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Abstract
It is at least intuitively evident that variability in soil properties will have a significant
effect on total and differential settlement of structural foundations. By modeling soils
as spatially random media, whose properties follow certaindistributions and spatial
correlation structures, estimates of the reliability of foundations against serviceability
limit state failure, in the form of excessive differential settlements, can in principle be
made. The soil’s property of interest is it’s elastic modulus,E, which is represented
here using a lognormal marginal distribution and an isotropic correlation structure.
Prediction of settlement below a foundation can then be madeusing the finite element
method given a realization of the elastic modulus field underlying the foundation. By
generating and analyzing multiple realizations, the statistics and density functions of
total and differential settlements can be estimated.
This paper estimates probabilistic measures of total settlement under a single spread
footing and of differential settlement under a pair of spread footings using a two-
dimensional model combined with a Monte Carlo simulation. For the cases considered,
total settlement is found to be well represented by a lognormal distribution and simple
relationships are proposed allowing the approximation of the settlement distribution
parameters for a footing founded on a spatially random soil of constant depth and
fixed Poisson’s ratio. A one-parameter exponential distribution is fitted to differential
settlements and found to give reasonable probability estimates, particularly towards
the tail of the distribution. A method of predicting the single parameter is given in
terms of statistics of the elastic modulus field and local averages over the field. An
example is presented to illustrate the proposed methodology for a single footing.

INTRODUCTION
The settlement of structures founded on soil is a subject of considerable interest to
practicing engineers since excessive settlements often lead to serviceability prob-
lems. In particular, unless the total settlements themselves are particularly large, it is
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actually differential settlements which lead to unsightlycracks in facades and struc-
tural elements, possibly even to structural failure (especially in unreinforced masonry
elements). Existing code requirements limiting differential settlements to satisfy ser-
viceability limit states (see building codes ACI 318-89, 1989, or A23.3-M84, 1984)
specify maximum deflections ranging fromD/180 toD/480, depending on the type
of supported elements, whereD is the center-to-center span of the structural element.
In practice, differential settlements between footings are generally controlled, not by
considering the differential settlement itself, but by controlling the total settlement
predicted by analysis using an estimate of the soil elasticity. This approach is largely
based on correlations between total settlements and differential settlements observed
experimentally (see for example D’Appoloniaet.al.,1968) and leads to a limitation of
4 to 8 cm in total settlement under a footing as stipulated by the Canadian Foundation
Engineering Manual, Part 2 (1978).
Because of the wide variety of soil types and possible loading conditions, experimental
data on differential settlement of footings founded on soilis limited. With the aid
of modern high-speed computers, it is now possible to probabilistically investigate
differential settlements over a range of loading conditions and geometries. This paper
reports the initial findings of such a study and attempts to provide a relatively simple,
albeit approximate, approach to estimating probabilitiesassociated with settlements.
The paper first considers the case of a single footing, as shown in Figure 1(a), and
estimates the probability density function (PDF) governing total settlement of the
footing as a function of footing width for various input statistics of the underlying soil.
All other parameters are held constant. The footing is assumed to be founded on a
soil layer underlain by bedrock. The results are generalized to allow the estimation
of probabilities associated with total settlement under anisolated footing in many
practical cases. It is emphasized, however, that the results are still preliminary, there
being still many aspects of the problem that need investigation. Thus, the results
presented in this paper should be viewed as providing only ball-park estimates in the
absence of further theoretical and/or empirical developments.
The second part of the paper addresses the issue of differential settlements under a
pair of footings, as shown in Figure 1(b), again for the particular case of footings
founded on a soil layer underlain by bedrock. The mean and standard deviation
of differential settlements are estimated as a function of footing width for various
input statistics of the underlying elastic modulus field. Unfortunately, the probability
density function governing differential settlement is as yet unknown and only rough
estimates of probabilities associated with differential settlement can be made (barring
numerical integration of a joint probability density function). In this paper a simple
one-parameter exponential distribution is fitted to the simulation data. Since such a
simple distribution cannot hope to capture the intricaciesof the actual distribution,
the fit is aimed at yielding reasonably accurate probabilityestimates in the tail of the
distribution for the particular geometry shown in Figure 1(b).
The physical problem is represented using a two-dimensional model. If the footings
extend for a large distance in the out-of-plane direction,z, then the 2-D elastic modulus
field is interpreted either as an average overz or as having an infinite scale of fluctuation
in thez direction. For footings of finite dimension, the 2-D model isadmittedly just
an approximation. However, the approximation would be reasonable if the elastic
modulus were suitably averaged in thez direction. These issues are not addressed
in here and thus the derived 2-D results must be viewed with caution pending a 3-D
sensitivity study.
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Figure 1. Random field/FEM representation of a) a single footing, and b) two foot-
ings founded on a soil layer.

THE RANDOM FIELD/FEM MODEL
As illustrated in Figure 1, the soil mass is discretized into60 four-noded quadrilateral
elements in the horizontal direction by 20 elements in the vertical direction. The
overall dimensions of the soil model are held fixed atL = 3 in width by H = 1 in
height. Herein, parameters will be expressed without units, it being understood that a
consistent set of units are to be used throughout. The left and right faces of the finite
element model are constrained against horizontal displacement but are free to slide
vertically while the nodes on the bottom boundary are spatially fixed. The footing(s)
are assumed to be rigid, to not undergo any rotations, and to have a rough interface
with the underlying soil (no-slip boundary).
To investigate the effect of the ratio of footing width to soil layer thickness,Wf/H,
H was held constant at 1.0 while the footing width was varied according to Table 1.
In the two footing case, the distance between footing centers was held constant at 1.0,
while the footing widths (assumed equal) were varied. In thelatter case, footings of
width greater than 0.5 were not considered since this situation approaches that of a
strip footing (the footings would be joined whenWf = 1.0). In all cases, the footing
loadsP were held constant at 1.0.
The soil has two properties of interest to the settlement problem: these are the elastic
modulus,E(x

∼

), and Poisson’s ratio,ν(x
∼

), wherex
∼

is spatial position. At this time for
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simplicity, only the elastic modulus is considered to be a spatially random property,
it being felt that it is the more important variable as far as settlement is concerned.
Poisson’s ratio is held fixed at 0.25 for all analyses over the entire soil mass. The
extension of the results to spatially random Poisson’s ratio is reserved for future work.
Table 1. Input parameters varied in the study while holdingH = 1, D = 1, P = 1,

µE = 1, andν = 0.25 constant.

Parameter Values Considered
σE 0.1, 0.5, 1.0, 2.0, 4.0
θln E 0.01, 0.05, 0.1, 0.3, 0.5, 0.7, 1.0, 2.0, 5.0, 10.0
Wf 0.1, 0.2, 0.5, 1.0 (single footing)

0.1, 0.3, 0.5 (two footings)

Figure 1 shows, along with the finite element mesh, a grey-scale representation of a
possible realization of the elastic modulus field. Lighter areas denote smaller values
of E(x

∼

) so that the elastic modulus field shown in Figure 1(b) corresponds to a higher
elastic modulus under the left footing than under the right –this leads to the substantial
differential settlement indicated by the deformed mesh. This is just one possible
realization of theE field; the next realization could just as easily show the opposite
trend, or perhaps something in between.
The elastic modulus field is assumed to follow a lognormal distribution so that ln(E)
is a Gaussian (normal) random field with meanµln E, and varianceσ2

ln E
. The choice

of a lognormal distribution is motivated by the fact that theelastic modulus is strictly
positive, as stipulated by the lognormal distribution, while having a simple relationship
with the normal distribution. Note that the normal distribution admits negative values
of E with non-zero probability. The spatial dependence is assumed to follow an
isotropic Gauss-Markov correlation function

ρln E(τ
∼

) = exp

��2jτ
∼

j
θln E

�
(1)

in whichτ
∼

= x
∼

�x
∼

′ is the vector between spatial pointsx
∼

andx
∼

′, andjτ
∼

j is the absolute
length of this vector (the lag distance). In this paper, the word ‘correlation’ refers to the
correlation coefficient (normalized covariance). The correlation function decay rate
is governed by the so-called scale of fluctuation,θln E, which, loosely speaking, is the
distance over which elastic moduli are significantly correlated (when the separation
distancejτ

∼

j is greater thanθln E, the correlation betweenE(x
∼

) andE(x
∼

′) is less than
14%).
The assumption of isotropy is, admittedly, somewhat restrictive. Although an ellip-
soidally anisotropic random field can be converted to an isotropic random field by
suitably stretching the coordinate axes, this transformation cannot be performed in a
settlement study since the stress field needs to be preserved. In principal the method-
ology presented in the following is easily extended to anisotropic fields, however, the
accuracy of the proposed distribution parameter estimateswould need to be verified.
In the meantime, the isotropic case is selected for simplicity.
In practice, one approach to the estimation ofθln E involves collecting elastic modulus
data from a series of locations in space, estimating the correlations between the log-
data as a function of separation distance, and then fitting Eq. (1) to the estimated
correlations. See, e.g., Degroot and Baecher (1993), de Marsily (July 1985), Asaoka
and Grivas (May 1982), Ravi (1992), Souliéet.al.(1990),and Chiassonet.al.(1995)for
further information on the characterization of spatial variability of soil properties.
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Throughout, the mean elastic modulus,µE, is held fixed at 1.0. Since settlement varies
linearly with the soil elastic modulus, it is always possible to scale the settlement
statistics to the actual mean elastic modulus. The standarddeviation of the elastic
modulus is varied from 0.1 to 4.0 to investigate the effects of elastic modulus variability
on settlement variability. The parameters of the transformed ln(E) Gaussian random
field may be obtained from the relations,

σ2
ln E

= ln(1 +σ2
E
/µ2

E
) (2a)

µln E = ln(µE)� 1
2σ

2
ln E

(2b)

from which it can be seen that the variance of ln(E), σ2
ln E

, varies from 0.01 to 2.83
(note that the mean of ln(E) is not constant).
To investigate the effect of the scale of fluctuation,θln E, on the settlement statistics,
θln E is varied from 0.01 (i.e., very much smaller than the soil model size) to 10.0 (i.e.,
substantially bigger than the soil model size). In the limitasθln E ! 0, the elastic
modulus field becomes a white noise field, withE values at any two distinct points
independent. In terms of the finite elements themselves, values ofθln E smaller than
the elements results in a set of elements which are largely independent (increasingly
independent asθln E decreases). Because of the averaging effect of the details of the
elastic modulus field under a footing, the settlement in the limiting caseθln E ! 0 is
expected to approach that obtained in the deterministic case, withE = µE everywhere,
and has vanishing variance. By similar reasoning, the differential settlement in this
case (as in Figure 1b) is expected to go to zero. At the other extreme, asθln E ! 1,
the elastic modulus field becomes the same everywhere (different from realization to
realization, according to the lognormal distribution, butspatially constant within any
one realization). In this case, the settlement statistics are expected to approach those
obtained by using a single lognormally distributed random variable,E, to model the
soil, E(x

∼

) = E. That is, if the settlement,δ, under a footing founded on a soil layer
with uniform (but random) elastic modulusE is given byδ = δdetµE/E, for δdet the
settlement whenE = µE everywhere, then asθln E ! 1 the settlement assumes a
lognormal distribution with parameters

µln δ = ln(δdet) + ln(µE)� µln E = ln(δdet) + 1
2σ

2
ln E

(3a)
σln δ = σln E (3b)

where Eq. (2b) was used in Eq. (3a). Also since, in this case, the settlement under the
two footings of Figure 1(b) becomes equal, the differentialsettlement becomes zero.
Thus, the differential settlement is expected to approach zero both at very small and at
very large scales of fluctuation.
Because the variability of the elastic modulus field to be considered can be quite large,
up to a COV =σE/µE = 4, and because, perhaps more importantly, it is desired
to estimate the entire probability density function (PDF) of settlement, the approach
taken herein is via Monte Carlo simulations. Traditional stochastic finite element
techniques, involving a first or second order perturbation of the random parameters,
cannot be used since they are inaccurate for COV’s in excess of about 20% and
since they do not provide an estimate of the entire PDF. The Monte Carlo approach
adopted here involves the simulation of a realization of theelastic modulus field and
subsequent finite element analysis of that realization to yield a realization of the footing
settlement(s). Repeating the process over an ensemble of realizations generates a set
of possible settlements which can be plotted in the form of a histogram and from
which distribution parameters can be estimated. In this study, 2000 realizations are
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performed for each input parameter set (σE, θln E, andWf ). If it can be assumed
that log-settlement is approximately normally distributed (which is seen later to be a
reasonable assumption and is consistent with the distribution selected forE), andmln δ

ands2
ln δ are the estimators of the mean and variance of log-settlement, respectively,

then the standard deviation of these estimors obtained from2000 realizations are
given byσmln δ

' sln δ/
p

n = 0.022sln δ andσs2
ln δ

' q 2
n−1 s2

ln δ = 0.032s2
ln δ so that the

estimator ‘error’ is negligible compared to the estimated variance.
Realizations of the log-elastic modulus field,G(x

∼ i), are produced using the two-
dimensional Local Average Subdivision (LAS) technique (Fenton and Vanmarcke,
1990, Fenton, 1994), whereG(x

∼ i) is the local average of a zero mean, unit variance
Gaussian random field over the domain of the element centeredat x

∼ i. The generated
field correctly reproduces the mean, variance and covariance structure of the 2-D local
average process. The elastic modulus value then assigned tothei’th element is

E(x
∼ i) = expfµln E + σln E G(x

∼ i)g (4)

Once the field of elastic modulus values is assigned, the settlement(s) are computed
via finite element analysis.

SINGLE FOOTING CASE
A typical histogram of the settlement under a single footing, as estimated by 2000
realizations, is shown in Figure 2. This is for the case wherethe footing has width
Wf/H = 0.2, σE/µE = 2, andθln E = 0.7. With the requirement that settlement be
non-negative, the shape of the histogram suggests a lognormal distribution, which was
adopted in this study (see also Eq. 3) . The histogram itself is computed over 30
equally spaced intervals between ln(xmin) and ln(xmax), in log-space, wherexmin and
xmax are the minimum and maximum settlements observed in the sample of 2000. The
histogram is normalized to enclose a unit area and a straightline is drawn between the
interval midpoints.
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Figure 2. Typical frequency histogram and fitted lognormal distribution of settlement
under a single footing.

Superimposed on the histogram is the fitted lognormal distribution with parameters
given byµln δ andσln δ in the line key. At least visually, the fit appears quite reasonable.
In fact a Chi-Square goodness-of-fit test gives a critical p-value of 1�10−8. The critical
p-value may be interpreted as the probability ofmistakenlyrejecting the lognormal
hypothesis – larger values of p imply a better fit to the data. Unfortunately, the Chi-
Square test is quite sensitive to the ‘smoothness’ of the histogram. Although it would
probably be well worth investigating the Kolmogorov-Smirnov goodness-of-fit test to
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evaluate the fit of the assumed distributions, this was not performed in the current study
because the parameters of the assumed distribution are derived from the data and the
critical statistic is, strictly speaking, unknown under these conditions.

Over the entire set of simulations done for each parameter set of interest (Wf , σE, and
θln E) the fraction of critical p-values obtained are listed in Table 2. Since over 30%
have critical p-values in excess of 0.05, and over 70% in excess of 0.0001 (and so are
better fits than that shown in Figure 2) it appears that the lognormal hypothesis is a
reasonable one.

Table 2. Fraction of simulation runs with Chi-Square goodness-of-fit critical p-
value greater than that indicated.

pcrit Fraction
> 0.5 7%
> 0.1 26%
> 0.05 33%
> 0.01 49%
> 0.0001 71%

Accepting the lognormal hypothesis as a reasonable fit to thesimulation results, the
next task is to estimate the parameters of the fitted lognormal distributions as functions
of the input parameters (Wf , σE, andθln E). The lognormal distribution,

fδ(x) =
1p

2πσln δ x
exp

(�1
2

�
ln x� µln δ

σln δ

�2
)

, 0� x < 1 (5)

has two parameters,µln δ andσln δ. Figure 3 shows how the estimator ofµln δ, mln δ,
varies withσln E for Wf/H = 0.1. Similar results were found for the other footing
widths. All scales of fluctuation are drawn in the two plots, but are not individually
labeled since they lie so close together. This observation implies that the mean log-
settlement is largely independent of the scale of fluctuation, θln E. This is as expected
since the scale of fluctuation does not affect the mean of a local average of a Gaussian
process (recall that ifδ is lognormally distributed, then ln(δ) is normally distributed).
Figure 3 suggests that the mean of log-settlement can be estimated by a straight line
of the form

µln δ = ln(δdet) + α2 σ2
ln E

(6)

whereδdet is the ‘deterministic’ settlement obtained from a single finite element analy-
sis (or appropriate approximate calculation) of the problem whereE = µE everywhere.
For the range of geometries considered in this study, the following relationship can be
used to approximate ln(δdet) reasonably accurately

ln(δdet) = ln(P/µE)� 0.4924� 0.6883 ln(Wf/H)� 0.0964
�

ln(Wf/H)
�2

(7)

which was obtained by regression over the intercepts shown on Figure 3 and over the
other footing widths not shown. Ther2 coefficient of determination for the above
regression was 0.9999
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Figure 3. Estimated mean of log-settlement.
The slopes of the curves in Figure 3 are almost uniformly 0.5,as predicted for the
settlement by Eq. (3a) in the large and small scale of fluctuation cases. Note that if
the settlement mean is independent of the scale of fluctuation, Eq. (3a) is valid for
any scale. However, there is in fact a slight dependence of the slope,α2, onθln E. The
second term in the following is a small correction obtained from plots of the slopeα2
versusWf andθln E

α2 = 0.5 +
0.041p
Wf/H

exp

��1
4

�
ln(θln E/H) + 1

�2
�

(8)

Eq. (8) is entirely empirical, but does have the correct limiting forms for large and
smallθln E. It is unknown at this time if it can be applied for values ofWf/H outside
the range investigated. The physical interpretation and analytical verification of the
correction term in the above needs further investigation.
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Figure 4. Estimated standard deviation of log-settlement.
The estimator of the standard deviation of log-settlement,sln δ, is plotted in Figure 4
for the smallest and largest footing widths. Intermediate footing widths give similar
results. In all cases, it can be seen thatsln δ ! σln E for largeθln E. It is expected
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that the reduction in variance asθln E decreases is due largely to the local averaging
effect under the footing. That is, if the average of ln(E) is taken over some area under
the footing, then this average is expected to have smaller variance for small scales of
fluctuation than for large. This is because there are more ‘independent’ samples in the
area whenθln E is small. Recall that ifĒ is the average of samplesE1, E2, . . . , En,
then the variance of̄E is σ2

E/n if the Ei’s are mutually independent (the 1/n factor
is the variance reduction) – this case corresponds to theθln E ! 0 case. On the other
hand, if theEi’s are fully correlated (θln E !1), then the variance of̄E is justσ2

E, so
that there is no variance reduction. See Vanmarcke (1984) for more details on local
averaging theory. The variance reduction effects are clearly seen in Figure 4.
Following this reasoning, and assuming that local averaging of the area under the
footing accounts for all of the variance reduction seen in Figure 4, the standard
deviation of log-settlement is

σln δ =
p

γ(Wf ,H; θln E) σln E (9)

in whichγ(Wf ,H; θln E), the so-called variance function (Vanmarcke, 1984), gives the
amount that the variance is reduced when the random field is averaged over a region
of sizeWf �H. Note that the dependence of the averaging region onH is apparently
only valid for the test case considered; if the footing is founded on a much deeper soil
mass, one would not expect to average over the entire depth due to stress distribution
with depth. This issue needs additional study.
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Figure 5. Comparison of simulation estimated standard deviation of log-settlement
with theoretical estimate, Eq. (9).

For the isotropic Gauss-Markov correlation function used to represent the ln(E) random
field (Eq. 1), the variance function is closely approximatedby

γ(d1, d2; θ) = 1
2

h
γ(d1)γ(d2jd1) + γ(d2)γ(d1jd2)

i
(10)
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where,

γ(di) =

"
1 +

�
di

θ

� 3
2

#− 2
3

, γ(dijdj) =

"
1 +

�
di

Rj

� 3
2

#− 2
3

(11a)

Rj = θ

"
π
2 +
�
1� π

2

�
exp

(�� dj
π
2θ

�2
)#

(11b)

in whichdi are dimensions of the averaging region. Predictions ofσln δ using Eq. (9) are
plotted in Figure 5 against the simulation results for the largest and smallest footing
widths andσE/µE values considered in this study. The agreement is remarkable.
Intermediate cases show similar, if not better agreement with predictions.

Single Footing Example

Consider a single footing of widthWf = 2.0 m to be founded on a soil layer of
depth 10.0 m and which will support a loadP = 1000 kN. Suppose also that samples
taken at a nearby location1 have allowed the estimation of the elastic modulus mean
and standard deviation at the site to be 40 MPa and 40 MPa respectively. Similarly,
nearby test results on a regular array have resulted in an estimated scale of fluctuation,
θln E = 3.0 m. Assume also that Poisson’s ratio is 0.25.
The results from the previous section can be used to estimatethe probability that the
settlement under the footing will not exceed 0.10 m as follows;
1) A deterministic finite element analysis of the given problem with elastic modulus

everywhere equal toµE = 40 MPa gives a deterministic settlement ofδdet =
0.03531 (note that Eq. 7 givesδdet = 0.03604, a relative difference of 2%).

2) for Wf/H = 0.2 andθln E = 3, use Eq. (8) to computeα2,

α2 = 0.5 +
0.041p

0.2
exp

��1
4

�
ln(3/10) + 1

�2
�

= 0.5907

3) compute variance of log-elastic modulus,

σ2
ln E

= ln

 
1 +

�
σE

µE

�2
!

= ln(2) = 0.69315

σln E = 0.83256

4) compute mean of log-settlement,

µln δ = ln(δdet) + α2σ
2
ln E

= �3.3437 + 0.5601(0.69315) =�2.9341

5) compute standard deviation of log-settlement using Eq.’s (9) through (11),

γ(Wf ) =
�
1 + (Wf/θln E)3/2

�−2/3
=
�
1 + (2/3)3/2

�−2/3
= 0.74847

1 Note that if elastic modulus measurements were taken at the site itself, then the results presented
in the previous section would not be applicable: When information about the actual site (beyond
statistical information) is known, then the site variability is considerably reduced.
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γ(H) =
�
1 + (H/θln E)3/2

�−2/3
=
�
1 + (10/3)3/2

�−2/3
= 0.27107

R1 = 3

"
π
2 +
�
1� π

2

�
exp

(�� Wf
π
2θln E

�2
)#

= 3.28226

R2 = 3

"
π
2 +
�
1� π

2

�
exp

(�� H
π
2θln E

�2
)#

= 4.69343

γ(Wf jH) =
�
1 + (Wf/R2)

3/2
�−2/3

= 0.84907

γ(H jWf ) =
�
1 + (H/R1)

3/2
�−2/3

= 0.29261

γ(Wf ,H; θln E) = 1
2

h
γ(Wf )γ(H jWf ) + γ(H)γ(Wf jH)

i
= 0.22458

σln δ =
p

γ(Wf ,H; θln E) σln E =
p

0.22458(0.83256) = 0.39455

Aside: for µln δ = �2.9341 andσln δ = 0.39455, the corresponding settlement mean
and variance can be obtained from the transformations

µδ = expfµln δ + 1
2σ

2
ln δg = 0.0575 m

σδ = µδ

p
eσ2

ln δ � 1 = 0.0236 m

A trial run of 2000 realizations for this problem givesmδ = 0.0582 andsδ = 0.0219
for relative differences of 1.2% and 7.7% respectively. Theestimated standard error
onmδ is approximately 0.0005 for 2000 realizations.
6) compute the desired probability using the lognormal distribution,

P[δ � 0.10] = Φ

�
ln(0.10)� µln δ

σln δ

�
= Φ(1.6006)
= 0.945

whereΦ(�) is the standard normal cumulative distribution, whose table of values
can be found in any good probability textbook.

The simulation run for this problem yielded 1892 samples outof 2000 having settlement
less than 0.10 m. This gives a simulation based estimate of the above probability of
0.946, a relative difference of only 0.1%. Although this is very good accuracy, one
must a bit cautious since if the probability in question had been P[δ > 0.10] then the
relative error becomes 1.9%. It is expected that probabilities estimated farther out in
the tail of the distribution may have even larger differences with simulation results
unless the simulation is carried out over very many more realizations, and this is yet
to be verified.

TWO FOOTING CASE
Having established with reasonable confidence the distribution associated with settle-
ment under a single footing founded on a soil layer, attention can now be turned to the
more difficult problem of finding a suitable distribution to model differential settlement
between footings. Analytically, ifδ1 is the settlement under the left footing shown
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in Figure 1 andδ2 is the settlement of the right footing, then according to theresults
of the previous section,δ1 andδ2 are joint lognormally distributed random variables
following the bivariate distribution

fδ1 δ2
(x, y) =

1
2πσ2

ln δrxy
exp

�� 1
2r2

�
Ψ

2
x � ρln δΨxΨy + Ψ

2
y

��
(12)

for x � 0, y � 0, whereΨx = (lnx� µln δ)/σln δ, Ψy = (lnx � µln δ)/σln δ, and where
r2 = 1� ρ2

ln δ with ρln δ being the correlation coefficient between the log-settlement of
the two footings. It is assumed in the above thatδ1 andδ2 have the same mean and
variance, which, for the symmetric conditions shown in Figure 1(b), is a reasonable
assumption.
If the differential settlement between footings is defined by

∆ = jδ1 � δ2j (13)

then the distribution of∆ is given by

f∆(x) = 2
Z

∞

0
fδ1 δ2

(x + y, y) dy (14)

Unfortunately, this integral cannot be solved analytically insofar as the authors are
aware, although for design purposes it can be estimated using any available reliability
tool, such as first- or second-order reliability methods. Such numerical approximations
to Eq. (14) are being investigated for a future publication.It is not hard to show that
the variance of∆ can be written,

σ2
∆ = 2(1� ρδ)σ

2
δ � µ2

∆ (15)

whereρδ is the correlation coefficient betweenδ1 andδ2.
Figure 6 shows a typical histogram of differential settlement between the two equal
sized footings. Superimposed on the histogram is a trial exponential distribution
having the form

f∆(x) = 1
µ∆

expf�x/µ∆g (16)

with µ∆ taken as 0.8998 which is the data average. Although this distribution fails the
Chi-Square goodness-of-fit test, it appears to capture the major trends in the histogram,
particularly in the tail.
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Figure 6. Frequency histogram and fitted distribution for differential settlement un-
der two equal sized footings.
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Figure 7 shows the estimated mean and standard deviation of∆ as functions ofθln E/H,
σE/µE, for Wf/H = 0.5. The other two footing widths considered (0.1 and 0.3) are
of similar form. The two plots are nearly identical, suggesting that perhaps it is not
unreasonable to take a one-parameter exponential distribution as representative of the
differential settlement (for whichσ∆ = µ∆). A trial function of the form

µ2
∆ = β (1� ρδ)σ

2
δ (17)

will be investigated (see Eq. 15) to predict the parameter ofthe exponential distri-
bution, for some positive constantβ. Note that whenθln E ! 0, the previous section
predictedσ2

δ ! 0, and whenθln E !1, the correlation coefficient between the footing
settlements,ρδ ! 1. Thus Eq. (17) is in agreement with the observation that differen-
tial settlements are expected to go to zero for both very small and very large values of
θln E.
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Figure 7. Estimated differential settlement mean and standard deviation.
The factorρδ in Eq. (17) can be obtained by first considering the correlation, ρln δ,
between the two local averages of the ln(E) field under the two footings; these local
averages are of dimensionWf in width by H in height and are separated, center to
center, by the distanceD. The correlation,ρln δ, can be found using the variance
function as

ρln δ =
1

2W 2
f

n
(D�Wf )2γ(D�Wf ,H)+(D+Wf )2γ(D+Wf ,H)�2D2γ(D,H)

o
(18)

where the (;θln E) notation is now dropped for convenience, it being understood that
the variance function is dependent onθln E. Calculatingµln δ andσln δ as in the previous
section (Eq’s 6 to 9) then allows the computation ofµδ andσ2

δ ;

µδ = expfµln δ + 1
2σ

2
ln δg (19a)

σ2
δ = µ2

δ(e
σ2

ln δ � 1) (19b)
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With these results, the correlationρδ can be found from

ρδ =
expfρln δσ

2
ln δg � 1

expfσ2
ln δg � 1

(20)

andµ∆ can now be estimated using Eq. (17) if a suitable value ofβ is found.
To test the ability of the assumed distribution to accurately estimate probabilities, the
probability

P[∆ � αµ∆] = 1� eα (21)

for α varying from 0.5 to 4.0, is plotted against the corresponding probabilities esti-
mated directly from the simulation results. After some trial and error, aβ value of 2/3
was found to give the most accurate probabilities on averageover the range ofWf ,
σE/µE, andθln E considered here. Figure 8 shows the predicted probabilities using
Eq. (17) withβ = 2/3 alongside the estimated probabilities averaged over allσE/µE

andθln E parameter values. When results are not averaged over parameter values, the
agreement is typically less good away from the tails (some above, some below) but
generally reasonable in the tails.

0.5 1 1.5 2 2.5 3 3.5 4

α

0.
4

0.
5

0.
6

0.
7

0.
8

0.
9

1

P
[ ∆

 <
 α

µ ∆ ]

Predicted

0.5 1 1.5 2 2.5 3 3.5 4

0.
4

0.
5

0.
6

0.
7

0.
8

0.
9

1

Wf /D = 0.1

Wf /D = 0.3

Wf /D = 0.5

Figure 8. Simulation based estimates of P[∆ � αµ∆], averaged over allθln E and
σE/µE cases, compared to that predicted by Eq.’s (17) and (21).

CONCLUSIONS
On the basis of this initial simulation study, which is by no means complete, some
tentative observations are made as follows.
It appears that the settlement under a footing founded on a spatially random elastic
modulus field of finite depth overlying bedrock is reasonablywell represented by a
lognormal distribution, ifE is also lognormally distributed, with parametersµln δ and
σ2

ln δ. The first parameter,µln δ, is dependent on the mean and variance of the underlying
elastic modulus field and may be largely derived by considering limiting values ofθln E.
Although there is some question as to why the slope correction term appearing in Eq.
(8) is necessary, including it yields quite accurate estimates of the mean log-settlement.
It is significant to note that the second parameter,σ2

ln δ, is very well approximated by the
variance of a local average of the elastic modulus field in theregion directly under the
footing. This gives the prediction ofσ2

ln δ some generality that could possibly extend
beyond the actual range of simulation results considered herein if a suitable averaging
domain can be defined. Once the statistics of the settlement,µln δ andσ2

ln δ, have been
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computed using Eq.’s 6 to 9 the estimation of probabilities associated with settlement
involves little more than referring to a standard normal distribution table.
The differential settlement follows a more complicated distribution than that of settle-
ment itself (see Eq. 14). This is seen also in the differential settlement histograms
which tend to be quite erratic with long tails. Clearly the difference between two log-
normally distributed random variables is not exponentially distributed. Neither does
this difference follow a normal distribution, the normal distribution falling off far too
rapidly in the tails. For an accurate estimation of probability relating to differential
settlement where it can be assumed that footing settlement is lognormally distributed,
Eq. (14) should be numerically integrated. This approach was not pursued in this
study since it was observed that the tail of the differentialsettlement histogram was
reasonably well approximated by an exponential distribution. The results suggest a
relatively simple approach to obtaining ‘ball-park’ estimates of probabilities associ-
ated with differential settlement that involves, again, statistics of the underlying elastic
modulus field and local averages of the field directly under the footings. In that the
statistical parameters of the underlying elastic modulus field are themselves estimates,
that may or may not be very accurate, the proposed probability predictions may be
reasonable.
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