Probabilistic Analysis of Foundation Settlement

by Gordon A. Fentoh G.M. Paicé, and D. V. Griffiths

Abstract

It is at least intuitively evident that variability in soit@perties will have a significant
effect on total and differential settlement of structumiridations. By modeling soils
as spatially random media, whose properties follow certigstributions and spatial
correlation structures, estimates of the reliability aifidations against serviceability
limit state failure, in the form of excessive differentiakdéements, can in principle be
made. The soil’s property of interest is it's elastic modulti, which is represented
here using a lognormal marginal distribution and an isatr@prrelation structure.
Prediction of settlement below a foundation can then be maahg the finite element
method given a realization of the elastic modulus field ulyiteg the foundation. By
generating and analyzing multiple realizations, the stias and density functions of
total and differential settlements can be estimated.

This paper estimates probabilistic measures of totaleseétht under a single spread
footing and of differential settlement under a pair of spréaotings using a two-
dimensional model combined with a Monte Carlo simulaticor.the cases considered,
total settlement is found to be well represented by a logabdistribution and simple
relationships are proposed allowing the approximatiorhefgettlement distribution
parameters for a footing founded on a spatially random dodomstant depth and
fixed Poisson’s ratio. A one-parameter exponential distioin is fitted to differential
settlements and found to give reasonable probability esés) particularly towards
the tail of the distribution. A method of predicting the dimgparameter is given in
terms of statistics of the elastic modulus field and locakayes over the field. An
example is presented to illustrate the proposed methogddtwa single footing.

INTRODUCTION

The settlement of structures founded on soil is a subjecbosiderable interest to
practicing engineers since excessive settlements ofth e serviceability prob-
lems. In particular, unless the total settlements thenesedwe particularly large, it is
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actually differential settlements which lead to unsightitsicks in facades and struc-
tural elements, possibly even to structural failure (esdgan unreinforced masonry
elements). Existing code requirements limiting differelgettiements to satisfy ser-
viceability limit states (see building codes ACI 318-898%90r A23.3-M84, 1984)
specify maximum deflections ranging fro/180 to D /480, depending on the type
of supported elements, whefeis the center-to-center span of the structural element.
In practice, differential settlements between footingsgenerally controlled, not by
considering the differential settlement itself, but by wohing the total settlement
predicted by analysis using an estimate of the soil el@gtihis approach is largely
based on correlations between total settlements and efiffied settlements observed
experimentally (see for example D’Appoloreaal,1968) and leads to a limitation of
4 to 8 cm in total settlement under a footing as stipulatechkyGanadian Foundation
Engineering Manual, Part 2 (1978).

Because of the wide variety of soil types and possible Ilaadamditions, experimental
data on differential settlement of footings founded on soiimited. With the aid
of modern high-speed computers, it is now possible to prtibabally investigate
differential settlements over a range of loading cond&iand geometries. This paper
reports the initial findings of such a study and attempts twiple a relatively simple,
albeit approximate, approach to estimating probabildigsociated with settlements.
The paper first considers the case of a single footing, asshowigure 1(a), and
estimates the probability density function (PDF) govegnintal settlement of the
footing as a function of footing width for various input ssaics of the underlying soil.
All other parameters are held constant. The footing is assutm be founded on a
soil layer underlain by bedrock. The results are genemlineallow the estimation
of probabilities associated with total settlement undeisatated footing in many
practical cases. It is emphasized, however, that the seardtstill preliminary, there
being still many aspects of the problem that need investigat Thus, the results
presented in this paper should be viewed as providing orlyplask estimates in the
absence of further theoretical and/or empirical develagme

The second part of the paper addresses the issue of difdreattlements under a
pair of footings, as shown in Figure 1(b), again for the galttr case of footings
founded on a soil layer underlain by bedrock. The mean amdatd deviation
of differential settlements are estimated as a functionootihg width for various
input statistics of the underlying elastic modulus field.fastunately, the probability
density function governing differential settlement is & ynknown and only rough
estimates of probabilities associated with different&tlement can be made (barring
numerical integration of a joint probability density fuiwst). In this paper a simple
one-parameter exponential distribution is fitted to theudation data. Since such a
simple distribution cannot hope to capture the intricackthe actual distribution,
the fit is aimed at yielding reasonably accurate probab@gimates in the tail of the
distribution for the particular geometry shown in Figuré)1(

The physical problem is represented using a two-dimenbkraondel. If the footings
extend for a large distance in the out-of-plane directigthen the 2-D elastic modulus
field is interpreted either as an average avaras having an infinite scale of fluctuation
in the z direction. For footings of finite dimension, the 2-D modehdmittedly just

an approximation. However, the approximation would be grable if the elastic
modulus were suitably averaged in thalirection. These issues are not addressed
in here and thus the derived 2-D results must be viewed wittiaa pending a 3-D
sensitivity study.
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Figurel. Random field/FEM representation of a) a single footing, antvb foot-
ings founded on a soil layer.

THE RANDOM FIELD/FEM MODEL

As illustrated in Figure 1, the soil mass is discretized Bidour-noded quadrilateral
elements in the horizontal direction by 20 elements in theticad direction. The
overall dimensions of the soil model are held fixedlat 3 in width by H = 1 in
height. Herein, parameters will be expressed without uiibeing understood that a
consistent set of units are to be used throughout. The léftight faces of the finite
element model are constrained against horizontal displane but are free to slide
vertically while the nodes on the bottom boundary are sipafiaed. The footing(s)
are assumed to be rigid, to not undergo any rotations, andue & rough interface
with the underlying soil (no-slip boundary).

To investigate the effect of the ratio of footing width toIdayer thicknessjV';/H,
H was held constant at 1.0 while the footing width was variezbeting to Table 1.
In the two footing case, the distance between footing centes held constant at 1.0,
while the footing widths (assumed equal) were varied. Inldtier case, footings of
width greater than 0.5 were not considered since this sauapproaches that of a
strip footing (the footings would be joined whé¥i; = 1.0). In all cases, the footing
loadsP were held constant at 1.0.

The soil has two properties of interest to the settlementlpro: these are the elastic
modulus,E(z), and Poisson’s ratia;(z), wherez is spatial position. At this time for
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simplicity, only the elastic modulus is considered to be atigfly random property,
it being felt that it is the more important variable as far alement is concerned.
Poisson’s ratio is held fixed atZb for all analyses over the entire soil mass. The
extension of the results to spatially random Poisson’s iatieserved for future work.

Tablel. Input parameters varied in the study while holdiFig= 1, D =1, P = 1,
» =1, andv = 0.25 constant.

Parameter Values Considered
Op 0.1,0.5,1.0,2.0,4.0
Oin & 0.01,0.05,0.1,0.3,0.5,0.7, 1.0, 2.0, 5.0, 10.0
Wy 0.1, 0.2, 0.5, 1.0 (single footing)
0.1, 0.3, 0.5 (two footings)

Figure 1 shows, along with the finite element mesh, a grelesepresentation of a
possible realization of the elastic modulus field. Lightezas denote smaller values
of E(z) so that the elastic modulus field shown in Figure 1(b) cpwesls to a higher
elastic modulus under the left footing than under the righis-leads to the substantial
differential settlement indicated by the deformed mesh.is T& just one possible
realization of theF field; the next realization could just as easily show the gjtpo
trend, or perhaps something in between.

The elastic modulus field is assumed to follow a lognormatithistion so that Inf)

is a Gaussian (normal) random field with meay,, and variances? .. The choice
of a lognormal distribution is motivated by the fact that édastic modulus is strictly
positive, as stipulated by the lognormal distribution, hiaving a simple relationship
with the normal distribution. Note that the normal disttiban admits negative values
of E with non-zero probability. The spatial dependence is assuto follow an
isotropic Gauss-Markov correlation function

post0)=exp 221} W

inwhicht = x — 2’ is the vector between spatial pointandz’, and|7| is the absolute
length ofthls vector (the lag distance). In this paper, tbedicorrelation’ refers to the
correlation coefficient (normalized covariance). The elation function decay rate
is governed by the so-called scale of fluctuatié,, which, loosely speaking, is the
distance over which elastic moduli are significantly catetl (when the separation
distancelr| is greater tham), ,, the correlation betweef(z) and E(z’) is less than
14%).

The assumption of isotropy is, admittedly, somewhat retstg. Although an ellip-
soidally anisotropic random field can be converted to arrapit random field by
suitably stretching the coordinate axes, this transfaonatannot be performed in a
settlement study since the stress field needs to be presdrvpdncipal the method-
ology presented in the following is easily extended to andgnc fields, however, the
accuracy of the proposed distribution parameter estinvabestd need to be verified.
In the meantime, the isotropic case is selected for sinmplici

In practice, one approach to the estimatio,@f involves collecting elastic modulus
data from a series of locations in space, estimating theelations between the log-
data as a function of separation distance, and then fitting #& to the estimated
correlations. See, e.g., Degroot and Baecher (1993), dsilyi@luly 1985), Asaoka
and Grivas (May 1982), Ravi (1992), Saaiit.al(1990),and Chiasscet.al(1995)for
further information on the characterization of spatiai&haility of soil properties.
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Throughout, the mean elastic modulus, is held fixed at 1.0. Since settlement varies
linearly with the soil elastic modulus, it is always possiltb scale the settlement
statistics to the actual mean elastic modulus. The standlarition of the elastic
modulus is varied from 0.1 to 4.0 to investigate the effetedastic modulus variability
on settlement variability. The parameters of the transéatitm(~) Gaussian random
field may be obtained from the relations,

O e = IN(L +0%/12) (2a)
Hineg = In(:uE) - %UI%E (Zb)

from which it can be seen that the variance offij\(o2 ., varies from 001 to 283
(note that the mean of IR{) is not constant).

To investigate the effect of the scale of fluctuatién,,, on the settlement statistics,
O » is varied from 0.01 (i.e., very much smaller than the soil el@ikze) to 10.0 (i.e.,
substantially bigger than the soil model size). In the lias®,,, — 0, the elastic
modulus field becomes a white noise field, withvalues at any two distinct points
independent. In terms of the finite elements themselveagsabfd,, , smaller than
the elements results in a set of elements which are largdbpiendent (increasingly
independent ag,, , decreases). Because of the averaging effect of the detdhg o
elastic modulus field under a footing, the settlement in imétihg cased,,, — 0 is
expected to approach that obtained in the deterministe edth £ = 11, everywhere,
and has vanishing variance. By similar reasoning, the rdifféal settlement in this
case (as in Figure 1b) is expected to go to zero. At the othtezrae, ad),, , — oc,
the elastic modulus field becomes the same everywherer@différom realization to
realization, according to the lognormal distribution, bpatially constant within any
one realization). In this case, the settlement statistie®apected to approach those
obtained by using a single lognormally distributed rand@mable, £/, to model the
soil, E(z) = E. That is, if the settlemenb, under a footing founded on a soil layer
with uniform (but random) elastic modulus is given by§ = dge¢pi/ E, fOr 64 the
settlement wherty = p,, everywhere, then a4,, — oc the settlement assumes a
lognormal distribution with parameters

Hins = IN(dget) + ln(,uE) — Hing = IN(04et) + %UI% E (3a)
Ons = One (30)

where Eq. (2b) was used in Eq. (3a). Also since, in this cagesettlement under the
two footings of Figure 1(b) becomes equal, the differerdegtlement becomes zero.
Thus, the differential settlement is expected to approach koth at very small and at
very large scales of fluctuation.

Because the variability of the elastic modulus field to besoered can be quite large,
up to a COV =0, /u; = 4, and because, perhaps more importantly, it is desired
to estimate the entire probability density function (PDF¥ettlement, the approach
taken herein is via Monte Carlo simulations. Traditionacstastic finite element
techniques, involving a first or second order perturbatibthe random parameters,
cannot be used since they are inaccurate for COV’s in excesbaut 20% and
since they do not provide an estimate of the entire PDF. That&Garlo approach
adopted here involves the simulation of a realization ofdlastic modulus field and
subsequent finite element analysis of that realizationgloly realization of the footing
settlement(s). Repeating the process over an ensemblalzBtéeons generates a set
of possible settlements which can be plotted in the form ofstogram and from
which distribution parameters can be estimated. In thidystR000 realizations are
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performed for each input parameter set,(0, ., andWW;). If it can be assumed
that log-settlement is approximately normally distrilsi{evhich is seen later to be a
reasonable assumption and is consistent with the disitbaelected fo), andm, 5
ands? s are the estimators of the mean and variance of log-settigmespectively,
then the standard deviation of these estimors obtained #0680 realizations are

given byo,,,; = sins/v/n = 0.022,5 andoz = \/ =21 st = 0.03252 5 so that the
estimator ‘error’ is negligible compared to the estimatadance.

Realizations of the log-elastic modulus field(z,), are produced using the two-
dimensional Local Average Subdivision (LAS) techniqueneéa and Vanmarcke,
1990, Fenton, 1994), wheré(z,) is the local average of a zero mean, unit variance
Gaussian random field over the domain of the element cengtred The generated
field correctly reproduces the mean, variance and covagisinacture of the 2-D local
average process. The elastic modulus value then assigtieelitth element is

E(z;) = expl{un g + one G(z,)} (4)

Once the field of elastic modulus values is assigned, theesetht(s) are computed
via finite element analysis.

SINGLE FOOTING CASE

A typical histogram of the settlement under a single foqtiag estimated by 2000
realizations, is shown in Figure 2. This is for the case wileeefooting has width
We/H = 0.2, 05/, = 2, andby, , = 0.7. With the requirement that settlement be
non-negative, the shape of the histogram suggests a logihdistribution, which was
adopted in this study (see also Eq. 3) . The histogram itsetbmputed over 30
equally spaced intervals betweendp(,) and In(,,....), in log-space, where,,,;,, and
Tmae @re the minimum and maximum settlements observed in thelsahp000. The
histogram is normalized to enclose a unit area and a strianghis drawn between the
interval midpoints.
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Figure2. Typicalfrequency histogram and fitted lognormal distribabf settlement
under a single footing.

Superimposed on the histogram is the fitted lognormal Bigtion with parameters
given byu,, s andoy, s in the line key. At least visually, the fit appears quite reedne.
In fact a Chi-Square goodness-of-fit test gives a criticahlue of 1x 10-8. The critical
p-value may be interpreted as the probabilitynaktakenlyrejecting the lognormal
hypothesis — larger values of p imply a better fit to the datafodunately, the Chi-
Square test is quite sensitive to the ‘'smoothness’ of thtedyiam. Although it would
probably be well worth investigating the Kolmogorov-Snavrgoodness-of-fit test to
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evaluate the fit of the assumed distributions, this was mbbpeed in the current study
because the parameters of the assumed distribution akedérom the data and the
critical statistic is, strictly speaking, unknown undegsk conditions.

Over the entire set of simulations done for each parametef sgerest {V, 0,,, and
0 ») the fraction of critical p-values obtained are listed irblEa2. Since over 30%
have critical p-values in excess of 0.05, and over 70% in®x0&0.0001 (and so are
better fits than that shown in Figure 2) it appears that thedomal hypothesis is a
reasonable one.

Table2. Fraction of simulation runs with Chi-Square goodness+oéiitical p-
value greater than that indicated.

Derit Fraction
> 0.5 7%
> 0.1 26%
> 0.05 33%
> 0.01 49%
> 0.0001 71%

Accepting the lognormal hypothesis as a reasonable fit tgithalation results, the
next task is to estimate the parameters of the fitted lognlatisi@ibutions as functions
of the input parametersi(;, o, and, ). The lognormal distribution,

£5(2) b oexpl L ('nx“'”5>2 0< < (5)
)= ———— —e | — , <z <oo
’ V2rmops P 2 Oins

has two parametersg,,; ando,s. Figure 3 shows how the estimator @f 5, 7 s,
varies withoy, , for W;/H = 0.1. Similar results were found for the other footing
widths. All scales of fluctuation are drawn in the two plotst Bre not individually
labeled since they lie so close together. This observatigiiés that the mean log-
settlement is largely independent of the scale of fluctmatiq .. This is as expected
since the scale of fluctuation does not affect the mean ofa éverage of a Gaussian
process (recall that if is lognormally distributed, then If) is normally distributed).
Figure 3 suggests that the mean of log-settlement can bratstl by a straight line
of the form

fins = IN(S4e1) + 02 01 (6)
whered,,, is the ‘deterministic’ settlement obtained from a singléémrlement analy-
sis (or appropriate approximate calculation) of the problénereF = ., everywhere.

For the range of geometries considered in this study, theWolg relationship can be
used to approximate lfy.;) reasonably accurately

IN(34et) = IN(P/ 1) — 0.4924— 0.6883 In(V;/H) — 0.0964<In(Wf /H))2 ©)

which was obtained by regression over the intercepts showkigure 3 and over the
other footing widths not shown. The coefficient of determination for the above
regression was 0.9999
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W, /H= 0.10

Figure3. Estimated mean of log-settlement.

The slopes of the curves in Figure 3 are almost uniformly @spredicted for the
settlement by Eq. (3a) in the large and small scale of flucinatases. Note that if
the settlement mean is independent of the scale of fluctyaiq. (3a) is valid for
any scale. However, there is in fact a slight dependenceedltpen,, 0Ny, .. The
second term in the following is a small correction obtaineuhf plots of the sloper,
versusiV; andf,

B 0.041 1 2
Oéz—O.S"'W eXp{—Z<|n(9|nE/H)+l) } (8)
Eq. (8) is entirely empirical, but does have the correcttimgi forms for large and
smallé, .. Itis unknown at this time if it can be applied for valuesl&f / H outside
the range investigated. The physical interpretation aradyéinal verification of the
correction term in the above needs further investigation.

W/H = 0.10

10t
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10 10t
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IN(6,,g/H)
Figure4. Estimated standard deviation of log-settlement.

The estimator of the standard deviation of log-settlemeny, is plotted in Figure 4
for the smallest and largest footing widths. Intermediaiihg widths give similar
results. In all cases, it can be seen thgt — o, for larged,, .. It is expected
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that the reduction in variance &g, decreases is due largely to the local averaging
effect under the footing. That is, if the average ofd{s taken over some area under
the footing, then this average is expected to have small&anae for small scales of
fluctuation than for large. This is because there are modefiendent’ samples in the
area whert,, , is small. Recall that ift is the average of samplds,, F», ..., E,,
then the variance of is 0% /n if the E;'s are mutually independent (the/11 factor

is the variance reduction) — this case corresponds té,the— 0 case. On the other
hand, if theE;’s are fully correlatedd, , — oc), then the variance df is justo?, so
that there is no variance reduction. See Vanmarcke (1984né&ve details on local
averaging theory. The variance reduction effects arelglsaen in Figure 4.

Following this reasoning, and assuming that local avepg@ihthe area under the
footing accounts for all of the variance reduction seen iguké 4, the standard
deviation of log-settlement is

0’|n5:\/7(Wf7Hi On &) Oin & (9)

inwhich~(W;, H; 0y, ;), the so-called variance function (Vanmarcke, 1984),gjine
amount that the variance is reduced when the random fielceimged over a region
of sizelV, x H. Note that the dependence of the averaging regioff amapparently
only valid for the test case considered; if the footing isrfded on a much deeper soil
mass, one would not expect to average over the entire depthodsiress distribution
with depth. This issue needs additional study.

E
B—H8& W, /H=01
N © W, /H=0.1 (pred)
S
-
0 -
=)
=
s
0 -
4
““Si ] 0/ % _
s 4 e-—--0 W,/H=01
7 ‘f //é &----¢ W/ /H=0.1(pred)
/ + — -+ W/H=10
% / a— — A W, /H=1.0 (pred)
. ¢ | | | f I
-6 -4 2 0 2 4

In(6,,z/H)
Figure5. Comparison of simulation estimated standard deviatiolwgfdettlement
with theoretical estimate, Eq. (9).

Forthe isotropic Gauss-Markov correlation function uga@present the &) random
field (Eq. 1), the variance function is closely approximétgd

Y(dy, da; 0) = 5| Y(d)y(da|dy) +y(d)y(dy|dp) (10)
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) = [1+ (%)] L )= [1+ (g—)] (110
d.\?
R; =0 [g +(1-3) exp{ <£_39> }] (11p)
2

inwhichd; are dimensions of the averaging region. Predictiong,@lusing Eq. (9) are
plotted in Figure 5 against the simulation results for thrgdat and smallest footing
widths ando /i, values considered in this study. The agreement is remakabl
Intermediate cases show similar, if not better agreemetit pvedictions.

Single Footing Example

Consider a single footing of widthl’; = 2.0 m to be founded on a soil layer of
depth 10.0 m and which will support a lo&tl= 1000 kKN. Suppose also that samples
taken at a nearby locatidrhave allowed the estimation of the elastic modulus mean
and standard deviation at the site to be 40 MPa and 40 MPaatasge. Similarly,
nearby test results on a regular array have resulted in emaget scale of fluctuation,
Oz = 3.0 m. Assume also that Poisson’s ratio is 0.25.

The results from the previous section can be used to estittnatgrobability that the
settlement under the footing will not exceed 0.10 m as fadlow

1) A deterministic finite element analysis of the given pesblwith elastic modulus
everywhere equal ta, = 40 MPa gives a deterministic settlementqf, =
0.03531 (note that Eq. 7 givés,, = 0.03604, a relative difference of 2%).

2) forW,;/H = 0.2 andd,, , = 3, use Eq. (8) to compute,,

0.041
v0.2

3) compute variance of log-elastic modulus,

2
o2, =1In (1 + (Z—E> ) = In(2) = 069315

on = 0.83256

Qp = 05+

2
exp{%(ln(S/lO) + 1) } = 0.5907

4) compute mean of log-settlement,
tins = IN(0yet) + 208, = —3.3437 + 05601(069315) =—2.9341
5) compute standard deviation of log-settlement usingsE§) through (11),

—2/3

VW) = [1+ (V0 )77 2% = [1+ (27377 2" = 0.74847

! Note that if elastic modulus measurements were taken aitthiself, then the results presented

in the previous section would not be applicable: When infation about the actual site (beyond
statistical information) is known, then the site variayils considerably reduced.
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Y(H) = [1+ /00 )¥2) 7% = [1+ Q032 ¥° = 027107

Wi\ |
Ry=3|5+(1-3) exp{—(wlf > } = 3.28226
ne

H 2
R,=3|5+(1-3) exp{(m| )} = 4.69343
ne

| 7" = 0.84907

=0.29261

YWy H) = [1+(W;/Ry)¥?
WHIWy) = [1+ (/R
AWy, Hi 0 ) = 3 [y OV (HIW ) + (1) (W5 | 1) | = 0.22458

s = /YW, H; Onz) o = V0.22458(083256) = 039455

Aside: for u,s = —2.9341 ando,s = 0.39455, the corresponding settlement mean
and variance can be obtained from the transformations

15 = €xpljuns + 3015} =0.0575 m
05 = pusVe%ms —1=00236 m

A trial run of 2000 realizations for this problem gives; = 0.0582 ands; = 0.0219
for relative differences of 1.2% and 7.7% respectively. €emated standard error
onmg is approximately 0.0005 for 2000 realizations.

6) compute the desired probability using the lognormakitistion,

P[5 <0.10] = ® <In(0.10)— ’”"”5>

Ohns
= $(1.6006)
=0.945

where®(-) is the standard normal cumulative distribution, whoséetalp values
can be found in any good probability textbook.

The simulation run for this problem yielded 1892 sample®dR000 having settlement
less than 0.10 m. This gives a simulation based estimateeddttbve probability of
0.946, a relative difference of only 0.1%. Although this ey good accuracy, one
must a bit cautious since if the probability in question hadrbHd > 0.10] then the
relative error becomes 1.9%. It is expected that probaslgstimated farther out in
the tail of the distribution may have even larger differeneath simulation results
unless the simulation is carried out over very many moraza@bns, and this is yet
to be verified.

TWO FOOTING CASE

Having established with reasonable confidence the disiivassociated with settle-
ment under a single footing founded on a soil layer, attentem now be turned to the
more difficult problem of finding a suitable distribution tadel differential settlement
between footings. Analytically, i, is the settlement under the left footing shown
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in Figure 1 and, is the settlement of the right footing, then according toresults
of the previous section); andd, are joint lognormally distributed random variables
following the bivariate distribution

1 1
foro,(x,y) = m eXp{Z—rz [‘Ifi — pns ¥V, + ‘1’5] } (12)
n

forz > 0,y > 0, where¥, = (Inz — tuyns)/0ms, ¥, = (INT — fins)/01ns, and where

r? =1- p? s with p, 5 being the correlation coefficient between the log-setti@oé
the two footings. It is assumed in the above thatndd, have the same mean and
variance, which, for the symmetric conditions shown in Fggi(b), is a reasonable
assumption.

If the differential settlement between footings is defingd b
A =61 — 0y (13)
then the distribution of\ is given by

fale)=2 /0 T sty ) dy (14)

Unfortunately, this integral cannot be solved analyticafisofar as the authors are
aware, although for design purposes it can be estimated asyavailable reliability
tool, such as first- or second-order reliability methodsciBwmerical approximations
to Eq. (14) are being investigated for a future publicatitins not hard to show that
the variance ofA can be written,

oA = 2(1— ps)os — i (15)
wherep; is the correlation coefficient betweénandd,.

Figure 6 shows a typical histogram of differential settlaieetween the two equal
sized footings. Superimposed on the histogram is a triabeeptial distribution

having the form
fal@) = ;% exp{—x/ua} (16)

with 1.5 taken as 0.8998 which is the data average. Although thishlision fails the
Chi-Square goodness-of-fit test, it appears to capture #jerrimends in the histogram,
particularly in the tail.

n_
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S Hp = 0.89980, = 0.9557
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Figure6. Frequency histogram and fitted distribution for differahsiettlement un-
der two equal sized footings.
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Figure 7 shows the estimated mean and standard deviativasfunctions of}, ./ H,
op/ g, for W,/H = 0.5. The other two footing widths considered (0.1 and 0.3) are
of similar form The two plots are nearly identical, suggesgthat perhaps it is not
unreasonable to take a one-parameter exponentlal disbmoas representative of the
differential settlement (for which, = 114). A trial function of the form

i = B (L - ps)os (17)

will be investigated (see Eqg. 15) to predict the parametehefexponential distri-
bution, for some positive constaft Note that wherd,, , — 0, the previous section
predictedr? — 0, and wher), , — oo, the correlation coefficient between the footing
settlementsys — 1. Thus Eq. (17) is in agreement with the observation th&saih-
tial settlements are expected to go to zero for both verylsmdlvery large values of
eln E*

W,/H = 0.50

B———+H& og/ug= 0.10

R © og/yg = 1.00

& ———% gl = 4.00 //Q,#e#——@———e-—o

W/H = 0.50
G———1H8 og/yg= 0.10

Qe 2 UE;HEii'gg Q#@//G‘~-<>/"@
O-———C OgfHe= 4. Pl

In( 8, /H)

Figure7. Estimated differential settlement mean and standard tiemia

The factorp; in Eq. (17) can be obtained by first considering the corrabatp, s,
between the two local averages of theH(field under the two footings; these local
averages are of dimensid#i, in width by / in height and are separated, center to
center, by the distanc®. The correlation,s, can be found using the variance
function as

Pins = ZI;/f{(D WD =W, H)+(D+W;)?y(D+W;, H)—2D?*~(D, H)} (18)

where the (), ;) notation is now dropped for convenience, it being undedtiat
the variance function is dependenté,. Calculatingu, s andoy, 5 as in the previous
section (EQ’s 6 to 9) then allows the computationugfando?;

15 = €XPlpins + 2065} (19a)
0§ = Ma(ﬁ’a'” -1) (1%9)
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With these results, the correlatipp can be found from

ps = exp{pnsoinst — 1
;=

(20)

andua can now be estimated using Eq. (17) if a suitable valug isffound.

To test the ability of the assumed distribution to accuyagstimate probabilities, the
probability
P[A < aup]l =1—¢” (21)

for o varying from 0.5 to 4.0, is plotted against the correspogdgirobabilities esti-
mated directly from the simulation results. After someliaiad error, & value of 2/3
was found to give the most accurate probabilities on aveoage the range ofl/;,
os/ls, @andoy, , considered here. Figure 8 shows the predicted probabilit#ng
Eqg. (17) withg = 2/3 alongside the estimated probabilities averaged over,all .
andé,, . parameter values. When results are not averaged over paravaties, the
agreement is typically less good away from the tails (sonw@bsome below) but
generally reasonable in the tails.

R e
S 7 e
~
© ~
S y
=~
o © J
\ ———  Predicted
.D<I__. g - / ——8& W;/D=01
O © W;/D=03
0 %
o ] -———¢% W;/D=05
<
(=}
T T T T T T
0.5 1 1.5 2 2.5 3 35 4

a
Figure8. Simulation based estimates of R < aua], averaged over alh, , and
o/ 1 Cases, compared to that predicted by Eq.'s (17) and (21).

CONCLUSIONS

On the basis of this initial simulation study, which is by n@ans complete, some
tentative observations are made as follows.

It appears that the settlement under a footing founded oratiaig random elastic
modulus field of finite depth overlying bedrock is reasonabkéll represented by a
lognormal distribution, ifE is also lognormally distributed, with paramete#ss and
o2 s. The first parameteyy, 5, is dependent on the mean and variance of the underlying
elastic modulus field and may be largely derived by consigdimiting values ob),, ...
Although there is some question as to why the slope cormtéion appearing in Eq.
(8) is necessary, including it yields quite accurate edtsaf the mean log-settlement.
Itis significant to note that the second parametgs, is very well approximated by the
variance of a local average of the elastic modulus field in¢lgeon directly under the
footing. This gives the prediction af2 ; some generality that could possibly extend
beyond the actual range of simulation results considerszlrhi a suitable averaging
domain can be defined. Once the statistics of the settlemgptando? ;, have been
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computed using Eq.’s 6 to 9 the estimation of probabilitesoaiated with settlement
involves little more than referring to a standard normatrébstion table.

The differential settlement follows a more complicatedribsition than that of settle-
ment itself (see Eq. 14). This is seen also in the differésettlement histograms
which tend to be quite erratic with long tails. Clearly th&elience between two log-
normally distributed random variables is not exponentidlktributed. Neither does
this difference follow a normal distribution, the normasulibution falling off far too
rapidly in the tails. For an accurate estimation of probgbiklating to differential
settlement where it can be assumed that footing settlerméogmormally distributed,
Eq. (14) should be numerically integrated. This approach m@t pursued in this
study since it was observed that the tail of the differerg&ttlement histogram was
reasonably well approximated by an exponential distrdyutiThe results suggest a
relatively simple approach to obtaining ‘ball-park’ estites of probabilities associ-
ated with differential settlement that involves, agaiatistics of the underlying elastic
modulus field and local averages of the field directly underftotings. In that the
statistical parameters of the underlying elastic modukld fire themselves estimates,
that ma>élor may not be very accurate, the proposed probapidictions may be
reasonable.
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