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ABSTRACT: By combining elasto-plastic finite element analysis with random ficld theory, a preliminary inves-
tigation has been performed into the bearing capacity of soils with spatially random shear strength. The main
issue is to determine the extent to which spatial variability and cross-correlation in soil properties affects the
distribution of the computed bearing capacity. For vanishing coefficients of variation (C.0.V.) in the soil shear
strength, the expected value of the bearing capacity tends to the Prandtl solution, N.. For increasing values
of C.0.V,, however, the expected value of the bearing capacity falls quite steeply, largely independently of the
correlation length and the degree of cross-correlation between ¢ and ¢. The results of Monte-Carlo simulations
on this nonlinear problem are presented in the form of histograms which enable a probabilistic interpretation.
In particular, such plots allow the probability of overestimating the bearing capacity to be assessed.

1 INTRODUCTION

The paper presents results obtained using a program
developed by the authors which combines nonlinear
clasto-plastic finite element analysis (e.g. Smith &
Griffiths, 1998) with random field theory (e.g. Fen-
ton, 1990, Vanmarcke, 1984). The program computes
the bearing capacity of a smooth rigid strip footing
(plane strain) at the surface of a weightless soil with
shear strength parameters ¢ and ¢ represented by spa-
tially varying and cross-correlated (point-wise) ran-
dom ficlds. These two soil propertics were selected to
be represented as random fields since they have the
greatest impact on soil bearing capacity.

Figure 1. Typical deformed mesh at failure, where
the darker regions indicate weaker soil.

Figure 1 shows a typical deformed finite element

mesh resulting from a footing’s bearing failure on
a soil with spatially random properties. Lighter re-
gions in the plot indicate stronger soil and darker re-
gions indicate weaker soil. It is clear, in this case,
that the weak (dark) region near the ground surface
to the right of the footing has triggered a quite non-
symmetric failure mechanism which is often at a
lower bearing load than obtained from the traditional
‘uniform’ and symmetric failure analysis.

The bearing capacity analyses use an elastic-
perfectly plastic stress-strain law with a Mohr-
Coulomb failure criterion. Plastic stress redistribution
is accomplished using a viscoplastic algorithm. The
program uses §-node quadrilateral elements and re-
duced integration in both the stiffness and stress re-
distribution parts of the algorithm. The theoretical ba-
sis of the method is described more fully in Chapter
6 of the text by Smith & Griffiths (1998). The finite
clement model incorporates five parameters; Young’s
modulus (F£), Poisson’s ratio (v), dilation angle (),
shear strength (c¢), and friction angle (¢). The method-
ology allows for random distributions of all five pa-
rameters, however in the present study, £, v and ¥
arc held constant (at 100000, 0.3, and 0, respectively)
while ¢ and ¢ are randomized. The finite element
mesh consists of 1000 elements, 50 eclements wide by



20 clements deep. Each clement is a square of side
length 0.1m and the strip footing occupies 10 cle-
ments, giving it a width of 1m.

Rather than deal with the actual bearing capacity,
this study deals with the dimensionless bearing ca-
pacity factor, V., which is traditionally defined by

N.=2 (M
C

where ¢; is the bearing capacity and c is the cohesion
of the soil (traditionally assumed spatially constant).
For a soil with spatially constant cohesion and friction
angle, the theoretical bearing capacity factor, V., is
given by Sokolovskii (1965),

N, = (™% tan?(45 4+ ¢/2) — 1)/tan ¢,  (2)

so that, for example, if ¢ = py = 25 degrees, then
N, =20.7.

2 THE RANDOM FIELD MODEL

In this study, the soil cohesion is assumed to be log-
normally distributed with mean p., standard devia-
tion o., and spatial correlation length 6, .. A lognor-
mally distributed random field is casily obtained by
first simulating a normally distributed random field,
G'm (), having zero mean, unit variance, and spatial
correlation length 6y,.. This ‘underlying’ normally
distributed random ficld may then be transformed to
the desired cohesion field using the relationship

¢; = exp{me + OmGme(z;)} 3)

where z; 1s a vector containing the coordinates of the
center of the :’th element, and ¢; is the cohesion value
assigned to the 2’th element.

The friction angle, ¢, is bounded both above and
below, and so neither the normal nor the lognormal
distributions are appropriate. In this study, a bounded
distribution is selected which arises as a simple trans-
formation of a standard normal random field, G 4(z).
This approach again allows the generation of a nor-
mally random field followed by the transformation

Qbi - qum + %(quax - @mm) {1 + tanh (%@2)) }

™
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where ¢,,;, and ¢,,,,, are the minimum and maximum

friction angles, respectively, and s is a scale factor

which governs the friction angle variability between

its two bounds. See Fenton (1990) for more details on
the above transformation.

The random fields used in this study are gen-

crated using the Local Average Subdivision (LAS)

method (Fenton & Vanmarcke, 1990, Fenton, 1994).

An isotropic Markovian spatial correlation function is
used for both fields, having the form

p(7) = exp{—2|r|/0} (5)

where p is the correlation coefficient between the un-
derlying random field values at any two point sepa-
rated by a distance 7. This correlation function gov-
erns the correlation structure of the underlying gener-
ated fields G/(z).

Cross-correlation between the two soil property
fields (¢ and ¢) is implemented using a Cholesky de-
composition of the cross-correlation matrix between
the underlying standard normal two random fields.

3 MONTE CARLO SIMULATION

In the parametric studies that follow, the mean co-
hesion (1.) and mean friction angle (14) have been
held constant at 100 kN/m? and 25° (with ¢,,,;, = 5°
and ¢, = 45°), respectively, while the C.0.V. (=
o./ 1), spatial correlation length (#), and correlation
coefficient, p, between G, . and G, are varied sys-
tematically according to the following table

Table 1. Random field parameters used in Monte
Carlo simulation

9 = 05 10 20 40 80 50.
COV. = 01 02 05 1.0 20 50
p = -10 00 1.0

In addition, it is assumed that when the variability in
the cohesion is large, the variability in the friction an-
gle will also be large. Under this reasoning, the scale
factor, s, used in Eq. (4) is setto s = 0./, = C.O.V..
This choice is arbitrary, but results in the friction an-
gle varying from quite narrowly (when C.O.V. = 0.1
and s = 0.1) to very widely (when C.0.V. = 5.0 and
s = 5) between its lower and upper bounds, 5° and
45°.

For each set of assumed statistical properties given
by Table 1, Monte-Carlo simulations have been per-
formed. These involve 1000 repetitions or “realiza-
tions” of the soil property random ficlds and the sub-
sequent finite element analysis of bearing capacity.
Each realization, therefore, has a different value of the
bearing capacity and, after normalization by the mean
cohesion, a different value of the bearing capacity fac-
tor,

N i — qji ’
He

so that the average can be computed as

i=1,2,...,1000, (6)
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4 SIMULATION RESULTS

Figure 2(a) shows how the sample mean bearing ca-
pacity factor, taken as the average of the V;, com-
puted over all soil realizations, and refered to as V.,
varies with the correlation length, soil variability, and
cross-correlation between ¢ and ¢. For small soil vari-
ability, /V. tends towards the deterministic value of
20.7, which is found when the soil takes on its mean
properties everywhere. For increasing soil variability,
the mean bearing capacity factor becomes quite sig-
nificantly reduced from the ideal case. What this im-
plies from a design standpoint is that the bearing ca-
pacity of a heterogencous soil will, on average, be less
than the Prandtl solution which would be predicted
assuming the soil has strength given by mean values.
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Figure 2. a) Sample mean bearing capacity factor,
N,, and b) sample coefficient of variation
of N..

The greatest reduction from the Prandtl solution is
observed for low 6 values. This can be explained by

the fact that as the correlation length decreases, the
possibility of a lower strength non-symmetric bearing
failure increases because of the more rapidly varying
(in space) soil properties. Cross-correlation between
c and ¢ is seen in Figure 2(a) to have a only a mi-
nor affect on V.. Similarly, the variability of V., as
seen in Figure 2(b), also is not significantly affected
by cross-correlation between ¢ and ¢. The variability
in N., shown in Figure 2(b) increases with the vari-
ability in the soil, with the slowest increase occurring
at smaller correlation lengths due to the local averag-
ing affect under the footing.

5 PROBABILISTIC INTERPRETATION

Following Monte-Carlo simulations for each para-
metric combination of input parameters (¢, C.0.V.,
and p), the suite of computed bearing capacity fac-
tor values from Eq. (6) can be plotted in the form of a
histogram, and a ‘best-fit’ lognormal distribution su-
perimposed. Figure 3 shows such a plot for the case
where § = 2, C.0.V.= 1, and p = 0.

N, Histogram
Fitted, Wy, = 2.158, Oy = 0.536

40

Figure 3. Typical normalized histogram of N, val-
ues with superimposed fitted lognormal
distribution.

Since the lognormal fit has been normalized to en-
close an arca of unity, areas under the curve can be di-
rectly related to probabilities. From a practical view-
point it would be of interest to estimate the probabil-
ity of ‘design failure’, defined here as occurring when
the computed bearing capacity is less than the Prandtl
value based on the mean soil properties, i.. we have
design failure if V. < 20.7, where N, is computed
from Eq. (1).

Assuming that N, does follow a lognormal distri-
bution, as is roughly indicated by Figure 3, the ‘design
failure’ probability can be computed as

1n20.7 —
P[Nc<20.7]:<1><n 0.7 = pm Nc) (8)

Oln N,

where @ is the cumulative normal distribution func-
tion. For the particular case shown in Figure 3, the



fitted lognormal distribution has parameters u, v, =
2.158 and o1, . = 0.536. Eq. (8) gives P[ V. < 20.7] =
0.95, indicating an 95% probability that the actual
bearing capacity will be less than the Prandtl value.
Figure 2(a) indicated that the expected bearing
capacity of a strip footing on a soil with spatially
variable cohesion and friction angle will always be
lower than the Prandtl value based on the mean soil.
However, the design capacity is generally based on
the Prandtl solution reduced by a ‘Factor of Safety’,
F'. The probability of design failure, in the form of
P[N. < 20.7/F], is considerably reduced, giving a
more reassuring result from a design viewpoint.
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Figure 4. Effect of factor of safety on the probabil-
ity of design failure, P[V, < 20.7/F], for
a) ['=2,and b) F' = 4.

Figure 4 illustrates the probability of design failure
for two different factors of safety, for the case where
p = 0. For example, from Figure 4(a), in which F' = 2,

the probability of design failure for a soil with § = 4,
C.0.V.= 0.5 and p = 0, is about 17% (varying from
14% for p = —1 to 26% for p = 1). This probabil-
ity is reduced to about 0.1% (varying from 0.02% for
p = —11t0 1% for p = 1) when the factor of safety is
increased to /' = 4, as shown in Figure 4(b).

These plots indicate that quite high factors of safety
are required to reduce the probability of ‘design fail-
ure’ to negligible levels. The most important factor af-
fecting the probability of design failure appears to be
the soil variability (which includes the cohesion and
friction angle variabilities). The correlation length
and cross-correlation coefficient, under the assumed
model, have only a secondary affect on the magnitude
of the probability of design failure.

These results may help explain in a probabilistic
context, why Factors of Safety used in bearing capac-
ity calculations are typically higher than those used
in other limit state calculations in geotechnical engi-
neering, ¢.g. slope stability, carth pressures.

6 CONCLUDING REMARKS

The paper has shown that soil strength variability can
significantly reduce the mean bearing capacity of a
strip footing on a c-¢ soil.

On the basis of a Monte Carlo study involving 1000
realizations, for each parameter set considered, of the
bearing capacity on a spatially random soil, the fol-
lowing observations can be made;

e As the variance of the soil strength increases,
the mean bearing capacity decreases. The rate of
decrease is only slightly affected by correlation
length and cross-correlation coefficient, over the
ranges in these parameters considered.

e As the variance of the soil strength increases
from zero, the cocfficient of variation (C.0.V.)
of the bearing capacity also increases. Increas-
ing the spatial correlation length consistently in-
creases the C.0.V. of the bearing capacity due
to the reduced local averaging variance reduction
under the footing.

e Results have been presented in a probabilistic
context to determine the probabitity of ‘design
failure’, defined as the probability that the ac-
tual bearing capacity would be lower than a de-
terministic prediction of factored bearing capac-
ity using Prandtl’s formula based on the mean
strength of the soil.

e By investigating the role of a Factor of Safety
applied to the Prandtl solution, it was observed
that a value of /' = 4 and greater may be required
to reduce the probability of ‘design failure’ for
soils to a negligible amount.



e Cross-correlation between ¢ and ¢, on a point-
wise basis, was found to have only a minor af-
fect on bearing capacity reliability, the negative
correlated random fields giving somewhat safer
designs.

e The influence of the correlation length on the
probabilistic interpretation of the bearing capac-
ity problem was also seen to be not greatly sig-
nificant, within the range of lengths considered.
The major factor influencing the probability of a
‘design failure’ is the soil C.O.V.
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