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Abstract
The paper reviews some established probabilistic analysis techniques, such as the

“First Order Second Moment” and the “Point Estimate” methods, as applied to geotech-
nical problems. The advantages and limitations of these methods are discussed, with
particular reference to the role of spatial correlation which typically is not accounted for
in these simple methods. The paper goes on to describe a more rigorous approach to prob-
abilistic geotechnical analysis, in which random field and finite element methodologies are
merged. The results highlight cases in which proper modeling of spatial correlation is
important, and illustrates this through a simple example relating to triaxial compression
of a frictional soil.

1 Introduction

Many sources of uncertainty exist in geotechnical analysis ranging from the material
parameters to the sampling and testing techniques. This paper addresses the question
of how variable material parameters impact the safety and, ultimately, the economics of
geotechnical design.

Traditional geotechnical analysis uses the “Factor of Safety” approach in one of two
ways. In foundations analysis for example, Terzaghi’s bearing capacity equation leads to
an estimate of the ultimate value, which is then divided by the Factor of Safety to give
allowable loading levels for design. Alternatively, in slope stability analysis, the Factor of



Safety is included by reducing the shear strength of the soil prior to performing a limit
equilibrium calculation. Either way, the Factor of Safety represents a blanket factor that
implicitly includes all sources of variability and uncertainty inherent in the geotechnical
analysis.

The approaches described in this paper attempt to include the effects of soil property
variability in a more scientific way using statistical methods. If it is assumed that the soil
parameters in question (e.g. friction angle, cohesion, compressibility and permeability)
are random variables that can be expressed in the form of a probability density function,
then the issue becomes one of estimating the probability density function of some outcome
that depends on the input random variables. The output can then be interpreted in terms
of probabilities, leading to statements such as: “The design load on the foundation will
give a probability of bearing capacity failure of p1%”, “The embankment has a probability
of slope failure of p2%, “The probability of the design settlement levels being exceeded is
p3%, or “The probability of the seepage level exceeding the design limit is p4%.

A thorough understanding of how random variables affect the functions that depend
on them is essential. The first part of the paper therefore summarises some of the funda-
mental rules that describe this relationship.

2 Some rules describing random variables

In this section, the notation is quite generic with random variables (e.g. X and Y ) de-
noted in upper case. Later in the paper, specific geotechnical examples will be included.

Expectation
Let a random variable X be described by the Probability Density Function (PDF),

fX(x).
If g(X) is a function of the random variable X, then the expected value of g(X), is

its average value after it has been weighted by the Probability Density Function:

E[g(X)] =
∫ ∞
−∞

g(x)fX(x) dx (1)

Moments
First Moment: Mean

µX = E[X] =
∫ ∞
−∞

xfX(x) dx (2)

Second Moment: Variance

V [X] = σ2
X = E[(X − µX)2] =

∫ ∞
−∞

(x− µX)2fX(x) dx (3)

Third Moment: Skewness

νX =
E[(X − µX)3]

σ3
X

=
1

σ3
X

∫ ∞
−∞

(x− µX)3fX(x) dx (4)

Identities relating to Expectation
A linear function of two random variables X and Y

E[a+ bX + cY ] = a+ bE[X] + cE[Y ] (5)



The sum of multiple random variables X1, X2, .... etc.

E[X1 +X2 + ...+Xn] = E[X1] + E[X2] + ...+ E[Xn] (6)

The sum of functions of two random variables, X and Y

E[f(X) + g(Y )] = E[f(X)] + E[g(Y )] (7)

A nonlinear function of two random variables X and Y can be expressed using a Taylor
series expansion

f(X, Y ) = f(E[X], E[Y ]) + (X − E[X])
∂f

∂x
+ (Y − E[Y ])

∂f

∂y

+
1

2
(X − E[X])2∂

2f

∂x2
+

1

2
(Y − E[Y ])2∂

2f

∂y2

+
1

2
(X − E[X])(Y − E[Y ])

∂2f

∂x∂y

+
1

2
(Y − E[Y ])(X − E[X])

∂2f

∂y∂x
+ .... (8)

where all derivatives are evaluated at the mean. Thus to a first order of accuracy:

E[f(X, Y )] = f(E[X], E[Y ]) (9)

and to a second order:

E[f(X, Y )] = f(E[X], E[Y ]) +
1

2
V [X]

∂2f

∂x2
+

1

2
V [Y ]

∂2f

∂y2

+cov[X, Y ]
∂2f

∂x∂y
(10)

Identities relating to Variance
Variance of a random variable X

V [X] = E[(X − µX)2]

= E[X2]− (E[X])2 (11)

Variance of a linear function of X

V [a+ bX] = b2E[(X − µX)2]

= b2V [X] (12)

Variance of a linear function of two random variables X and Y

V [a+ bX + cY ] = b2V [X] + c2V [Y ] + 2bc cov[X, Y ] (13)

Variance of a linear function of uncorrelated random variables

V [a0 + a1X1 + a2X2 + ...+ anXn] = a2
1V [X1] + a2

2V [X2] + ...+ a2
nV [Xn] (14)



Covariance and Correlation
Covariance

cov[X, Y ] = E[(X − µX)(Y − µY )]

= E[XY ]− E[X]E[Y ] (15)

cov[X,X] = E[(X − µX)2]

= E[X2]− (E[X])2

= V [X]

= σ2
X (16)

Correlation Coefficient

ρ =
cov[X, Y ]

σXσY
(17)

−1 ≤ ρ ≤ 1

3 The First Order Second Moment (FOSM) Method

The First Order Second Moment (FOSM) method is a relatively simple method of includ-
ing the effects of variability of input variables on a resulting dependent variable

The First Order Second Moment method uses a Taylor series expansion of the function
to be evaluated. This expansion is truncated after the linear term, (hence “first order”).
The modified expansion is then used, along with the first two moments of the random
variable(s), to determine the values of the first two moments of the dependent variable
(hence “second moment”).

Due to truncation of the Taylor series after first order terms, the accuracy of the
method deteriorates if second and higher derivatives of the function are significant. Fur-
thermore, the method takes no account of the form of the probability density function,
describing the random variables using only their mean and standard deviation. The skew-
ness (third moment) is ignored.

Another limitation of the traditional FOSM method is that explicit account of spatial
correlation of the random variable is not typically done. For example, the soil properties
at two geotechnical sites could have identical mean and standard deviations, however at
one site, the properties could vary rapidly from point to point (“low” spatial correlation
length), and at another they could vary gradually (“high spatial correlation length”).
This issue will be returned to later in the paper.

Consider a function f(X, Y ) of two random variables X and Y . The Taylor Series
expansion of the function about the mean values (µX, µY ), truncated after first order terms
from equation (8), gives:

f(X, Y ) = f(µX, µY ) + (X − µX)
∂f

∂x
+ (Y − µY )

∂f

∂y
(18)

where derivatives are evaluated at (µX, µY ).
To a first order of accuracy, the expected value of the function is given by equation

(9), and and the variance by,

V [f(X, Y )] = V [(X − µX)
∂f

∂x
+ (Y − µY )

∂f

∂y
] (19)



hence,

V [f(X, Y )] =

(
∂f

∂x

)2

V [X] +

(
∂f

∂y

)2

V [Y ] + 2
∂f

∂x

∂f

∂y
cov[X, Y ] (20)

If X and Y are uncorrelated,

V [f(X, Y )] =

(
∂f

∂x

)2

V [X] +

(
∂f

∂y

)2

V [Y ] (21)

In general, for a function of n uncorrelated random variables, the FOSM Method gives:

V [f(X1, X2, ..., Xn)] =
n∑
i=1

(
∂f

∂xi

)2

V [Xi] (22)

where the first derivatives are evaluated at the mean values (µX1
,µX2

,...,µXn)

FOSM Example: Unconfined triaxial compression of a c
′
, φ

′
soil

The unconfined (σ
′
3 = 0) compressive strength of a drained c

′
, φ
′

soil is given from the
Mohr-Coulomb equation as:

qu = 2c
′
tan(45 + φ

′
/2) (23)

Considering the classical Coulomb shear strength law:

τf = σ
′
tanφ

′
+ c

′
(24)

it is more fundamental to deal with tanφ
′

(rather than φ
′
) as the random variable. Thus

equation (23) has been rearranged as:

qu = 2c
′
[tanφ

′
+ (1 + tan2 φ

′
)1/2] (25)

Treating c
′

and tanφ
′

as uncorrelated random variables,

µqu = 2µc′ [µtanφ′ + (1 + µ2
tanφ′ )

1/2] (26)

and referring to equation (22),

σ2
qu = V [qu] =

(
∂qu
∂c′

)2

V [c
′
] +

(
∂qu

∂(tanφ′)

)2

V [tanφ
′
] (27)

The required derivatives computed analytically are given by:

∂qu
∂c′

= 2[tanφ′ + (1 + tan2 φ
′
)1/2] (28)

and
∂qu

∂(tanφ′)
= 2c

′
[1 +

tanφ′

(1 + tan2 φ′)1/2
] (29)

It is now possible to compute the mean and standard deviation of the unconfined com-
pressive strength for a range of soil property variances.

As an example, let µc′ = 100 kPa and µtanφ′ = tan 30o = 0.577. To a first order
of approximation, the mean value of the unconfined compressive strength is given by



µqu = 346.4 kPa. Consider now a range of standard deviation values on these input
variables expressed in the dimensionless form of a Coefficient of Variation (C.O.V.). In
this example, the C.O.V. values for both c

′
and tanφ

′
are the same, thus

C.O.V.c′ ,tanφ′ =
σc′

µc′
=
σtanφ′

µtanφ′
(30)

The partial derivatives of the unconfined compressive strength evaluated at the mean,
from equations (28) and (29) are given by ∂qu/∂c

′
= 3.46 and ∂qu/∂(tanφ

′
) = 300 kPa.

Hence for a range of input C.O.V.c′ ,tanφ′ values, Table 1 gives the predicted mean and
standard deviation of the unconfined compressive strength from equations (26) and (27).

Table 1. Statistics of qu predicted using FOSM (analytical approach)

C.O.V.c′ ,tanφ′ V [c
′
] V [tanφ

′
] V [qu] σqu µqu C.O.V.qu

(kPa)2 (kPa)2 (kPa) (kPa)

0.1 100 0.0033 1500.0 38.7 346.4 0.11
0.3 900 0.0300 13500.0 116.2 346.4 0.34
0.5 2500 0.0833 37500.0 193.6 346.4 0.56
0.7 4900 0.1633 73500.0 271.1 346.4 0.78
0.9 8100 0.2700 121500.0 348.6 346.4 1.01

Numerical approach
An alternative approach evaluates the derivatives numerically, using a central finite

difference formula. In this case, the dependent variable, qu, is sampled across two standard
deviations in one variable, while keeping the other variable fixed at the mean. This large
central difference interval encompasses about 68% of all values of the input parameters
c
′

and tanφ
′
, so the approximation is only reasonable if the function qu(c

′
, tanφ

′
) from

equation (25), does not exhibit much nonlinearity across this range. The finite difference
formulas take the form:

∂qu
∂c′
≈
qu(µc′ + σc′ , µtanφ′ )− qu(µc′ − σc′ , µtanφ′ )

2σc′
=

∆qu(c′ )

2σc′
(31)

and

∂qu
∂(tanφ′)

≈
qu(µc′ , µtanφ′ + σtanφ′ )− qu(µc′ , µtanφ′ − σtanφ′ )

2σtanφ′
=

∆qu(tanφ′ )

2σtanφ′
(32)

The main attraction of this approach, is that once the derivative terms are squared
and substituted into equation (27), the variances of c

′
and tanφ

′
cancel out, leaving:

V [qu] ≈
(

∆qu(c′ )

2

)2

+

(
∆qu(tanφ′ )

2

)2

(33)

In this case, qu is a linear function of c
′

and is slightly nonlinear with respect to
tanφ

′
. It is clear from a comparison of Tables 1 and 2, that the numerical and analytical

approaches in this case give essentially the same results.



Table 2. Statistics of qu predicted using FOSM (numerical approach)

C.O.V.c′ ,tanφ
′

∆q
u(c
′
)

2

∆q
u(tanφ

′
)

2
V [qu] σqu µqu C.O.V.qu

(kPa) (kPa) (kPa)2 (kPa) (kPa)

0.1 34.64 17.31 1499.8 38.7 346.4 0.11
0.3 103.93 51.82 13484.9 116.1 346.4 0.34
0.5 173.21 85.94 37385.6 193.4 346.4 0.56
0.7 242.49 119.46 73070.5 270.3 346.4 0.78
0.9 311.77 152.19 120362.7 346.9 346.4 1.00

Refined approach including second order terms
In the above example, a first order approximation was used to predict both the mean

and variance of qu from equations (9) and (19). Since the variances of c
′

and tanφ
′

are
both known, it is possible to refine the estimate of µqu by including second order terms
from equation (10) leading to:

µqu = qu(µc′ , µtanφ′ ) +
1

2
V [c

′
]
∂2qu
∂c′2

+
1

2
V [tanφ

′
]

∂2qu
∂(tanφ′)2

+cov[c
′
, tanφ

′
]

∂2qu
∂c′∂(tanφ′)

(34)

where all derivatives are evaluated at the mean. Noting that in this case ∂2qu/∂c
′2

= 0,
and cov[c

′
, tanφ

′
] = 0, the expression simplifies to:

µqu = qu(µc′ , µtanφ′ ) +
1

2
V [tanφ

′
]

∂2qu
∂(tanφ′)2

(35)

so the analytical form of the second derivative is given by:

∂2qu
∂(tanφ′)2

= 2c
′
(

1

(1 + tan2 φ′)1/2
− tan2 φ

′

(1 + tan2 φ′)3/2

)
(36)

Combining equations (35) and (36) for the particular case of µc′ = 100 kPa and
µtanφ′ = 0.577 leads to:

µqu = 346.41 + 64.95 V [tanφ
′
] kPa (37)

Table 3 shows a reworking of the analytical results from Table 1 including second order
terms in the estimation of µqu . A comparison of the results from the two tables indicates
that the second order terms have marginally increased µqu and thus reduced C.O.V.qu ,
but the differences are barely noticeable until the input variance becomes relatively large.

Table 3. Statistics of qu predicted using FOSM
(analytical approach including second order terms)

C.O.V.c′ ,tanφ′ V [tanφ
′
] σqu µqu C.O.V.qu

(kPa) (kPa)

0.1 0.0033 38.7 346.6 0.11
0.3 0.0300 116.2 348.4 0.33
0.5 0.0833 193.6 351.8 0.55
0.7 0.1633 271.1 357.0 0.76
0.9 0.2700 348.6 363.9 0.96



Figure 1: PEM Distribution

4 The Point Estimate Method (PEM)

The Point Estimate Method (PEM) is an alternative way of taking into account random
variables. Like FOSM, PEM does not require knowledge of the particular form of the
probability density function of the input, however PEM is able to account for up to three
moments (mean µ, variance σ2, and skewness ν). As with FOSM, PEM does not typically
explicit account for spatial correlation.

PEM is essentially a weighted average method reminiscent of numerical integration
formulas involving “sampling points” and “weighting parameters”. The point estimate
method reviewed here will be the two point estimate method developed by Rosenblueth
(1975, 1981) and also described by Harr (1987).

The Point Estimate Method seeks to replace a continuous probability density function,
with a discrete function having the same first three central moments.
Steps for implementing PEM

1. Determine the relationship between the dependent variable and random input vari-
ables W = f(X, Y, ...)

2. Compute the locations of the two sampling points for each input variable. For a
single random variable X, with skewness νX, the sampling points are given by:

ξX+
=
νX
2

+
(

1 + (
νX
2

)2
)1/2

(38)

and
ξX− = ξX+

− νX (39)

where ξX+
and ξX− are standard deviation units giving the locations of the sampling

points to the right and left of the mean respectively. Figure 1 shows these sampling
points located at µX + ξX+

σX and µX − ξX−σX

vgriffit
Stamp



Figure 2: Point Estimates for two random variables

If the function depends on n variables, there will be 2n sampling points correspond-
ing to all combinations of the two sampling points for each variable. Figure 2 shows
the locations of sampling points for a distribution of two random variables X and
Y . Since n = 2 there are four sampling points given by

(µX + ξX+
σX, µY + ξY+σY )

(µX + ξX+
σX, µY − ξY−σY )

(µX − ξX−σX, µY + ξY+σY )

(µX − ξX−σX, µY − ξY−σY )

If skewness is ignored or assumed to equal zero, from equations (38) and (39),

ξX+
= ξX− = ξY+ = ξY− = 1 (40)

and each random variable has point locations that are plus and minus one standard
deviation from the mean.

3. Determine the weights Pi, to give each of the 2n point estimates. Just as a proba-
bility density function encloses an “area” of unity, so the probability weights must
also sum to unity. The weights can also take into account correlation between two
or more random variables.

For a single random variable X, the weights are given by:

PX+
= ξX−/(ξX+

+ ξX−) (41)

vgriffit
Stamp



PX− = 1− PX+
(42)

For n random variables with no skewness, Christian et al (1999) have presented a
general expression for finding the weights, which takes into account the correlation
coefficient ρij between the ith and jth variables as follows:

Ps1s2...sn = 1/2n(1 +
n−1∑
i=1

n∑
j=i+1

(sisjρij)) (43)

si takes the sign + for points greater than the mean, and − for points smaller than
the mean. The sign product sisj under the summation, determines the sign of the
correlation coefficient, and the subscripts of the weight P indicate the location of
the point that is being weighted. For example, for a point evaluated at (x1, y1) =
(µX +σX, µY −σY ), s1 = + and s2 = − resulting in a negative product with a weight
denoted by P+−.

For multiple random variables where skewness cannot be disregarded, the compu-
tation of weights is significantly more complicated. Rosenblueth(1981) presents the
weights for the case of n=2 to be the following:

Ps1s2 = PXs1 ∗ PY s2 + s1s2 ∗ [ρXY /((1 + (νX/2)3)(1 + (νY /2)3)1/2] (44)

The notation is the same as for the previous equation with PXsi and PY sjbeing the
weights for variables X and Y evaluated as a single random variables(see eqns (41)
and (42)). νX/Y is the skewness of the random variable distribution. For a lognormal
distribution, the skewness coefficient,ν, can be calculated from the C.O.V. as follows
(e.g. Benjamin and Cornell 1970):

ν = 3 ∗ C.O.V.+ C.O.V.3 (45)

4. Determine the value of the dependent variable at each point. Let these values be
denoted by WX(+ or −),Y (+ or −)...., depending upon the point at which W is being
evaluated. For n random input variables, W is evaluated at 2n points.

5. In general, the Point Estimate Method enables us to estimate the expected values
of the first three moments of the dependent variable using the following summa-
tions. Here, the Pi and Wi are the weight and the value of the dependent variable
associated with some point location i where i ranges from 2 to 2n. Pi is some Psi,sj
calculated in step (3) and Wi is the Wsi,sj value of the dependent variable evaluated
at the specified location from step (4) above.

First moment

µW = E[W ] =
2n∑
i=1

PiWi (46)



Second moment

σ2
W = E[(W − µW )2] =

2n∑
i=1

Pi(Wi − µW )2 =
2n∑
i=1

Pi(Wi)
2 − µ2

W (47)

Third moment

νW =
E[(W − µW )3]

σ3
W

=
1

σ3
W

2n∑
i=1

Pi(Wi−µW )3 =
1

σ3
W

2n∑
i=1

Pi(Wi )3−3µWPi(Wi)
2 + 2µ3

W

(48)

PEM Example: Unconfined triaxial compression of a c
′
, φ

′
soil (n = 2)

This is the same example considered using the FOSM method earlier in the paper,
involving drained unconfined triaxial compression of a c

′
, φ
′

soil. In the following sample
calculation, µc′ = 100 kPa and µtanφ′ = tan 30o = 0.577, and C.O.V.c′ = C.O.V.tanφ′ =
0.5.

Following the steps for implementing PEM:

1. The function to be evaluated is the same as equation (25), namely:

qu = 2c
′
[tanφ

′
+ (1 + tan2 φ

′
)1/2] (49)

2. It is assumed that the random shear strength variables c
′
and tanφ

′
are uncorrelated

and lognormally distributed, thus from equations (38) and (39),

ξc′+ = ξtanφ′+
= 2.10 (50)

ξc′− = ξtanφ′−
= 0.48

3. The weights are determined for the four sampling points from equation (44) using
equations (41) and (42) as follows:

Pc′+ = Ptanφ′+
= 0.185 (51)

Pc′− = Ptanφ′−
= 0.815

Therefore, from equation (44) with ρij = 0, the sampling point weights are:

P++ = 0.034 (52)

P+− = P−+ = 0.151

P−− = 0.665

4. The dependent variable qu is evaluated at each of the points. Table 4 summarises
the values of the weights, the sampling points and qu for this case:



Table 4. Weights, sampling points and qu values for PEM

P±± c
′

tanφ′ qu±±
(kPa) (kPa)

0.034 205.0 1.184 1121.0
0.151 205.0 0.440 628.5
0.151 76.2 1.184 416.6
0.665 76.2 0.440 233.5

5. The first three moments of qu can now be evaluated from equations (46), (47) and
(48) as follows:

µqu = 0.034(1121.0) + 0.151(628.5) + 0.151(416.6) + 0.665(233.5) = 350.9 kPa (53)

σ2
qu = 0.034(1121.0− µqu)2 + 0.151(628.5− µqu)2

+ 0.151(416.6− µqu)2 + 0.665(233.5− µqu)2 = 41657.0 (kPa)2 (54)

νqu =
1

σ3
qu

(0.034(1121.0− µqu)3 + 0.151(628.5− µqu)3

+ 0.151(416.6− µqu)3 + 0.665(233.5− µqu)3) = 2.092 (55)

Rosenblueth (1981) notes that for the multiple random variable case, skewness can
only be reliably calculated if the variables are independent.

A summary of results for different C.O.V.c′ ,tanφ′ is presented in Table 5.

Table 5. Statistics of qu predicted using PEM

C.O.V.c′ ,tanφ′ νqu σqu µqu C.O.V.qu
(kPa) (kPa)

0.1 0.351 38.8 346.6 0.11
0.3 1.115 118.5 348.2 0.34
0.5 2.092 204.1 350.9 0.58
0.7 3.530 298.8 353.6 0.85
0.9 5.868 405.0 355.5 1.14

It is clear from a comparison of Tables 1 and 5 that FOSM and PEM give essentially
the same results for this example problem.

5 Random Field/Finite Element Approach

For reasonably “linear” problems, the FOSM and PEM methods described in this paper
are able to take account of soil property variability in a systematic way. The traditional
methods however, typically take no account of spatial correlation, which is the tendency



for properties of soil elements “close together” to be correlated, while soil elements “far
apart” are uncorrelated.

To address the correlation issue, the triaxial compression problem has been reanal-
ysed using a random field/finite element approach (Random Finite Element Method or
RFEM), that enables soil property variability and spatial correlation to be accounted
for. The methodology involves the generation and mapping of a random field of c

′
and

tanφ
′

properties onto a quite refined finite element mesh. Full acount is taken of local
averaging and variance reduction (Fenton and Vanmarcke 1990) over each element, and
an exponentially decaying spatial correlation function is incorporated. An elasto-plastic
finite element analysis is then performed using a Mohr-Coulomb failure criterion. Details
of a similar analysis can be found in Griffiths and Fenton (2001). The mesh is then loaded
axially until a maximum failure stress, qu is reached. This failure load is recorded and the
analysis is repeated numerous times using Monte-Carlo simulations. Each realisation of
the Monte-Carlo process involves the same mean, standard deviation and spatial correla-
tion length of soil properties. However the spatial distribution of properties varies from
one realisation to the next so that each simulation leads to a different value of qu. Follow-
ing a “sufficient” number of realisations, the statistics (mean and standard deviation) of
the output quantity qu can then be computed. The analysis has the option of including
cross correlation between properties and anisotropic spatial correlation lengths (e.g. the
spatial correlation length in a naturally occurring stratum of soil is often higher in the
horizontal direction). Neither of these options has been investigated in the current study
to facilitate comparisons with the simpler forms of FOSM and PEM.

Lognormal distributions of c
′

and tanφ
′

have been used in the current study and
mapped onto a square mesh of 400 8-node, quadrilateral, plane strain elements. The soil
properties c

′
and tanφ

′
were assumed to be uncorrelated to each other (ρ = 0). Typical

realisations of the property distributions are shown in Figure 3 in the form of a grey scale
in which weaker regions are darker, and stronger regions are lighter.

Figure 3: Typical random fields in the RFEM approach

vgriffit
Stamp



An example of a relatively low spatial correlation length and a relatively high correla-
tion length are shown. It should be emphasised that the mean and standard deviation of
the random variable being portrayed are the same in both figures. The spatial correlation
length (which has units of length) is defined with respect to the underlying normal distri-
bution, and denoted as θln c′,ln tanφ′ . Both c

′
and tanφ

′
were assigned the same isotropic

correlation length in this study. A convenient non-dimensionalisation of the spatial corre-
lation length can be achieved in this case, by dividing by the side length B of the square
mesh shown in Figure 3, thus Θ = θln c′ ,ln tanφ′/B.

Parametric studies
In the resulting randomised finite element method (RFEM) studies, a series of anal-

yses have been performed in which the coefficient of variations of c
′

and tanφ
′
, and

spatial correlation length Θ have been varied. In all cases, the mean strength parame-
ters have been held constant at the same values considered earlier in the paper, namely
µc′ = 100 kPa and µtanφ′ = tan 30o = 0.577. The variation in the mean compressive
strength, µqu , normalised with respect to the deterministic value based on the mean val-
ues qu(µc′ , µtanφ′ ) = 346.4 kPa is shown in Figures 4a and 4b and the relationship between
the coefficients of variation of input shear strength parameters and output compressive
strength is shown in Figure 5. The following observations can be made from a comparison
of the “simple” methods and the RFEM results.

Figure 4: Variation of µqu with C.O.V.c′ ,tanφ′ and Θ

1) Figures 4a and 4b indicate that for intermediate values of Θ, the RFEM results show
a significant fall in µqu as C.O.V.c′ ,tanφ′ is increased. This is a very important difference
from the FOSM and PEM methods, which both gave essentially constant µqu . In fact,
the PEM and second order FOSM displayed a slight increase in µqu .

2) Figures 4b and 5 show that for large values of Θ, the RFEM results tend to the
FOSM/PEM predictions for all values of C.O.V.c′ ,tanφ′ , implying that the FOSM and
PEM methods are special cases of RFEM with an infinite correlation length.
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3) Figure 4b shows that the mean values of the compressive strength for all C.O.V.c′ ,tanφ′

display minima at around Θ = 0.2.
4) At very small Θ, an increase in µqu is observed as it heads back towards the com-
pressive strength based on the median shear strength values. These theoretical results
have been included in Figure 4b. As a sample calculation, the result corresponding to
C.O.V.c′ ,tanφ′ = 0.5 when Θ→ 0 are given by

Medianc′ = µc′/(1 + C.O.V.2c′ ,tanφ′ )
1/2 = 89.44kPa

Mediantanφ′ = µtanφ′/(1 + C.O.V.2c′ ,tanφ′ )
1/2 = 0.5146

thus
µqu/qu(µc′ , µtanφ′ )→ 0.8479

5) Figure 5 indicates that the FOSM and PEM methods, without accounting for spatial
correlation, give C.O.V.qu ≈ C.O.V.c′ ,tanφ′ implying that the variability of the compressive
strength qu is essentially the same as the variability of the input parameters c′ and tanφ′.
The RFEM results however, including the effects of spatial correlation, indicate a steady
reduction in the C.O.V.qu as Θ is decreased.

Figure 5: C.O.V.qu vs. C.O.V.c′ ,tanφ′
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Figure 6: Typical deformed mesh at failure

6) Figure 6 shows a typical mesh at failure from the RFEM analysis. It illustrates the
meandering and irregular nature of the failure surface which is attracted to the dark
(weaker) zones.

6 Discussion and concluding remarks

The paper has demonstrated three methods for implementing probabilistic concepts into
geotechnical analysis of a simple problem of compressive strength. The “simple” methods
were the First Order Second Moment (FOSM) and Point Estimate Method (PEM), and
the “sophisticated” method was a Random Finite Element Method (RFEM) method. The
output statistics of the compressive strength by FOSM and PEM were similar to each
other, but differed significantly from the RFEM method.

1) Probabilistic methods offer a more rational way of approaching geotechnical analysis,
in which probabilities of design failure can be assessed. This is more meaningful than
the abstract “Factor of Safety” approach. Being relatively new however, probabilistic
concepts are difficult to digest, even in the so called “simple” methods.

2) The RFEM method actually models the physical locations of weak and strong zones
within the specimen. When the soil block is compressed, progressive failure occurs, and
the failure mechanism “seeks-out” the weakest path through the soil. Figure 6 clearly
shows how the failure mechanism is attracted to the weaker (darker) regions of the mesh.
The traditionally applied FOSM and PEM have no concept of local zones of weakness
that can dominate the compressive strength.
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3) The RFEM method indicates a significant reduction in mean compressive strength due
to the weaker zones dominating the overall strength at intermediate values of Θ. The
observed reduction in the mean strength by RFEM, is greater than could be explained by
local averaging alone. As the value of Θ is reduced further, however, there is a gradual
increase in the value of µqu as shown in Figure 4b. ¿From a theoretical point of view, as
Θ becomes vanishingly small, µqu will continue to increase towards a deterministic value
based on the median of the input shear strength parameters. As the spatial correlation
length decreases, the weakest path becomes increasingly tortuous and its length corre-
spondingly longer. As a result, the weakest path starts to look for shorter routes cutting
through higher strength material. In the limit, as Θ → 0, the optimum failure path is
expected to be the same as in a uniform material with strength equal to the median. A
very fine mesh would be needed to show this effect numerically.

4) The paper has shown that proper inclusion of spatial correlation, as used in the RFEM,
is essential for quantitative predictions in probabilistic geotechnical analysis. While “sim-
pler” methods such as traditional FOSM and PEM are useful for giving guidance on the
sensitivity of design outcomes to variations of input parameters, their inability to system-
atically include spatial correlation and local averaging severely limits their usefulness.

5) The paper has shown that the RFEM is the only currently available method able to
properly account for the important influence of spatial correlation and local averaging
in stabiltiy problems involving highly variable soils. It is anticipated that probabilistic
approaches to geotechnical analysis will increase in popularity, however it may take time
before the methods become acceptable in routine geotechnical investigations.

References

[1] J.R. Benjamin and C.A. Cornell. Probability, statistics and decision making for civil
engineers. McGraw Hill, London, New York, 1970.

[2] J.T. Christian and G.B. Baecher. Point-estimate method as numerical quadrature. J
Geotech Geoenv Eng, ASCE, 125(9):779–786, 1999.

[3] G.A. Fenton and E.H. Vanmarcke. Simulation of random fields via local average
subdivision. J Eng Mech, ASCE, 116(8):1733–1749, 1990.

[4] D.V. Griffiths and G.A. Fenton. Bearing capacity of spatially random soil: the
undrained clay Prandtl problem revisited. Géotechnique, 51(4):351–359, 2001.

[5] M.E. Harr. Reliability based design in civil engineering. McGraw Hill, London, New
York, 1987.

[6] E. Rosenblueth. Point estimates for probability moments. In Proc. Nat. Acad. Sci.
USA, number 10, pages 3812–3814. 1975.

[7] E. Rosenblueth. Two-point estimates in probabilities. Appl. Math. Modelling, 5:329–
335, 1981.



Acknowledgement
The writers acknowledge the support of NSF Grant No. CMS-9877189.




