average process can be expressed as the product witli@éctional derivative pro-
cess variances,

1/2

(6.17)

‘Ali,D‘l/z = JZZD = (Var [Zg'):| Var |:Z1(:>2):|>

Since the theory governing statistics of level excursion extrema for mean square
differentiable random functions is reasonably well essdigld for high thresholds (see for
example Cramer and Leadbetter [17], Adler [2], and Vanmaifek]) attention will now
be focused on an empirical and theoretical determinati@mnoifar measures for processes
which are not mean square differentiable. This will be aqgaiished through the use of a
small amount of local averaging employing the results jtestiesl. In particular the seven
guantities specified in the second paragraph of this chapliebe evaluated for the two-
dimensional Gauss-Markov process

B(r,,1,) =0? exp{—%\/rf + 72}, (6.18)

realizations of which will be generated using the 2-D LAS hoet described in Chapter
4. Since the LAS approach automatically involves local agerg of the non-mean square
differentiable point process (6.18), the realizations wifact be drawn from a mean square
differentiable process. The subscriptwill be used to stress the fact that the results will be
for the local average process.
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6.3 Analysis of Realizations

Two-dimensional LAS generated realizations of homogegsgpero-mean, isotropic,
Gaussian processes are to be analyzed individually tordetervarious properties of the
discrete binary fieldY’, defined by

Yiep = Iv(z-,w . baD>, (6.19)

J J

whereo?, is the variance of the local average process. The indicatmtion/y, is given by
(6.2) and s@,(x) has value 1 where the functidf), exceeds the threshold and 0 elsewhere.
In the following, each discrete value &f;, ,, will be referred to as a pixel which is ‘on’ if
Y., = 1and ‘off’ if Y, , = 0. A space filling algorithm was devised and implemented to
both determine the area of each simply connected isolatedsi®n regionA,; ,,, according

to (6.6), as well as to find the number of ‘holes’ in these ragidn this case, the Lebesque

measure is simply
Ain=L(Aup) =D Aduip, (6.20)

where

AAup=1I4,, (zD(m) _ baD) AA (6.21)

is just the incremental area of each pixel which is ‘on’ witthie discrete set of poinis,; ,,
constituting thei simply connected region. In practice, the sum is performag over
those pixels which are elements of the det,,. Note that the area determined in this fash-
ion is typically slightly less than that obtained by compagtthe area within a smooth con-
tour obtained by linear interpolation. The difference, kwoer, is expected to be minor at a

suitably fine level of resolution.

A ‘hole’ is defined as a set of one or more contiguous ‘off’ pgx&hich are surrounded
by ‘on’ pixels. With reference to Figure 6.1, it can be seedt Situations arise in which
the hole is only ‘weakly’ surrounded by ‘on’ pixels. The atgbm was devised in such a
way that only about half of these weakly surrounded regioasiatermined to be holes. In
addition, if an ‘off’ region intersect with the boundary didomain, then it is not classified

as a hole even ifitis surrounded on all other sides by ‘onlareg
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(@) (b)
(©) (d)

Figure 6.1 Examples of ‘weakly’ surrounded holes - (a) and (b) are faiortze holes while
(c) and (d) are not.

A comment deserves to be made about the extrema statistaaa@th from realizations
of the LAS algorithm. As explained in Chapter 4, the LAS metpooduces a local average
process. Thus the statistics obtained are, strictly spgaktiose of a local average process
and will be affected by the size of the averaging domain. iNpthat as the resolution of
the field is increased the local average process approdwitasf the point process, we will
restrict ourselves herein to an analysis of a high resaidtedd. Our concentration will be
primarily on the variation of extrema statistics with scaléluctuation and threshold level

and the dependence on the size of the averaging domain fiédttéo work.

The fields to be generated will have resolution 22828 and physical size% 5. This
gives a fairly small averaging domain having edge siz€s of 7, = 5/128 for which the
variance function defined by (4.34) to (4.37) correspondin@.18) ranges in value from
0.971100.999 fod = $ tod = 4. In all cases, the variance of the governing equatior8f6.1

will be taken as unity and s&;, equals the variance function.

Figure 6.2 shows a typical realization of the binary figldbtained by determining the
b = 1 excursion regions of for a scale of fluctuatiod = 3. Also shown in Figure 6.2
are theb = 1 contours which follow very closely the ‘on’ regions. Thentroid of each

excursion is marked with a darker pixel.
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In the sections to follow, trial functions are matched to dhserved data and their pa-
rameters estimated. All curve fitting was performed by Vise@tching since it was found
that existing least squares techniques for fitting compteximear functions were in general
unsatisfactory. In most cases the statistics were obtais@ederages from 400 realizations.

Figure 6.2 Sample function of the binary field (6.19). Regions shown in gray represent
regions ofZ which exceed the threshold= 10,,. Z is generated via the 2-D
LAS algorithm according to (6.18) witfh = 1.
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6.4 Total Area of Excursion Regions

Since an exact relationship for the expected total areannfrelon regions within a given
domain, (6.4), is known for a Gaussian process, an estimafithis quantity from a series
of realizations represents a further check on the accurfityesimulation method. Figure
6.3 shows the normalized average total area of eXCUI‘S(ifB)[])S/,AT, for A, = 25. Here and
to follow, the overbar denotes the quantity obtained byayiig over the realizations. The
estimated area ratios show excellent agreement with thet.exa

©
o

———  Exact

0
o

Ab,D /AT
0.2 03 04

0.1

T T | T T
0 0.5 1 1.5 2 2.5 3 3.5 4

Threshold b d)

Figure 6.3 Average total area of excursion ratié_)l,p/AT, as a function of threshold

6.5 Expected Number of Isolated Excursions

Figure 6.4 shows the average number of isolated excursgore observed within the
domain,ﬁva, as a function of scale and threshold. Here the word ‘obséwit be used
to denote the average number of excursion regions seen indhvdual realizations. A
similar definition will apply to other quantities of intetaa the remainder of the chapter.
The observed\_fbp is seen in Figure 6.4 to be a relatively smooth function defiaéthe
way out to thresholds in excess of 3
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Figure 6.4 Average number of isolated excursion§, ,, estimated from 400 realizations
of the locally averaged two-dimensional Gauss-Markov gssd6.18).

An attempt will be made to fit the theoretical results whicBa#e the mean number
of excursions of a local average process above a relativgihythreshold to the data shown
in Figure 6.4. This expectation is [25]

- Ar fi(bop) o2

2r F¢(bo,,) 4o’
in which f, andF’§ are the pdf and complementary cdf of the local average psadespec-
tively. o is the geometric mean of the directional variances of thevali@re process as
defined by (6.17). For the Gaussian process, (6.22) becomes

Ae?’ ,
= o e e (6.23)

E [Ny,»] (6.22)

E [N;.»]

To determinerZZ-D the function(T,|T,) andp(T,|T},) mustfirst be calculated using (6.15).
Considemn(T|T;) for the quadrant symmetric Gauss-Markov process

2 T2
,0(T1|T2) = m /O (Tz - 7_2) B(Tb 7_2) dr,

2 (T —
= % /0 (T2 — 7'2) exp{—% le + 7'22} de.

Making the substitutiom®* = 77 + 77 gives

\/T2+T2
(TIT) = - Lre P e g
P\L1|L2) = TZZO'Z’}/(TQ) T’Z—le r T.
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To avoid trying to numerically integrate a function with agularity at its lower bound, the
first term in the integrand can be evaluated as follows

A/ T2+T?2 o
T, ,r,e—2r/6 p /oo T, ,r,e—2r/6 p T, ,r,e—2r/6 p
—ar = —ar — —dar
Ve VP T V=T
g Vi
T Te—Zr/G oo Te—Zr/G
— 2T 2 2
= TleKl(Tl) — ﬁ d?” — . ﬁ dT’.

The second integral on the right hand side can now be evaluataerically and for cho-
sen sufficiently large, the lastintegral has the simple@ayipration367, exp{—2a/6}. The
function K, is the modified Bessel function of order 1. Unfortunately, $mall 73, the
evaluation of this integral is extremely delicate as it inres the small differences of very
large numbers. An error of only 0.1% in the estimation of it or the integrals on
the right hand side can result in a drastic change in the \mﬂu%D particularly at larger
scales of fluctuation. The following results were obtainethg7, = 7, = 135, for which
o(T1|T;) = p(T,|T}), and a 20 point Gaussian quadrature integration scheme.

Table 6.1 Computed variances of the local average derivative process

Scale p(T1|T) o,
0.5 0.8482 196.18
1.0 0.9193 105.18
2.0 0.9592 53.32
3.0 0.9741 33.95
4.0 0.9822 23.30
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Using these variances, (6.22) was plotted against the wzm.te}bp in Figure 6.5. The
relatively poor agreement achieved may be as a result ofdimination of the difficulty
in accurately determiningzz.D for small averaging dimensions and the fact that (6.22) is an
asymptotic relationship, valid only fdr — oo. A much better fit in the tailsb( > 1.5)
was obtained using the empirically determined valuesez-c[))fshown in Table 6.2 which are
typically about one-half to one-third those shown in Table &sing these values, the fit is
still relatively poor at lower threshold levels.

An alternative approach to the descriptiorf@fD involves selecting a trial function and
determining its parameters. A trial function of the form

Nyp = Ay (a, +a,b) exp{ - 107}, (6.24)

where the symbot is used to denote an empirical relationship, was chosen andch
closer fit to the observed data, as shown in Figure 6.6, wasraat using the coefficients
shown in Table 6.2. The functional form of (6.24) was chosethat it exhibits the correct
trends beyond the range of thresholds for which its coeffisiavere derived.

Table 6.2 Empirically determined parameters of (6.24) and variamfebe
derivative process.

Scale a, a, UZZD
0.5 3.70 5.20 90.0
1.0 2.05 1.90 40.0
2.0 1.18 0.65 17.5
3.0 0.81 0.41 11.3
4.0 0.66 0.29 8.5
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Figure 6.5 Comparison of theoretical fit by (6.23) with the observedrage number of
isolated excursions obtained by simulation.
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Figure 6.6 Comparison of empirical fit by (6.24) with the observed ageraumber of iso-
lated excursions obtained by simulation.
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6.6 Expected Area of Isolated Excursions

Within each realization, the average area of isolated esxmsffw is obtained by di-
viding the total excursion area by the number of isolatedsar&urther averaging over the
400 realizations leads to the mean excursion areas showgunef6.7 which are again re-
ferred to as the ‘observed’ results. The empirical relatiop of the previous section, (6.24),
can be used along with the theoretically expected total rsxwo area (6.4) to obtain the

semi-empirical relationship
i 0

e,D —

b (6.25)

which is compared to the observed in Figure 6.8 and is sedmis gery good agreement.
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Figure 6.7 Average area of isolated excursion regions estimated fro@nrdalizations of
the locally averaged two-dimensional Gauss-Markov preces

For relatively high thresholds, dividing (6.4) by (6.23)aassuming independence be-

tween the number of regions and their total size, yields Xipeeted area to be

2

E [A.,] = 4771 — (h)]2 €’ (O_UD ) . (6.26)

Zp

Again the use oszZZ-D as calculated from (6.17) gives a rather poor fit. Using thpigoally
derived variances shown in Table 6.2 improves the fit in tils, tas shown in Figure 6.9,

but loses accuracy at lower thresholds at most scales.
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Figure 6.8 Comparison of semi-empirical fit by (6.25) with the obseresdrage area of
isolated excursions obtained by simulation.
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Figure 6.9 Comparison of fit by (6.26), using the empirically derivedizaceso?, , with
the observed average area of isolated excursions obta}mamblatlon
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6.7 Expected Number of Holes Appearing in Excursion Regions

As will be shown later, the number of holes (‘off’ regionsaunded by ‘on’ regions)
appearing in excursion regions is to be used in the detetimimaf Adler’s [2] integral geo-
metric characteristic of two-dimensional random fieldsic8ithe data is being gathered, an
empirical measure relating the average number of ha)?g%,, with the threshold level and
the scale of fluctuation will be derived here. The estimd%gg curves, obtained by finding
the number of holes in each realization and averaging overdalizations, are shown in

Figure 6.10.
o
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Figure 6.10 Average number of holes appearing in excursion regions.
The empirical model used to fit these curves was
Ny p = Ar(hy + hob)[1 — ()], (6.27)

where the parameters giving the best fit are shown in Tablar@3he comparison is made
in Figure 6.11.

Table 6.3 Empirically determined parameters of (6.27) based on tsemved
average number of holes obtained by simulation.

Scale h, h,
0.5 4.45 -2.00
1.0 2.49 -0.55
2.0 1.39 0.06
3.0 0.97 0.25
4.0 0.80 0.28
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6.8 Integral Geometric Characteristic of 2-D Random Fields

In his thorough treatment of the geometrical propertiesaatlom fields, Adler [2] de-
velops a so-called integral geometric (IG) characteri$tiel, ,,), as a statistical measure of
two-dimensional random fields. The definitionlafA, ,) will be shown here specifically
for the two-dimensional case although a much more genefalititen is given by Adler.
First, using a point set representation, the excursiotdggtcan be defined as the set of
pointsin) = [0,T}] x [0,T}] for which Z,(x) > bo,,

Avp={z eV :Z,(x) > boy}. (6.28)

The Hadwiger characteristic of;, ,, ¢(A; ), is equal to the number of connected compo-
nents of4, ,, (the number of isolated excursion regions) minus the nurohigoles inA, ,,.
Finally, if Vis defined as the edgesWivhich pass through the origin (the coordinate axes),
then the IG characteristic is formally defined as

T'(App) = o(Ayp) — ¢(App N V). (6.29)

EssentiallyI'(A, ) is equal to the number of isolated excursion areas whiclotdmtersect
the coordinate axes minus the number of holes in them. Ft&shows the average value
of the IG characteristid?(Abp), obtained from the locally averaged Gauss-Markov process

realizations.
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Figure 6.12 Average values of Adler’s IG characteristie, obtained from 400 realizations
of the locally averaged Gauss-Markov process.
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Adler presents an analytic result for the expected valu&df, ;) which has been mod-
ified here to account for local averaging of a Gaussian peoces

bA, oy s
E [F(Ab,D)] = m exp{—%b }UZD' (630)

Figure 6.13 shows the comparison between (6.30) and thewv&asdata using the empiri-
cally estimated varianceéZD shown in Table 6.2. The fit at higher thresholds appears to be
guite reasonable.

Using a function of the same form as (6.24),

T(Ayp) = Ar(g, + g,b) exp{—1 1}, (6.31)

yields a much closer fit over the entire range of thresholdsdiyg the empirically deter-
mined parameters shown in Table 6.4. Figure 6.14 illusrdite comparison.

Table 6.4 Empirically determined parameters of (6.31) based on tsemed
average I1G characteristicobtained by simulation.

Scale g 9>
0.5 2.70 5.10
1.0 1.50 1.80
2.0 0.87 0.58
3.0 0.61 0.32
4.0 0.50 0.22
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Figure 6.13 Comparison of theoretically predicted IG characterigi8Q) with observed av-
erage values obtained by simulation.
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Figure 6.14 Comparison of empirically predicted IG characteristi@@§.with observed av-
erage values obtained by simulation.
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6.9 Clustering of Excursion Regions

Once the total area of an excursion and the number of compomdnch make it up
have been determined, a natural question to ask is how thpaments are distributed — do
they tend to be clustered together or are they more unifodnslyibuted throughout the do-
main? It would be useful to define a measure, herein calleghich varies from 0 to 1 and
denotes the degree of clustering, 0 corresponding to armamifiistribution and larger val-
ues corresponding to denser clustering. The determinafisnch a measure involves first
defining a reference domain within which the measure willddewated. This is necessary
since a homogeneous process over infinite space always tasiex regions throughout
the space. On such a scale, the regions will always appefronty distributed (unless
the scale of fluctuation also approaches infinity). For eXamt scales approaching the
boundaries of the known universe, the distribution of g@lsuappears very uniform. It is
only when attention is restricted to smaller volumes of sghat one begins to see the local
clustering of stars. Thus an examination of the tendencyxaifisions to occur in groups
must involve a comparison within the reference domain oéttisting pattern of excursions
against the two extremes of uniform distribution and peréaestering.

A definition for & which satisfies these criteria can be stated as follows

_Ju_Jb
_Ju_‘]c’

T (6.32)

whereJ, is the polar moment of inertia of the excursion areas ab@irttombined centroid,
J. is the polar moment of inertia of all the excursion areas eatrated within a circle,
and J, is the polar moment of inertia about the same centroid if teaesion area were
distributed uniformly throughout the domain. Specifically

Ny.p
Ty =Y Jei+ Aol — @], (6.33)
Jei = Z AAei,D|a?i - :):j‘z, (634)
J
A _
J, = ﬂ/ 1z, — x| de, (6.35)
A/,
_ Ao
Jo= 22, (6.36)

where.J,, is the polar moment of inertia of thi& excursion region of ared,; about its own
centroidx,. AA,; , is as defined by (6.21) and is the centroid of all the excursion regions.
The second moment of area was used in the definition sincénitasiant under rotations.
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It can be easily seen that this definition will resultin= 0 when the excursion regions are
uniformly distributed over the spacd,(— J,) and¥ — 1 when the excursion regions
are clustered within a small regiod,(— J.). Itis also possible fo to take negative
values, indicating the occurrence of two local clustergpgiosite sides of the domain. This
information is just as valuable as positive values¥obut in practice has not been observed

to occur on average.

All that remains is to defin@& in the limiting cases. Equation (6.32) ensures thatill
be quite close to 1 in the case of only a single excursion rediseems natural then to take
U = 1if no excursions occur. At the other extreme,As, — A,, both the denominator
and numerator of (6.32) become very small. Although thetliorinon-circular domains is
zero, it appears that the measure becomes somewhat urestalyle — A,. This situation
is of limited interest since the cluster measure of a domaickentirely exceeds a threshold
has little meaning. It is primarily a measure of the scatfesaated excursions.

— S —

T T T T T
0 0.5 1 1.5 2 2.5 3 3.5 4

Threshold b q)

Figure 6.15 Average values of the cluster measurestimated from 200 realizations of the
locally averaged Gauss-Markov process.

Individual realizations were analyzed to determine thetedlumeasur& and then av-
eraged over 200 realizations to obtain the results showigur& 6.15. Definite, relatively
smooth trends both with scale of fluctuation and threshalell lare evident indicating that
the measure might be a useful one to categorize the degrégstéring.
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6.10 Distribution of the Global Maxima

Extracting the maximum value &, from each realization allows the estimation of its
corresponding probability density function (or equivalgthe cumulative distribution) with
reasonable accuracy given a sufficient number of realizatié total of 2200 realizations
of the locally averaged Gauss-Markov process were germki@ateach scale of fluctuation
considered. Conceptually itis not unreasonable to expeatumulative distribution of the
global maximum#,,,...(b) to have the form of an extreme value distribution for a Geurss
process

Finaz(b) = [P(D)]"/, (6.37)

wheren, is theeffectivenumber of independent samples in each realization. As tile sc
of fluctuation approaches zera,; ; should approach the total number of field points (¥28
128) and as the scale becomes much larger than the fieldisjzés expected to approach 1
(the field becomes totally correlated). Except at the skbsteale of fluctuation considered,
f = 0.5, the function defined by (6.37) was disappointing in itschatith the CDF obtained
from the realizations. Figure 6.16 illustrates the congmarifor the empirically determined
values ofn,; shown in Table 6.5. The better fit at the smallest scale ofifatain is to be
expected since at very small scales the field consists ofd &dtnost) independent random
variables and thus satisfies the conditions under whicly{@&@plies. Not surprisingly, an
improved match is obtained using a two-parameter Type eex¢rvalue distribution having
the double exponential form

Fraa(b) = exp{—e 2071}, (6.38)

where the parametetisandy, estimated by an order statistics method developed by¢ieibl
[38] using the simulation data, are presented in Table 6.6doh scale of fluctuation. The
comparison between the simulation-based cumulativaldision and that predicted by the
Type | extreme value distribution is shown in Figure 6.17.

Table 6.5 Empirically determined effective number of independemhgkes
n.rs and parameters of the Type | extreme distribution (6.38).

Scale Neff o 1
0.5 2900 3.14 3.41
1.0 900 2.49 3.05
2.0 180 2.05 2.52
3.0 70 1.78 2.15
4.0 35 1.62 1.86
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Figure 6.16 Observed cumulative distribution of the global maximum a€le realization
compared to the one-parameter extreme value distribub@mdpy (6.37).
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Figure 6.17 Observed cumulative distribution of the global maximum a€le realization
compared to the Type I distribution given by (6.38).
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Chapter 7

Soil Liquefaction Study

7.1 Introduction

This chapter is devoted to a probabilistic liquefactionecagidy in which a soil de-
posit, located at the Wildlife Management Area in Califernis represented by a three-
dimensional stochastic model and subjected to earthqiaikérs). The earthquake motions
used as input to the model are realizations of a space-timdegimerated according to the
methods presented in Chapter 5. Four cases will be invéstidgy varying the following

two model parameters:

1) The evolutionary spectral density functions of the inputtion are estimated us-
ing an actual time history recorded at the site and a set asnditoned correlated
ground motions are produced (see Section 5.6). In recogniti the major effect
earthquake intensity has on the likelihood of liquefactemsecond set of input mo-

tions is obtained simply by scaling the first.

2) The scale of fluctuation governing the stochastic sopprtes is varied from a ‘best
estimate’ to a significantly higher value to investigatesifect on the spatial distri-

bution of liquefaction.

All other parameters are held constant within each cadedmy the starting pseudo-random
number generator seed, so that direct comparison of thésesun in principle be carried
out. This is desirable since only nine realizations areyaal for each case and the vari-
ance of estimates is in general quite high. The number oizedins considered is held
to a minimum since the analysis of each realization is quite tonsuming, owing to the
non-linear nature of the computations. The study was padron a Cyber 205, a serial
vector supercomputer. It should be pointed out that a M@ade analysis such as this is
ideally suited to parallel architecture computers whicahld@accomplish the same result in

a small fraction of the time with little modification of the de.
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The major contribution of this chapter is its developmengtoichastic spatial analysis
of liquefaction potential. The trends discovered in thetigpdistribution of liquefaction
indices and their statistics are believed to be generaltsalsut the actual values obtained
are site or model specific. Many more analyses such as thieaged at other sites and for

other earthquakes before statements about liquefackielihood can be confidently made.

7.2 Wildlife Liquefaction Site

An earthquake of magnitude M= 6.0, on April 26, 1981 in the Imperial Valley near
Westmorland, California, caused a significant amount ofatgsm- in many cases by lig-
uefaction. This prompted a detailed geological survey efusilley and the selection of a
site for the installation of accelerometers and piezorsdi@record ground motions and
pore-water pressure changes during future earthquakessilghchosen was the Wildlife
Management Area located 3 km south of Calipatria in the Imap&vildfowl Management
Area and lying on the west side of the incised flood plain of Atemo River, as shown
in Figure 7.1. Penetration test and samples were taken by.®eGeological Survey [5]
identifying seven geological units in the upper 26.%f which the three topmost units were
considered to be the most significant as they lie within a zdigh liquefaction probabil-
ity. A section across the flood plain showing these threesusiseen in Figure 7.2 and the
arrangement of the instrumentation is depicted in Figude The instrumentation was in-
stalled in 1982 and consisted of surface and down-holen(7dgpth) accelerometers and 6
pore-water pressure transducers. Also shown in FigureandZ.3 are the cone penetration
test (CPT) results at a few lateral positions as a functiatepth. Although there appears to
be significant vertical variation, the lateral variatiomégatively small, consistent with the

sedimentary (layered) nature of the deposits.
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Figure 7.1 Location of Wildlife Management Area and epicenters of thed&e Ranch
(M, = 6.2) and Superstition Hills (M= 6.6) events.

Within the upper three units, a closer examination by Hokteal. [29] revealed five

geological soil strata to the level of the downhole acceteter identified as follows:
1) Layer 1 (0.0 to 1.2n): very loose silt
2) Layer 2 (1.2 to 2.5n): very loose silt
3) Layer 3 (2.5 to 3.5n): very loose to loose sandy silt
4) Layer 4 (3.51t0 6.8n): loose to medium dense silty sand
5) Layer 5 (6.8 to 7.5n): medium to stiff clayey silt

Table 7.1 contains the estimated and measured soil prepdadi each layer as compiled
by Keane and Prevost [34]. The water table level was at a d&ptl? m and forms the

boundary between Layers 1 and 2.
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Table 7.1 Material parameters for the layered soil deposit at Widsite as
estimated by Keane and Prevost [34].

Layer 1 2 3 4 5
Depth (n) 00tol1l.2| 1.2to25| 25t03.5| 35t06.8| 6.8t07.5
Shear Wave
Velocity 99 99 116 116 130
(m/sec)
Total
Density 1600 1940 1970 1970 2000
(kg/m?)
Shear Modulus
(solid) 1.57x10" | 1.47x10° | 2.08x10" | 2.08x10" | 2.70x10’
(N/m?)
Bulk Modulus
(solid) 2.61x10° | 2.44x10" | 4.50x10° | 4.50x10" | 5.83x10’
(N/m?)
Coefficient of
Permeability — 1.0x10°° | 1.0x10° | 1.0x10* | 1.0x10°°
(m/sec)
Poisson’s Ratio 0.25 0.25 0.30 0.30 0.30
\oid Ratio 0.6799 0.7955 0.7400 0.7400 0.6878
Porosity 0.4047 0.4431 0.4253 0.4253 0.4075
Friction Angle 21.3 20.00 22.0 22.0 35.00
Dilation Angle 21.3 20.0 19.0° 18.C 500
Reference Mean
Normal Stress 1.15x10* | 2.95x10* | 4.10x10* | 6.10x10* | 8.00x10*

(N/m?)
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Figure 7.2 Cross-section of flood plain at the Wildlife site. Lower figighows a closeup
of the strata and CPT measurements at a number of locations.
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Figure 7.3 Location of instrumentation at the Wildlife site.

The random medium representation of the soil propertiest@deterministic finite
element program used to analyze the statistical naturguéfaction at the Wildlife site are
described in the following sections. Recognizing thaldiithformation concerning spatial
variation of the soil properties and the earthquake grountian is available, the model
Is necessarily idealized requiring many of its parametsssiiaed. For the same reason, a
detailed sensitivity analysis was judged to be both too espe and unwarranted. Only the
intensity of the earthquake excitation and the scales aifaion of the soil properties were
selected as parameters to be varied for the purpose ofisgpsinalysis, as discussed in
further detail in the next section.
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7.3 Stochastic Soil Model

Soil properties are well known to exhibit high spatial varigies in most natural de-
posits. For this study, five soil properties expected to llageyreatest impact on liquefac-
tion likelihood and site response were selected to be mdaal¢hree-dimensional random
fields. They are,

1) permeabilityk,

2) porosity,n,

3) modulus of elasticity (solid phasdy,
4) Poisson’s ratio (solid phase),

5) dilation angle®.

Beyond CPT tests performed at a small number of spatialitotstthe available published
site information [5, 29] contains barely enough data tol#ista the mean properties listed
in Table 7.1. Estimates of the second moment statisticateaif the above properties must
therefore come from a combination of engineering judgerardta review of the literature.
Before discussing the specific models to be used, the gemeraethod deserves some at-
tention. In all cases the random material properties wilbb&ined through appropriate
transformations of 3-D zero-mean unit-variance homoges&aussian fields, realizations
of which will be obtained using the three-dimensional LASInoel. Letting;(x) represent
the ™" property listed above andthe depth below the surface,

Q@) = Ti (i) + s:() Zi(a) ). (7.0)

whereu;(z) is the meansg;(z) is the standard deviation, andis a transformation taking
the Gaussian process into the distribution appropriatprigperty:. Notice that such a for-
mulation allows trends in the mean and variance as a funofidepth to be incorporated.
Furthermore, if the fieldZ; is generated completely independentlyffor j 7 i (as they
will be), then@; will be independent of);. A point-by-point correlation between the prop-
erties can be achieved by writing

Qi(x) =T, (Uz(z) +54(2) Z Li; Zj(w)) ) (7.2)
=1
wheren,, is the number of random properties ahdas a lower triangular matrix obtained by
Cholesky decomposition of the inter-property correlatiaatrix, 3,
L-L"=X%. (7.3)
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If the transformatiory; is linear then the components &f are

s _E [Q:Q;] —E[Q] E [Q,]
iy Uiaj )

(7.4)

whereo? is the variance of thé”" property. If the transformatiof is not linear, as is usually
the case, then (7.4) does not apply and the correlatipnsiust be chosen approximately
(for example, by linearization of; at the mean). This formulation has been implemented
in the computer model and represents a tractable meansaditing correlation between
soil properties.

7.3.1 Permeability

A soil's permeability is perhaps the single most importamaigerty influencing lique-
faction. Water trapped within the soil structure carriesrameasing fraction of the stress
as the soil densifies during shaking. Eventually the intanglar stresses may become so
low that relative movement between particles becomes plesmnd the medium effectively
liquefies.

The mean, depth dependent permeabilities for the Wildliéargere estimated by Keane
et al.[34] and are listed in Table 7.1. The soil permeability isuassd to be lognormally
distributed and so the transformati@nis the exponential

k:(a:)=exp{umk+ameLlij(m)} ) (7.5)
j=1

whereu,, andaf,, are the mean and variances of the logarithm of permealiispec-
tively. Both are functions of depth.

A review of the literature concerning the spatial varidpitf soil properties [3, 13, 14,
15, 19, 23, 22, 24, 33, 40, 44] reveals that little is knownudlibe variability and scales
of fluctuation of soil permeability. Denoting by, the mean of the permeability and by
o; its variance, Gomez-Hernander al. [22] use a coefficient of variatiorr(, /) of 1.0
while de Marsily [44] quotes typical values ranging from @85L.5. Gelhar [23] estimates
that the standard deviation of Anvaries from 1.2 to 1.7 for unsaturated soils. Table 7.2
shows the variabilities chosen for this study which are hbyign the range indicated by
these three researchers. The variance of permeabilityeidthHayer (from 3.5 to 6.8n
depth) is assumed to be somewhat higher than that of the latyens for demonstrative
purposes.
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Table 7.2 Parameters used in the modeling of soil permeabilityat the

Wildlife site.

Depth (n) i Hin ks ik
0.0-1.2 1x10°° -11.7 0.6
1.2-25 1x10°° -11.7 0.6
25-35 1x10°° -11.9 0.8
3.5-6.8 1x10°* -9.7 1.0
6.8-7.5 1x10°6 -14.1 0.5

The covariance function used to model the spatial vartgafiall the random soil prop-
erties is of a simple exponential form parameterized lthe scale of fluctuation,

B(7_177_27 7—3) = 0-2 exp{_g (‘Tl| + V 7-22 + 7_32> } ’ (76)

with associated variance function given by (4.41). In theigal direction, de Marsily ex-
pects the scale of fluctuation of soil permeability to be mahder of I and so, initially, a
vertical scale of fluctuatior,,, of 1 m is used. Scales of fluctuation in the horizontal direc-
tion, 8,,, are highly dependent on the uniformity of the stratificatiti appears from Figures
7.2 and 7.3 that the layers are fairly uniform and so a ratibasizontal to vertical scales
of 0,/6, ~ 40 was selected implying a horizontal scale of fluctuatipn~ 40 m. This is

in the same range as Vanmarcke's [66] estimate oh:56r the compressibility index of a
sand layer. Although compressibility and permeabilitydifeerent engineering properties,
itis felt that the scale of fluctuation is largely dependentite geotechnical process of layer
deposition rather than the actual property studied. Basdtis reasoning, all the random
soil properties are modeled using the same scale of fluotuas well as the same form of
the covariance function.

The case studies will be repeated using a larger scale obifitioh ofd, = 5 and the
ratio of horizontal to vertical scales will be held constah&about 40. In the following, we
will refer only to the vertical scale of fluctuation when défigthe cases.

Figure 7.4 shows a typical realization of the permeabditibtained for the Wildlife site
using the means and variances given in Table 7.2 and vestiedé of fluctuatior, = 1.0
m. This realization was produced using the three-dimens$ioA8 algorithm discussed in
Chapter 4. Changes in mean with depth are clearly evideng. fighre shows 4 adjacent
columns of the 3% 32 x 32 realization. In order to obtain the lateral scale of flatitan of
about 40 times the vertical scale, the field was first genéi@ge 7.5n cube then stretched
in the lateral directions to a size of 32B20m giving each cell dimensions 0.23in height
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by 10 x 10m laterally. Using this transformation, the final horizordahle of fluctuation
is0, =4270,.

I I I
-8 -6 -4 -2 0

Depth  (m)
Figure 7.4 Typical realization of soil permeabilities over depth gpuertical and horizontal

scales of fluctuation of, = 1 andd, = 427 m respectively. Four adjacent
columns of the soil model are shown.

7.3.2 Porosity

Porosity has little direct influence on the occurrence aféiigction but is related to soil
density which in turn affects the initial vertical stresgethe medium as well as the shear
wave velocities. The average porosityover depth at the Wildlife site is assumed constant
at 0.42. Recognizing that must be bounded, a transformatign(see 7.2) must be found
to take a normally distributed variate into a bounded distion. One such transform is

X=T,Y)= % {1 + tanh<%> } , (7.7)

which is a one-to-one mapping bf € (—oc, o) into X € (0, 1) whereY is obtained from
the random field%/ according to (7.2)

V(@)= u2) +5(2) S Ly Z4(a). (7.8)
j=1

The probability function corresponding to (7.7) ior~ N(0O, s,) is

2
T mln (=
fx(x) = x(lf exp —% (%) , z € (0,1), (7.9)

x) S, s
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which is symmetric about = 3. Figure 7.5 illustrates this distribution for a variety of

variances.

(o]

Figure 7.5 Probability density function of the bounded function (#aof)four different vari-
ances.

A further improvement can be made to (7.7) by introducingalde bounds. In this

case ifX € (a,b) then (7.7) becomes

X=a+({®-a)T,Y). (7.10)
For this site, it is assumed thate (0.22, 0.62) and that:,, = 0 ands, = 1.0 so that

n =0.22 +04T7,(Y). (7.11)

The upper bound fon is chosen so that the soil does not initially ‘float’ in the araby

requiring
(1 - n)ps — Puw > 07 (712)

wherep, andp,, are the solid and fluid phase mass densities, respectivaly.miass den-
sity p, was taken to be 26879/ m? [34] below the water table giving an upper boundron
of 0.627. Because it is well known that soil porosity is rethto permeability, a value of
Y., = 0.5 was assumed in the model to reflect their mutual correlatagure 7.6 shows a
realization of the porosities (corresponding to Figurg h4our adjacent columns of the

field using the above relationships and parameters.
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Figure 7.6 Typical realization of soil porosities over depth, (= 1 m). Four adjacent
columns of the soil model are shown.

7.3.3 Elastic Modulus and Poisson’s Ratio

In terms of the shear modul#, bulk moduli B, and Poisson’s ratio, appearing in Ta-
ble 7.1, the mean elastic moduli can be calculated as a mofi depth. Assuming the
elastic moduli to follow a lognormal distribution, the calated means;, ., and parameters
of the distributiony, , andoy, ;, are shown in Table 7.3 where the variancegs,, of the
log-moduli are assumed. The elastic moduli are then oldaisang the exponential trans-
formation .

E(w):exp{MInE+UInEZL3jZ'($)} . (7.13)
j=1
Figure 7.7 illustrates a typical realization of the elastieduli over depth for four adjacent
columns of the soil model.

Poisson’s ratio is chosen to be a bounded variate(0.075 0.475), according to (7.7)
with constant mean 0.275 arg= 1.0 where nowy” is given by

Y(@) =5, Ly Z), (7.14)
j=1
so that
v =0.075+Q47,(Y), (7.15)

and the transformatio®, is the same ag, in (7.7). A typical realization of Poisson’s ratio
in four adjacent columns of the soil model can be seen in EigL8.
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Table 7.3 Parameters used in the lognormal distribution model oftiieks-
tic moduli, F, at the Wildlife site.

Depth QTL) UE (N/mz) Hine U|2I’1E
00-1.2 3.9x10° 17.1 0.8
1.2-25 3.7x10° 17.1 0.6
2.5-35 5.4x 10’ 17.4 0.8
3.5-6.8 5.4x 10" 17.2 1.2
6.8-7.5 7.0x 107 17.7 0.8
N
—
L() —
L() —
l\o B
—
L() —
“©
! I I I
-8 -6 -4 -2 0
Depth  (m)

Figure 7.7 Typical realization of soil elastic moduli over depth, & 1 m). Four adjacent
columns of the soil model are shown.
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Figure 7.8 Typical realization of soil Poisson ratios over depth € 1m). Four adjacent
columns of the soil model are shown.

7.3.4 Dilation Angle

The relationship between the dilation angle,and the friction angleg, determines
whether the soil subsequently dilates or compacts uporirgiak the ratio® /¢ exceeds
1.0 then only compaction occurs, otherwise initial comjaeds followed by dilation. Since
dilation does not result in increasing pore water presstingsratio is of considerable in-
terest in the analysis of a liquefiable medium. To reduce thmber of random variables
considered, the friction angle is assumed fixed at the vaives in Table 7.1 and the di-
lation angle is assumed to be random following a lognormstrithution with means and
variances listed in Table 7.4. Figure 7.9 shows a typicdlza@on of the dilation angle
over four adjacent columns of the field. A summary of the randoil properties appears
in Table 7.5.

Table 7.4 Parameters used in the modeling of soil dilation angleat the

Wildlife site.

Depth (n) 1z Hin @ Oin o
0.0-1.2 21.3 2.95 0.2
1.2-25 20.00 2.90 0.2
25-35 19.00 2.84 0.2
3.5-6.8 18.0 2.77 0.3
6.8-7.5 50 1.51 0.2
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Figure 7.9 Typical realization of soil dilation angles over depth € 1 m). Four adjacent

columns of the soil model are shown.
Table 7.5 Summary of random soil properties used in the soil model.

Property Distribution Description
Permeabilityk lognormal mean and variance
functions of depth
Porosityn bounded constant mean and variance,
correlated with permeability
Elastic Modulust lognormal mean and variance
functions of depth
Poisson’s Ratiomw bounded constant mean and variance
Dilation Angle ® lognormal mean and variance

functions of depth

7.4 Finite Element Model

Realizations of the soil mass are excited by earthquakeom®tpplied at the base of
each soil column and analyzed using a one-dimensional éfeteent model developed by
Prevost [55] called DYNA1D which represents the currentestd-the-art. The soil mass
is divided up into 64 columns arranged on arx83 grid and each column consists of 32
elements (33 nodes) vertically. The size of each elemen&A vertically and 10x 10
m horizontally. Realizations of the random soil properties@btained by column-wise ex-
traction from a set of 3% 32 x 32 realizations of the random fields as discussed in the
previous section. Which columns are to be extracted dependie horizontal scale of
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fluctuation to be used, however for the example being run lagradjacent & 8 group of
columns is extracted and stretched horizontally to achiewelesired lateral scale of fluctu-
ation. The choice of an 8 8 grid is arbitrary but a larger grid size will substantiatigrease
the required computer time.

Soil columns are then analyzed individually by DYNALD, imiplg that 64 runs of
DYNA1D are required for each realization of the soil masse Tins are made indepen-
dently and so the only link between the soil columns is thiotngir correlated properties.
Itis unknown how the coupling between columns in a fully acemensional dynamic anal-
ysis would effect the determination of liquefaction potalhhhowever it is believed that the
analysis proposed herein represents the best approxmtatite fully three-dimensional
analysis at this time.

The finite element model DYNA1D employs multiple yield leethsto-plastic consti-
tutive theory to take into account the non-linear, anigutroand hysteretic stress-strain be-
havior of the soil as well as the effects of the transient fléwhe pore water through the
soil media [55]. The code was written so that the materiakttrtive parameters are ob-
tained internally from conventional soil properties, sashthose discussed in the previous
section. Each finite element is assigned soil propertiesiméd from realizations of the
random properties and from the set of deterministics ptoggerBelow the water table, the
element nodes have four degrees of freedom: two for the pbbde and two for the fluid
phase, to accommodate both the vertical and lateral mofieaach phase. Above the wa-
ter table, the soil is assumed to be dry and only two degregs@dom are needed to fully
describe the motion of the soil.

DYNALD was ported to the CYBER 205 supercomputer and opuohifor use both
on the supercomputer as well as within the framework of a @urlo type analysis. Al-
though the run times were considerably improved throughi@kpptimization, DYNA1D
still consumed some 90 to 95 percent of the total run time. sTihis essential to reduce
the work performed by DYNA1D without degrading the accuraliyese reductions will be
noted in the following paragraphs.

Earthquake motions applied to the base of each soil columreatizations of a space-
time process generated according to the procedures givehdpter 5. Only one compo-
nent of motion is used, modeled after the North-South corapbaf the Superstition Hills
event. Preliminary results by Keane and Prevost (not pladdisindicate that including the
East-West and vertical components makes little differéadbeir computed site response
(the North-South component had much larger amplitudes) using it alone, they obtain
remarkably good agreement with the observed site respofise.original recorded N-S
component had an apparent duration of about 40 seconds and mtrement of 0.02 sec-
onds. In an effort to reduce the computational overhead} fiffe steps are used here with a
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time increment of 0.02 seconds giving a duration of 20.48sds. The four power spectral
density functions shown in Figure 5.6 are employed to gotlersimulated time histories,

each spanning a time window of 5.12 seconds. To investigateffect of earthquake inten-
sity, a second case is considered in which the original gtonotions are scaled by a factor
of 0.7.

Figure 7.10 shows a typical set of input acceleration tins¢dnies at each of the four
corner columns of the & 8 grid. The space-frequency correlation function is (s@8%.

P () = exp{w} , (7.16)

2mcs

with a shear wave velocity = 130m/sec (see Layer 5, Table 7.1) and scale parameter
s = 5. It can be seen that over the relatively short distancegdss the corner points, the
input motions are very similar.

The surface response obtained from the DYNALD analysis ebhzation of a single
column of soil is shown in Figure 7.11. For this particulaaeple, the element at a depth
of about 2.2m liquefied after about 13 seconds of motion. In the surfacearse, this is
evident from the drastic reduction in acceleration as tiedfied layer absorbs the motion.
The spurious high frequencies apparent in the post-ligli@éeponse are artifacts of the
DYNALD analysis — the convergence tolerance was set at avadiahigh value (0.1) to
reduce computations and the maximum number of iteratiorsslwated to 20. Prior to
liquefaction these choices result in negligible error. thar unstable conditions at or near
liquefaction the algorithm obtains poor solutions whichdeo fluctuate unpredictably. As
the interest here is primarily in the onset of liquefactithre details of the post-liquefaction
response are considered unimportant.
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Figure 7.10 Realization of base acceleration time histories at thedoumer columns of the
80 x 80m soil model.
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Figure 7.11 Surface response computed by DYNALD for a particular sdilrom realiza-
tion.

7.5 Definition of Liquefaction

From the one-dimensional finite element analysis discuskede, the excess pore wa-
ter pressurey;, is obtained for each elemenés a function of time. The ratig = u;/0.,;,
whereo’; is the initial vertical effective stress in thié element, is commonly thought of as
the parameter governing the occurrence of liquefactioih @ will be referred to herein
as the liquefaction index. Whenreaches a value of 1, the pore water is carrying the load
so that soil particles become free to slip and liquefactakes place. It is also possible for
liquefaction to take place at valuesg@glightly less than 1, it only being necessary that most
of the lateral strength or bearing capacity is lost. Fardi\&eneziano [19] suggest that the

liquefied fraction of the' element of soily;, be calculated as

n; = P [“— > 0.96] (7.17)

ot
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for undrained and partially drained effective stress m&d€he probability on the right hand
side can be evaluated through a sequence of simulationdisfaen went on to evaluate the
risk of liquefaction,L, as the probability that the maximum gf over the depth is close
to 1,

L=P [mzax(ni) ~ 1] . (7.18)

For individual soil columns where interaction with adjatsuil is ignored, such an approach
is reasonable since the occurrence of liquefaction at andgyer will resultin the loss of lat-
eral resistance at the surface. Ohtomo and Shinozuka [6&]ahslightly different approach
involving summing the liquefaction indicesover depth to obtain the vertically averaged
liquefaction indexQ,

1M u(z)
0= /0 a5 (7.19)

whereh is the total depth of the modeled column. In this way the éfiéthe vertical extent
of a liquefied region can be incorporated into a risk analyBise question to be answered
is how important is the vertical extent of liquefaction? Wht certainly has some bearing
on the liquefaction risk, it is easy to imagine a situatiowimich a thin layer some distance
below the surface becomes completely liquefied while adjgitayers above and below
remain stable. Such a condition would yield a relatively kalue of Q@ even though all
lateral stability at the surface may be lost. On the othedhtre vertical extent of liquefied
regions may be more important to the occurrence of sand &ds/ertical settlement.

In the three-dimensional situation, neither approach veasraed entirely suitable. The
occurrence of higly; indices within an individual column will not necessarily phy lig-
uefaction at the site if adjacent columns retain sufficiérrgyth. Likewise if a particular
layer is found to have higivalues over a significant lateral extent, then the liquésaaisk
could be high even though the average for the site (and tleg)layay be low. In this study,
the lateral spatial extent of liquefied regions is assumdxbtthe more important factor in
the determination of liquefaction risk for a site. For eagdlization, the analysis proceeds
as follows

1) compute the ratig;;(¢,) = u;/o,; for each elementin the ;" column at each time
stept, and repeat for all the columns,

2) compute the sum
1 &
Qi = 1 E qi;(t)) AA;
=1

whereA is the total area of the site model 4, is the area of thg" column anch,
is the number of columng),, is thei'" layer average stress ratio at each time step
t,.
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3) determine the indices and/* which maximize),,. The index;* now represents
the depth of the plane with the maximum likelihood of liquefyat the time,- and

q¢;+;(t¢+) is the corresponding two-dimensional field of stress satiodexed byj).

4) determine the excursion areas defined by

A, = I, (%‘*j(té*) - Q> AA;
7=1
for a variety of levels; € (0, 1) along with other statistical measures discussed in

Chapter 6. The indicator functiah (-) is defined by (6.2).

Repeating the above steps for a number of realizations sllbe/estimation of the spatial
statistics of the liquefaction indicgson the horizontal plane of maximum liquefaction like-

lihood. In particular, the excursion aredg will be evaluated foy = {0.1,0.2, ..., 0.9}.

To reduce computational costs, DYNA1D analysis of an irdiial column is discontin-
ued if any of the ratiog; = u; /o, exceed 0.96. There are a number of reasons for this: First
for ¢; approaching 1, DYNA1D requires more iterations to convengea solution (as might
be expected since the shear resistance is approaching &zodpndly, once ratios above
about 0.96 are exceeded at a level, that level begins tolalbidhe motion and liquefac-
tionindices above that level no longer increase. As alsaimeed by Fardis and Veneziano

[19], this appears to be a reasonable cutoff point.

In summary, liquefaction of a column will be defined as odogrwhen the liquefac-
tion indexq; exceeds 0.96 in some element (at which point the analysisabfcblumn is
discontinued). The horizontal plane having the highestaaye liquefaction index is then
found and the statistics of those indices determined. Tlaisepwill be referred to as the
maximal plane. It is recognized that when liquefaction da&e place it is not likely to be
confined to a horizontal plane of a certain thickness. At gy least the plane could be
inclined, but more likely the liquefaction would follow a dulating surface. This level of
sophistication is beyond the scope of this initial study smeve confine ourselves herein to

the assumption that liquefaction will occur along horizdmtianes.
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7.6 Monte-Carlo Analysis

Figure 7.12 illustrates two realizations of the maximalngla Contours are drawn at
g indices of 0.3, 0.5, 0.7, and 0.9. In both examples a sigmifipartion of the area has
¢ indices exceeding 0.9 and thus the likelihood of liquetatis deemed to be relatively
relatively high.
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Figure 7.12 Contour maps of the planes having the highest average sttesgdrawn from
two realizations of the soil mass and analyzed by DYNA1D.tGors are drawn
atq values of 0.3, 0.5, 0.7, and 0.9. Notice the significant anatisq > 0.9.

The four cases considered are summarized in Table 7.6. foltbeing, we will refer
to the first set of simulated ground motions as Event 1 andegtbund motions scaled by
a factor of 0.7 as Event 2.

Table 7.6 Ground motion scaling factors and vertical scales of flubaaon-
sidered in the probabilistic liquefaction analysis.

Case Input Motion Scale of Number of
Scaling Factor Fluctuation Realizations
1 1.0 1.0 9
2 1.0 5.0 9
3 0.7 1.0 9
4 0.7 5.0 9

The average liquefaction index for the maximal pla@g,-, is derived from each real-
ization and again averaged over 9 realizations to olifaitable 7.7 presents these results
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for the 4 cases along with the standard deviatio@pf- (o) and the average depth to the
maximal plane (3). Even for Event 1, the average liquefaction ind@_x,is quite low in-
dicating that it is not the best measure of liquefaction (giken the knowledge that the
Wildlife site is highly liquefiable). It may have some meaminhen compared tQ_>vaIues
obtained for other sites and earthquakes, but only as avelatasure.

Table 7.7 Average liquefaction indice§;.,- of the maximal planes are aver-
aged over the nine realizations to obténThe standard deviation
of Qi+, 0¢, is estimated for each case and shown along with the
average depthﬁ, to the maximal plane.

Event Scale Q og D
1 1.0 0.481 0.252 2.90
1 5.0 0.478 0.227 3.02
2 1.0 0.173 0.129 3.14
2 5.0 0.184 0.113 3.57

The average area of the maximal plane exceeding a threstpoéddction indey, /Tq is
shown in Figure 7.13 and the standard deviation ofAhestimates is shown in Figure 7.14.
The excursion areafq is obtained by averaging thé, values over the nine realizations for
each case. At the threshajd= 0.9, the coefficient of variation of excursion areas is quite
high (1.0) but the trend in Figure 7.13 is evident;

1) the scale of fluctuation has little effect on the averagriesion areasl,,

2) the intensity of the input motion has a significant effetcttloe excursion areas. A
30% reduction in input motion intensity reduced the liquétan index correspond-
ing to 4, = 0.154,. from 0.9 to about 0.3, a three-fold reduction.

It appears that the likelihood of liquefaction of Event 2 igtq low. To some extent, this
is substantiated by the fact that the Wildlife site did nqukfy during the ElImore Ranch
event (M, = 6.2 compared to the Superstition Hills event, M 6.6) [34]. Figure 7.13
suggests a possible approach to the evaluation of liquefaxisk which is again based on
the knowledge that the Wildlife site is highly liquefiableetdrmine the average area of
the maximal planes which exceed a liquefaction index of @® associate a high risk of
liquefaction to the site if this area exceeds 10 to 15% ofdked irea. Such a rule of thumb
needs to be substantiated and improved through the anafysiser sites and earthquakes.

Figure 7.15 shows the average number of isolated excuralmmse the liquefaction in-
dexq for each case study and Figure 7.16 shows the corresponldisigicmeasure. The
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cluster measures associated with very low threshglds Q.2) have been ignored (see Sec-
tion 6.9) since the excursion areas in these cases areiafigehé same as the domain area.
Both figures exhibit a much more pronounced effect arisiognfchanges in the scale of fluc-
tuation. Typically, the scale of fluctuatigh= 5 halved the average number of excursions
and substantially increased the cluster measure. Thisasblat for the same total area ex-
ceeding a certain index the regions show higher clustering at higher scales ofitfatain.

In turn higher clustering implies a higher likelihood of digfaction since there are fewer
pockets of ‘resistance’ within the excursion region. Neticat Event 2 typically has higher
mean values o¥ since it has fewer excursions at high thresholds (a singlarsion, or no
excursions, corresponds o ~ 1). The likelihood of liquefaction thus cannot depend on
the cluster measure alone; it must also take into considertite total excursion area above

a high threshold.

Given the fact that the Wildlife site was known to have liqadfduring the Superstition

Hills event, the following tentative summary of the reswtshis chapter can be made;

1) The likelihood of liquefaction appears to be most easilgigified by the total area
of the domain whose liquefaction indices exceed some tbtdshdexq*. For this
example it appears that the threshold index should be takegha 0.9 and a high
likelihood of liquefaction associated with mean total enston areasi,- in excess
of about 10 to 15% of the total domain area. This criteria ¢jfian the effect of the

earthquake intensity.

2) Thelikelihood of liquefaction can be modified by the ckrsheasure — as the cluster
measure decreases, the liquefiable regions become selday gieckets of resistance
and the likelihood of liquefaction decreases. This coroadincorporates the effect

of the scale of fluctuation on the likelihood of liquefaction

Both of these measures of the likelihood of liquefactioncheensiderable empirical cal-
ibration before adoption can be considered. However thiysisaf a single site and the
layout of the methodology is an important start.
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Figure 7.13 Average area of the maximal plan@, having liquefaction indices in excess of
the indicated; thresholds. Averaging is performed over 9 realizationsfrh
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Figure 7.14 Estimated standard deviations of the excursion areas,.
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Figure 7.15 Estimated number of isolated excursion aré‘ﬁls,above the liquefaction index
thresholds;. Each line represents the average over 9 realizations antbt-
ficient of variation of the estimate averages about 1.0.
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Figure 7.16 Estimated cluster measumg, of the excursion areas above the liquefaction in-
dex thresholdg. Each line represents the average over 9 realizations &nd th
coefficient of variation of the estimate averages about 0.5.
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Chapter 8

Conclusions and Recommendations

Concerning existing simulation techniques, which arewatald in Chapters 2 and 3,
the following conclusions can be drawn;

1)

2)

3)

4)

if sufficient care is taken in the discretization of thedighe FFT (spectral formu-
lation) method is accurate, computationally efficient, aimdple to use. The major
drawback to the method is that realizations have symmaetkiartances, a problem
which can be alleviated by generating fields larger thanireduand ignoring the
excess.

the proposed FFT covariance formulation represents@ampt to reduce errors aris-
ing from poor discretization schemes. Although the apdraaproves the variance
estimate under such conditions, it introduces a streakpdapnce to the realiza-
tions and still leads to a symmetric covariance structuns.recommended that the
use of the FFT method be restricted to properly discretizdddi

when used in higher dimensions, the Moving Average (MAdod suffers from dif-
ficulties in determining suitable weighting functions feobirary covariance func-
tions and from computational inefficiency.

the Turning Bands Method (TBM) requires an equivalentdimeensional covari-

ance or spectral function which is obtained through thetsmiwf an integral equa-

tion. While solutions exist for a number of processes, thggirement renders the
method difficult to use in the general case. In addition,izatibns produced by
TBM have a streaked appearance if an insufficient numberwoirtg bands are used.
In three dimensions, the minimum number of bands to use haseem determined
(visualization problems hinder such a determination).

As an alternative and complement to these methods, a taehoajled Local Average

Subdivision (LAS) is introduced in Chapter 4 which producesizations of locally aver-
aged random processes in one, two, or three dimensions. @hefeatures of the LAS
method are

1)

it is easily conditioned both on known data and on portiohthe simulated field.
The latter allows for changes of resolution in sub-regidris@field, an ability useful

152



in detailed investigation of local areas and in the use ofitid as input to a finite
element model.

2) itgenerateslocal averages of the underlying procesatbacale dependent and thus
exhibit the correct first- and second-order statisticalireat any resolution. This
contrasts with traditional methods where the discreteastapresent point samples
drawn from the continuous process. Although such point $asrgye often assumed
to be constant over the interval, changes in resolutione@tresflected in the statisti-
cal nature of the samples. The local averaging propertyeE&S method renders
its realizations ideal for use as input to finite element sageeng efficient, low-order
interpolation functions.

3) knowledge of the variance function for the process caaraloly simplifies the algo-
rithm and improves its accuracy. This function can be ole@through the integra-
tion of the covariance function (rather than through angrakequation).

4) the LAS method is found to run faster than the FFT approasbdrrected for sym-
metric covariance) in one dimension and about 1.5 to 2 tirosges in two and three
dimensions.

5) as implemented, the method is restricted to homogenemisypic, Gaussian ran-
dom fields. Second-order statistics estimated from LASza@bns show the cor-
rect convergence to the exact over the entire field and egalizs have the desired
appearance.

In Chapter 6, the LAS method is employed in a simulation-Oasedy of the statistics of ex-
cursions and extrema of two-dimensional Gauss-Markovgsses. The simulation-based
estimates of the mean total excursion area, mean numberaacdtisolated excursions,
and the integral geometric characteristic of the excurBad are compared with existing
theories and matched to semi-empirical relationships.uitek measure is introduced that
is @ means of quantifying the degree to which excursionslastered within the domain.
Concerning extrema statistics, a Type | extreme valueibigion function with empirically
derived parameters is found to match very well the estimexé@ma distribution obtained
by simulation. The methodology developed in Chapter 6 slemmsiderable promise both
as a means of obtaining useful semi-empirical results aacgasde to the discovery of ex-
act theories. The approach paves the way for a much mordetesaudy in which other
common processes are examined over a wider range of paramete

Best linear estimation techniques in the frequency donraimaorporated in a new ap-
proach to the simulation of optionally conditioned staéipnor non-stationary space-time
processes and applied to earthquake ground motion simulistiChapter 5. This method
is used along with the LAS algorithm in a Monte-Carlo anaysisite liquefaction risk in
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Chapter 7. The soil is modeled as a three-dimensional stticlmedium and input ground
motions come from a space-time random field. Four cases agdayed corresponding
to two different levels of input motion intensity and two Esaof fluctuation of the random
soil properties. Nine realizations are evaluated for easlke cThe study is largely concerned
with the spatial distribution of the liquefaction indicego horizontal planes deemed to be
the most likely to liquefy. Three excursion charactersiid the liquefaction indices are
estimated; the mean total area of excursions above a rartpeeshold indices, the mean
number of isolated excursions, and the correspondingaslostasures. The mean total area
(or area fraction) of excursions above some critical liqagbn index may be a useful indi-
cator of liquefaction potential at a site. An improved potidin of liquefaction risk could be
made by considering the cluster measure — a low value wodldate that liquefied ‘pock-
ets’ are separated by more resistant regions and so thinbkel of liquefaction decreases.
Conversely, a high value implies that the liquefied regioeclumped together, raising the
likelihood of liquefaction.

A number of similar liquefaction studies of different sitewd different earthquakes are
required before the relationship between the spatialibigton of liquefaction indices and
liquefaction risk can be confidently stated. The proceddessribed in Chapter 7 lay the
groundwork for such future applications. It should be ndkted the Monte-Carlo type anal-
ysis used in this probabilistic study is ideally suited togbi@l architecture computers with
little modification of the code. Each realization could balgped on separate CPU’s, vastly
decreasing the time required to carry out the study (whichawsignificant limitation here).
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Appendix A

Some Additional Results for Multi-Dimensional FFT Simulation

A.1 2-D Covariance Formulation

Use of the known covariance function,
By =E [Zij Zi+k,j+€} (A.1)

in (2.48) and (2.49) leads to

K, K —k+1 Ko—¢+1

E[Amn] (KK)ZzzékZBk 1,4—1 Z Z (sz]n itk—1,m,j+—1,n

k=1 ¢=1
+Cim,j+€—1,nci+k—1,m,jn) (AZ)

—k+1 Ko—(+1

Ki K
E[an] (KK)Z;;&C(Bk 1,4—1 Z Z (Szm]n itk—1,m,j+l—1,n

+ Sim,j%fl,n’sﬂk*l,m,jn) (A3)

where,
Cz'm,jn - COS(ZTr(if;.()Emfl) + 27T(j—[](.)2(n—1)) (A4)
S = SRl 4 2zp) (15)

3 whenk=¢=1
0pe=4¢1 whenk=1lor/=1
2 otherwise
Defining the following four functions

K1 K

1

Xon = e e B 1o 1(K, — k + 1) (K, — £+ 1)C*,.C? A6
(Kl K2)2 ; ; ke Pk—14 ( )( ) k l ( )

K1 K>
Y = Ore Broy g 1S 152 AT
(K KZ)ZE; ke Pk—1,0— k~nl ( )

K1 K>
Vo = 07 KZ)Z;;(SMBR oKy = b+ )08 (A.8)
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Ki K>
1
W = (K. Ky ; 52:1: Ot Bi—1,0—1 (I, — €+ 1)S5,,.Cry (4.9)

which can be evaluated using a series of Fast Fourier transfavhere

Ci = cos(B27200) (110
o = Sin(Zw(m;{];)gkfl))’ (A.11)

then the variances of the Fourier coefficients can be exptess

E I:-’élmn]2 = Rmnan - P%ZC% an - P’rg?}n Wmn + ImnYmn (A12)

n =12 ifm=21orl+5 andn=1o0r1+%2
mmn 1 otherwise

otherwise

1 2 .
%% 1 ifm=23,... 5 andn=23 ... %

gmn:{cl) ifm=21orl+5 andn=1o0r1+5%2
{s
0 otherwise

a_ )1 ifm=1lorl+&e
P = {O otherwise ?
C = cos(2r(m — 1)/K.,) (A.14)

* =cos(2r(m — 1)/K,) (A.15)

A.2  3-D Spectral Formulation

In Chapter 2 the procedure for obtaining the spectral foathuh variances of the
Fourier coefficients was explored. Following a similar mdare for the 3-D FFT simu-
lation,

K1 K, Kj
Zijk = Z Z Z{Aémn Cif,jm,k:n + Bfmn Sié,jm,kn} (A16)
=1 m=1 n=1
where,
Zy = Z((z’ DAz, (j — DAz, (k — 1)Aaz3> (A.17)
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Cié,jmjcn - COS(ZW(i—I%)l(Z—l) + 27r(jfll<)2(mfl) + 27]—(]9_[2,(”_1)) (A18)

Si€7jm7kn = sin (271'(1'—]%1((—1) + ZW(ijl()Z(mfl) + ZW(k—;:)s(n—l)) (Alg)

The variances of the independent, zero-mean, normallytalis¢d Fourier coefficientd,, ..,
andB,,,,, can now be expressed as

E [-AZmn]2 = 1_16524mnA("J (Ggmn + G?mN + ng\/fn + Gclllmn + GgMN + G%mN + G%J\/In + G%J\/IN (A20

N————

E [Bémn]2 = %35fmnAw (Ggmn + G?mN + ng\/fn + Gclllmn + GgMN + G%mN + G%J\/In + G%J\/IN (A21

N————

where,
Aw = Aw, Aw, Aw,

L=K —(+2
M=K,—m+2
N=K,—n+2
G = G wigs W s Wan) (see Equation 2.52)

sa =12 if¢=1orl1+5t andm=210or1+%2 andn=1or1+%:
tmn 1 otherwise

58 ={O if¢=1orl1+5& andm=210or1+%2 andn=1or1+%:
mn 1 otherwise

A.3 3-D Covariance Formulation

Using the inverse relationships for the 3-D FFT leads to temination of the Fourier
coefficientsA4,,,,, andB5,,,, in terms of the known covariance function

Bijk =E [qur Zp+i,q+j7r+k‘} )

as follows

Ky K, Kz Ki Ky K3

1
E [-AZmn]2 = m Z Z Z Z Z Z Bpfi,qu,rfk: Cié,jm,kn Cp[,qm,rn (AZZ)

=1 j=1 k=1 p=1 ¢=1 r=1

K K, Kz3 Ki K; Kj3

1
E [Bonnl® = m Z Z Z Z Z Z By _ig—jr—k Sz’é,jm,kn Spe,qm,rn (A.23)

=1 j=1 k=1 p=1 ¢=1 r=1
whereC' and S are defined by (A.18) and (A.19) respectively. If the fieldssamed to be
guadrant symmetric then (A.22) and (A.23) reduce to

, 1 K1 K; Kj o
E [Apmnl” = (KR Ko YN Gk Bikh (i, 5k, £,mym) (A.24)
=1 j=1 k=1
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1 K1 K, Kj
E [Bunl? = (AL 2; ; ]; 8;i% Biji h® (i, j, k, €, m,n) (A.25)
whereh* andh” are functions of trigopnometric functions,
h* = R (K, — i+ 1) (K, — j + 1)(K, — k + 1)C;,C5,.CR,
— Phon(K, — i+ 1)(K, — j + 1)C,C%,.5%,
— Pp (K, — i+ 1)K, — k+1)C},52,,Ch,
— Pp (K, — j + 1)K, — k + 1)S5,C%,.Ch,
+ Qi (I, — i + 1)C5 S5, S0
+ Qb (K> — 7+ 1)S5C5.5%
+ Qn (K — k +1)55,57,,CF,
+ Yy St S Sin (A.26)
h? = R (K, — i+ 1)(K, — j + 1)K, — k + 1)C4C2,,C3
+ Pl (K, — i+ 1) (K, — j + 1)C,C5,,. 5%,
+ P (K, — i+ 1)K, — k +1)C5,55,,Chy
+ Pl (K, — j + 1) — k+1)S;,C5,CF,
= Qpn (I, — i+ 1)C5.55,, 5%
— QK — j +1)55,C5,,5%,
= Qimn(K5 — k +1)S5,55,,Cn
— Rl Si055mSin (A.27)

and the functiong’* and S* are defined by (A.14) and (A.15). The coefficients in (A.26)
and (A.27) are given by

2 wheni=j=k=1
S = 1 wheni=j=1lori=k=1orj=k=1
Wk~ Y2 wheni=zlorj=1lork=1

4 otherwise
o _{2 when/=1or1+5 andm=1o0r1+52 andn=10r1+%:
tmn =1 1 otherwise
R _{O when/=1or1+5 andm=1o0r1+52 andn=10r1+%:
tmn =) 1 otherwise

Ry = F} + Fy, + Fyy — F}FF;
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0 whenp =1or1+&¢

cos(zr(p—1)/Ka) ;
s/ Otherwise

F? when/=1or1+%5 andm=1orl1+%2
0  otherwise

otherwise

F} whenm=1lorl+52 andn=1or1+%:
0 otherwise

F:F:—1 when/=1orl+%
0 otherwise

F}F?—1 whenm=1or1+%2
0

pb :{Fﬁ1 when/=1or1+% andn=1o0r1+5%3
0
{ otherwise

Q; ={ FiF,—1 whenn=1or 1+5:
tmn 0 otherwise

Making use of these relationships, (A.24) and (A.25) canddeutated through a series of
Fast Fourier transforms in much the same manner as wagsalledtfor the 2-D case.
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Appendix B

Spectral Analysis of One-Dimensional LAS Processes

B.1 Spectral Analysis

The spectral analysis of realizations produced by the amexasional LAS method will
be accomplished through a Fast Fourier Transform of theesexguto obtain the complex
Fourier coefficientst), as in (2.18),

1« 1y
— a—2r(k-1)([G-1)/K
Y=Y Ze , (B.1)

j=1
and then taking the spectral estimate of the single reiizat, at the frequency, to be
Glwy) = |27 (B.2)

fork =12, ..., K. Since the analysis is performed on simulations, no smogtbif the
Fourier estimate will be made. The variance of the specstnate will be reduced by
averaging overV, realizations to obtain

Glwr) = Nif S Glwn), (B.3)

whered is the desired estimate at the FFT frequencies

2k — 1)(K — 1)
“k = KL )

(B.4)

andL is the physical length of the process.

An alternate method of estimating the spectral power istheadied Maximum Entropy
(ME) approach, details of which can be found in Burg [11] amtiérson [4]. This method
will also be used as a comparison in the following analyses.
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B.2 Ornstein-Uhlenbeck Process

The Ornstein-Uhlenbeck process has a simple exponentiatiemce function,

B(1) = 0? exp{—@} , (B.5)

and corresponding spectral density function

45%0

R CE)

(B.6)

Vanmarcke [25] expresses the spectral density functioimeolidical average process,, (w),
in terms ofG(w)

. 2
sm(wD/Z)] | (B.7)

(wD/2)

whereD is the averaging dimension. Figure B.1 shows the estimatectisal density func-

Gol) =G |

tions using the FFT and ME methods versus the exact given y).(Bhe simulated pro-
cess has a physical length of 5 subdivided into 256 inteiglag an averaging length of
D =5/256. A scale of fluctuation of = 3 was used and the spectral estimates were aver-
aged over 500 realizations. Both the FFT and ME estimates skoellent agreement with

the exact.
N
o
Exact
________ FFT estimate
o - — - — ME estimate
—
o

G(w)
0.1

0.05
|

T T T T T | |
0 5 10 15 20 25 30 35 40

w (rad/sec)

Figure B.1 Spectral estimates of the locally averaged Ornstein-Uldek process fat = 1
averaged over 500 realizations.
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B.3 Damped Oscillatory Noise

The damped oscillatory noise used to investigate the reduieighborhood size in Chap-

ter 4 has an oscillatory covariance function of the form

B(7) = 0*cos(\7) exp{—zTT} , (B.8)

where we used = 8. The corresponding exact spectral density function efltically

averaged process is

Gpw) = (B.9)

200> 1 .\ 1 ] [sin(wD/Z)] 2
4+02(\—w)?> 4+0%(\+w)? (wD/2) | -
The estimated and exact spectras are compared in FigurenB.B.3 for neighborhood
sizes of 3 and 5 respectively. Again averaging of the 256tgwiocess [ = 5) was per-
formed over 500 realizations although in this case a scalectation ofd = 4 was used
(smaller scales of fluctuation are less interesting sine@8tillations in the covariance are
too rapidly damped out). As with the covariance estimateighborhood of 5 gives much
better agreement between the exact and estimated funciMwtgce that for this process,

the FFT estimate seems to be preferable to the ME estimate.

<
o
Exact
FFT estimate
ME estimate
3
O
 E— T T T
25 30 35 40

w (rad/sec)

Figure B.2 Spectral estimates of the damped oscillatory noise\fer8 andd = 4 using a
neighborhood size of 3.
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0.4

Exact
FFT estimate
ME estimate

25 30 35 40

w (rad/sec)

Figure B.3 Spectral estimates of the damped oscillatory noise\fer8 andé = 4 using a
neighborhood size of 5.

B.4 Fractional Gaussian Noise

Perhaps the most interesting process to obtain spectialagss of is that of fractional
Gaussian noise as defined by Mandelbrot and van Ness [41probess itself is obtained by
performing a small amount of averaging of fractional Gaaussnotion over some distance
0 and then taking the derivative. The resulting covariancetion is

2

B(r) = \7‘+5|2H—2\7'\2H+\7'—5\2H , (B.10)

g
252H
in which the parameteH is the self-similarity parameter. This covariance functe de-
fined for 0O< H < 1 (in fact for H = 1, it loses positive-definiteness). The corresponding

spectral density function was derived by Mandelbrot andNass for smalbw to be

. 2
m(2H — 1)H sm(wD/Z)] | (B.11)

Golw) =2V, <r(2 —2H) cosn(H — 1)) (@ray [W/z)

wherel'(:) is the gamma function anld, is defined by

1 1 0 1 172
Vo= e it [ oo - coria]. e
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which, unfortunately, is a divergent integral f&f > 0.5. Monin and Yaglom’s [] work

leads to the following spectral density function corredmdhe local average process,

['(1+2H) sintH

7-(-WZH—l

Gpw) =

. 2
sm(wD/Z)] | (B.13)

(wD/2)

which is tractable and the relationship we will take as the&cexFor a process with physi-
cal length of 5 D = 5/256), Figure B.4 shows the exact versus estimated speetnaitg
function averaged over 500 realizations of fractional Gasnoise withid = 0.95. The
spectra is plotted on a log-log scale to demonstratetiietype noise ¢ = 2H — 1). The
slope of the line is about0.9 as expected. Figure B.5 illustrates the similar naturéef t
process when the physical length is taken to be 500 rathersthBlow the size of the LAS
cellis D = 500/256 and the frequency range over which the FFT estimate i isaduch
narrower. Nevertheless, if anything, the FFT spectrahestes are closer to the exact. The
curve in the tail of the exact spectral density arises duééddcal averaging correction

factor which becomes significant for wavelengths approagthe size of the LAS cell.
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0 ——  Exact
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Figure B.4 Spectral estimates of fractional Gaussian noise withssiflarity parameter
H =0.95 and a physical process length of 5 divided into 256 interva
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Figure B.5 Spectral estimates of fractional Gaussian noise withssiflarity parameter
H =0.95 and a physical process length of 500 divided into 256ater
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