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ABSTRACT: The majority of geotechnical analyses are deterministic, in that the inherent variability of thematerials is not modeled directly, rather some \factor of safety" is applied to results computed using \average"properties. In the present study, the in
uence of randomly distributed shear strength is assessed via numericalexperiments involving the compressive strength and stability of pillars typically used in underground constructionand mining operations. The model involves combining random �eld theory with an elasto-plastic �nite elementalgorithm in a Monte-Carlo framework. It is found that the \average" shear strength of the rock is not a goodindicator of the overall strength of the pillar. The results of this study enable traditional approaches involving\factors of safety" to be re-interpreted in the context of reliability based design.1 INTRODUCTIONA review and assessment of existing design methodsfor estimating the factor of safety of coal pillars basedon statistical approaches was covered recently by Sala-mon (1999). This paper follows this philosophy byinvestigating in a rigorous way, the in
uence of rockstrength variability on the overall compressive strengthof rock pillars typically used in mining and under-ground construction. The technique merges elasto-plastic �nite element analysis (e.g. Smith and Gri�ths1998) with random �eld theory (e.g. Vanmarcke 1984,Fenton 1990) within a Monte-Carlo framework. Therock strength is characterized by an elastic-perfectlyplastic Tresca failure criterion, in which the variablecohesion c is de�ned by a lognormal distribution withthree parameters as shown in Table 1.Table 1. Input parameters for rock strengthUnitsMean �c kN/m2Standard Deviation �c kN/m2Spatial Correlation Length �ln c mThe Spatial Correlation Length describes the distanceover which the spatially random values will tend to becorrelated in the underlying Gaussian �eld. Thus, alarge value will imply a smoothly varying �eld, while asmall value will imply a ragged �eld. Initial studies ona similar problem were reported by Paice and Gri�ths(1999).In order to non-dimensionalize the input, the rockstrength variability is expressed in terms of the Coe�-cient of Variation C:O:V:c = �c=�c, and a normalizedspatial correlation length �c = �ln c=B where B is theside length of the pillar. Typical C:O:V:c values for rockare thought to be of the order of 0.4 (see e.g. Savely

1987, Hoek and Brown 1997).A typical �nite element mesh is shown in Figure 1 andconsists of 400 8-node plane strain quadrilateral ele-ments. Each element is assigned a di�erent c-valuebased on the underlying lognormal distribution. Ateach Monte-Carlo simulation, the block is compressedby incrementally displacing the top surface verticallydownwards. Following each displacement increment,the nodal reaction loads are summed and divided bythe width of the block B to give the average axial stress.The maximum value of this axial stress qf , is then de-�ned as the compressive strength of the block.
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Figure 1. Mesh used for FE pillar analysis.This study focuses on the dimensionless \bearing ca-pacity factor" Nc de�ned at each of the nsim Monte-Carlo simulation as:



N ic = qif=�c; i = 1; 2; :::::; nsim (1)The N ic values are then analysed statistically to enableprobabilistic statements to be made about the compres-sive strength of the pillar.For a homogeneous rock, Nc = 2, so for a given level ofrock strength variability, it will be important for designto estimate the factor of safety required to reduce theprobability of failure to acceptable levels.2 PARAMETRIC STUDIESAnalyses were performed with input parameters withinthe following ranges:0:01 < �c < 100:05 < C:O:V:c < 1:6For each pair of values of C:O:V:c and �c, nsim (=2500)Monte-Carlo simulations were performed, and fromthese, the estimated statistics of the bearing capacityfactor were computed leading to a mean mNc and stan-dard deviation sNc .Figure 2 shows a typical deformed mesh at failure witha superimposed greyscale in which lighter regions indi-cate stronger rock and darker regions indicate weakersoil. It is clear in this case that the weak (dark) regionhas triggered a quite irregular failure mechanism. Ingeneral, the mechanism is attracted to the weak zonesand \avoids" the strong zones.

Figure 2. Typical deformed mesh and grey scale atfailure for C:O:V:c = 0:4 and �c = 0:2.2.1 Mean of NcA summary of the mean bearing capacity factor (mNc)computed using the values provided by equation (1)

for each simulation is shown in Figures 3a and 3b. Theplots con�rm that for low values of C:O:V:c, mNc tendsto the deterministic value of 2. As the C:O:V:c of therock increases, the mean bearing capacity factor fallsquite rapidly, especially for smaller values of �c. Asshown in Figure 3b, however, mNc reaches a minimumat about �c = 0:2 and starts to climb again. It couldbe speculated that in the limit of �c = 0, there are no\preferential" paths the mechanism can follow, and themean bearing capacity factor will return once more tothe deterministic value of 2. This hypothesis can onlybe tested with an extremely �ne mesh and is currentlyunder further investigation.
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C.O.V.c = 1.60Figures 3a,b. Variation of mNc with C:O:V:c and �cAlso included on Figure 3a is the horizontal line cor-responding to the solution that would be obtained for



�c =1. This hypothetical case implies that each real-ization of the Monte-Carlo process involves essentiallyhomogeneous soil, albeit with properties varying fromone realization to the next. In this case, the distribu-tion of qf will be statistically similar to the underlyingdistribution of c but magni�ed by 2, thus mNc = 2 forall values of C:O:V:c.2.2 Coe�cient of Variation of NcFigure 4 shows the in
uence of �c and C:O:V:c onthe coe�cient of variation of the estimated bearing ca-pacity factor, C:O:V:Nc = sNc=mNc . The plots indi-cate that C:O:V:Nc is positively correlated with bothC:O:V:c and �c, with the limiting value of �c = 1giving the straight line C:O:V:c = C:O:V:Nc .
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Figure 4. Variation of C:O:V:Nc with C:O:V:c and �c3 PROBABILISTIC INTERPRETATIONFollowing Monte-Carlo simulations for each parametriccombination of input parameters (�c and C:O:V:c), thesuite of computed bearing capacity factor values fromequation (1) was plotted in the form of a histogram,and a \best-�t" lognormal distribution superimposed.An example of such a plot is shown in Figure 5 for thecase where �c = 0:2 and C:O:V:c = 0:4.Since the lognormal �t has been normalized to enclosean area of unity, areas under the curve can be directlyrelated to probabilities. From a practical viewpoint,it would be of interest to estimate the probability of\design failure", de�ned here as occurring when thecomputed compressive strength is less than the deter-ministic value based on the mean strength divided bya \factor of safety" F , i.e.

\Design failure" if qf < 2�c=F (2)In the interests of brevity, only the case correspondingto F=1.5 will be presented here. Let the probability of\design failure" be p(Nc < 2=F ), hence from the prop-erties of the underlying normal distribution we get:p(Nc < 2=F ) = �� ln 2=F �mlnNcslnNc � (3)where � is the cumulative normal function.
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Figure 5. Histogram and lognormal �t for the com-puted bearing capacity factors with C:O:V:c = 0:4 and�c = 0:2.For the particular case shown in Figure 5, the �ttedlognormal distribution has the properties mNc = 1:721and sNc = 0:185, hence the underlying normal distri-bution (see e.g. Gri�ths and Fenton 1997) is de�nedby mlnNc = 0:537 and slnNc = 0:107. Equation (3)therefore gives p(Nc < 2=F ) = 0:00997, indicating an0:997% probability of \design failure" as de�ned above.Figure 6 shows the e�ect of �c and C:O:V:c on theprobability of failure with a factor of safety of 1.5. Thecomplex trends for the probability of failure are due tothe interaction of the individual in
uences of mNc andsNc . Although the probability of failure is in
uencedby mNc and sNc , mNc is the greater factor. Assumingconstant sNc , increasing mNc decreases the probabil-ity of failure. Assuming constant mNc , the in
uenceof sNc depends on the value of mNc . When mNc isgreater than 2=F , increasing sNc increases the proba-bility of failure; however, when mNc is less than 2=F ,



increasing sNc decreases the probability of failure.
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Figure 6. Probability of failure resulting from varyingC:O:V:c and �c with F = 1:5.4 CONCLUDING REMARKSThe paper has shown that rock strength variablility inthe form of a spatially varying lognormal distributioncan signi�cantly reduce the compressive strength of anaxially loaded rock pillar.The following more speci�c conclusions can be made:1. As the coe�cient of variation of the rock strengthincreases, the expected compressive strength de-creases. The decrease in compressive strength isgreatest for small correlation lengths.2. As the correlation length is further decreasedhowever, the compressive strength appears toreach a minimum and start to increase. It is spec-ulated that as the correlation length becomes van-ishingly small and approaches the limiting valueof zero (white noise), the compressive strengthtends to approach the deterministic value oncemore.3. The coe�cient of variation of the compressivestrength is observed to be positively correlated
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