Underground pillar stability: A probabilistic approach
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ABSTRACT: The majority of geotechnical analyses are deterministic, in that the inherent variability of the
materials is not modeled directly, rather some “factor of safety” is applied to results computed using “average”
properties. In the present study, the influence of randomly distributed shear strength is assessed via numerical
experiments involving the compressive strength and stability of pillars typically used in underground construction
and mining operations. The model involves combining random field theory with an elasto-plastic finite element
algorithm in a Monte-Carlo framework. It is found that the “average” shear strength of the rock is not a good
indicator of the overall strength of the pillar. The results of this study enable traditional approaches involving
“factors of safety” to be re-interpreted in the context of reliability based design.

1 INTRODUCTION

A review and assessment of existing design methods
for estimating the factor of safety of coal pillars based
on statistical approaches was covered recently by Sala-
mon (1999). This paper follows this philosophy by
investigating in a rigorous way, the influence of rock
strength variability on the overall compressive strength
of rock pillars typically used in mining and under-
ground construction. The technique merges elasto-
plastic finite element analysis (e.g. Smith and Griffiths
1998) with random field theory (e.g. Vanmarcke 1984,
Fenton 1990) within a Monte-Carlo framework. The
rock strength is characterized by an elastic-perfectly
plastic Tresca failure criterion, in which the variable
cohesion ¢ is defined by a lognormal distribution with
three parameters as shown in Table 1.

Table 1. Input parameters for rock strength

Units
Mean pe | kN/m?
Standard Deviation o. | kN/m?
Spatial Correlation Length | 6y, . m

The Spatial Correlation Length describes the distance
over which the spatially random values will tend to be
correlated in the underlying Gaussian field. Thus, a
large value will imply a smoothly varying field, while a
small value will imply a ragged field. Initial studies on
a similar problem were reported by Paice and Griffiths
(1999).

In order to non-dimensionalize the input, the rock
strength variability is expressed in terms of the Coeffi-
cient of Variation C.O.V.. = 0./, and a normalized
spatial correlation length ©. = 6y, ./B where B is the
side length of the pillar. Typical C.0.V.. values for rock
are thought to be of the order of 0.4 (see e.g. Savely

1987, Hoek and Brown 1997).

A typical finite element mesh is shown in Figure 1 and
consists of 400 8-node plane strain quadrilateral ele-
ments. Each element is assigned a different c-value
based on the underlying lognormal distribution. At
each Monte-Carlo simulation, the block is compressed
by incrementally displacing the top surface vertically
downwards. Following each displacement increment,
the nodal reaction loads are summed and divided by
the width of the block B to give the average axial stress.
The maximum value of this axial stress g, is then de-
fined as the compressive strength of the block.
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Figure 1. Mesh used for FE pillar analysis.

This study focuses on the dimensionless “bearing ca-
pacity factor” N, defined at each of the ng;,, Monte-
Carlo simulation as:



for each simulation is shown in Figures 3a and 3b. The

Ni = q}/uc, i=1,2,.....,ngim (1) plots confirm that for low values of C.O.V.., my, tends

to the deterministic value of 2. As the C.O.V.. of the

The N! values are then analysed statistically to enable rock increases, the mean bearing capacity factor falls

probabilistic statements to be made about the compres- quite rapidly, especially for smaller values of @.. As

sive strength of the pillar. shown in Figure 3b, however, my, reaches a minimum

at about O, = 0.2 and starts to climb again. It could

be speculated that in the limit of ©, = 0, there are no

“preferential” paths the mechanism can follow, and the

mean bearing capacity factor will return once more to

the deterministic value of 2. This hypothesis can only

2 PARAMETRIC STUDIES be tested with an extremely fine mesh and is currently
under further investigation.

For a homogeneous rock, N, = 2, so for a given level of
rock strength variability, it will be important for design
to estimate the factor of safety required to reduce the
probability of failure to acceptable levels.

Analyses were performed with input parameters within

the following ranges: S
0.01 <O, <10 o~
0.06<C.OV.. <16
For each pair of values of C.0.V.. and O, ng;m (=2500)
Monte-Carlo simulations were performed, and from |

these, the estimated statistics of the bearing capacity

z
factor were computed leading to a mean my, and stan- €
dard deviation sy, . S

Figure 2 shows a typical deformed mesh at failure with
a superimposed greyscale in which lighter regions indi- &
cate stronger rock and darker regions indicate weaker
soil. It is clear in this case that the weak (dark) region
has triggered a quite irregular failure mechanism. In
general, the mechanism is attracted to the weak zones

and “avoids” the strong zones. 3 ‘ ‘ ‘ ‘ ‘ ‘ ‘ ‘
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Figure 2. Typical deformed mesh and grey scale at 10 10 o 10 10
C

failure for C.0.V., = 0.4 and O, = 0.2.
Figures 3a,b. Variation of my, with C.0.V.. and O,
2.1 Mean of N,

A summary of the mean bearing capacity factor (my,) Also included on Figure 3a is the horizontal line cor-
computed using the values provided by equation (1) responding to the solution that would be obtained for



O, = co. This hypothetical case implies that each real-
ization of the Monte-Carlo process involves essentially
homogeneous soil, albeit with properties varying from
one realization to the next. In this case, the distribu-
tion of gy will be statistically similar to the underlying
distribution of ¢ but magnified by 2, thus my, = 2 for
all values of C.O.V...

2.2 Coefficient of Variation of N,

Figure 4 shows the influence of ©, and C.O.V.. on
the coefficient of variation of the estimated bearing ca-
pacity factor, C.O.V.n, = sn./mn.. The plots indi-
cate that C.0.V.y, is positively correlated with both
C.0.V.. and 0., with the limiting value of O, = o
giving the straight line C.O.V.. = C.0.V.n_.
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Figure 4. Variation of C.0.V.y_ with C.O.V.. and O,

3 PROBABILISTIC INTERPRETATION

Following Monte-Carlo simulations for each parametric
combination of input parameters (0, and C.0.V...), the
suite of computed bearing capacity factor values from
equation (1) was plotted in the form of a histogram,
and a “best-fit” lognormal distribution superimposed.
An example of such a plot is shown in Figure 5 for the
case where ©. = 0.2 and C.0.V.. = 0.4.

Since the lognormal fit has been normalized to enclose
an area of unity, areas under the curve can be directly
related to probabilities. From a practical viewpoint,
it would be of interest to estimate the probability of
“design failure”, defined here as occurring when the
computed compressive strength is less than the deter-
ministic value based on the mean strength divided by
a “factor of safety” F, i.e.

“Design failure” if g < 2u./F (2)

In the interests of brevity, only the case corresponding
to F=1.5 will be presented here. Let the probability of
“design failure” be p(N,. < 2/F), hence from the prop-
erties of the underlying normal distribution we get:

In2/F — Min N,
p(N. <2/F)=23 </—> (3)
Sln N,
where ® is the cumulative normal function.
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Figure 5. Histogram and lognormal fit for the com-
puted bearing capacity factors with C.O.V.. = 0.4 and
0.=0.2.

For the particular case shown in Figure 5, the fitted
lognormal distribution has the properties my, = 1.721
and sy, = 0.185, hence the underlying normal distri-
bution (see e.g. Griffiths and Fenton 1997) is defined
by minn. = 0.537 and si, ., = 0.107. Equation (3)
therefore gives p(N, < 2/F) = 0.00997, indicating an
0.997% probability of “design failure” as defined above.

Figure 6 shows the effect of ©, and C.O.V.. on the
probability of failure with a factor of safety of 1.5. The
complex trends for the probability of failure are due to
the interaction of the individual influences of my, and
sn,. Although the probability of failure is influenced
by my, and sy_, mpy, is the greater factor. Assuming
constant sy, increasing my, decreases the probabil-
ity of failure. Assuming constant my_, the influence
of sy, depends on the value of my,. When mpy, is
greater than 2/F, increasing sy, increases the proba-
bility of failure; however, when my, is less than 2/F,



increasing sy, decreases the probability of failure.
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Figure 6. Probability of failure resulting from varying
C.0.V.. and O, with F' = 1.5.

4 CONCLUDING REMARKS

The paper has shown that rock strength variablility in
the form of a spatially varying lognormal distribution
can significantly reduce the compressive strength of an
axially loaded rock pillar.

The following more specific conclusions can be made:

1. As the coefficient of variation of the rock strength
increases, the expected compressive strength de-
creases. The decrease in compressive strength is
greatest for small correlation lengths.

2. As the correlation length is further decreased
however, the compressive strength appears to
reach a minimum and start to increase. It is spec-
ulated that as the correlation length becomes van-
ishingly small and approaches the limiting value
of zero (white noise), the compressive strength
tends to approach the deterministic value once
more.

3. The coefficient of variation of the compressive
strength is observed to be positively correlated

with both the spatial correlation length and the
coefficient of variation of the rock strength.

4. By interpreting the Monte-Carlo simulations in
a probabilistic context, a direct relationship be-
tween factors of safety and probability of failure
can be established.
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