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ABSTRACT: It is well known that slope stability reliability analyses are complicated by spatial variation in
soil properties. This paper presents the results of a random finite element method (RFEM) analysis of a slope in
which the soil is represented by a spatially random field and slope stability is evaluated using the finite element
method. A significant advantage to the finite element method in slope stability calculations is that it allows
the failure surface to find the weakest path through the soil. The paper investigates the resulting slope failure
probability, as a function of the soil’s statistical parameters, and proposes a simplified harmonic averaging
approach to estimating the failure probability that avoids the necessity for Monte Carlo simulation of the slope.

1 INTRODUCTION

The failure prediction of a soil slope has been a long-
standing geotechnical problem, and one which has
attracted a wide variety of solutions. Traditional ap-
proaches to the problem generally involve assuming
that the soil slope is homogeneous (spatially constant),
or possibly layered, and techniques such as Taylor’s
(1937) stability coefficients for frictionless soils, the
method of slices, and other more general methods in-
volving arbitrary failure surfaces have been developed
over the years. The main drawback to these methods
is that they are not able to easily find the critical failure
surface in the event that the soil properties are spatially
varying.

In the realistic case where the soil properties vary ran-
domly in space, the slope stability problem is best cap-
tured via a non-linear finite element model which has
the distinct advantage of allowing the failure surface to
seek out the path of least resistance. In this paper such
a model is employed, which, when combined with a
random field simulator, allows the realistic probabilis-
tic evaluation of slope stability. This work is a follow
up of the analysis by Griffiths and Fenton (2000) and
considers the same soil slope problem. The slope is
assumed to be an undrained clay, with �u = 0, of
height H with a 2:1 gradient resting on a foundation
layer, also of depth H . The finite element mesh is
shown in Figure 1.

The soil is represented by a random spatially varying
undrained cohesion field, cu(x

�

), which is assumed to
be lognormally distributed, where x

�

is the spatial posi-
tion. The cohesion has mean, �cu , standard deviation,
�cu and is assumed to have an exponentially decaying
(Markovian) correlation structure,

�ln cu(� ) = e�2j� j=�ln cu (1)

where � is the distance between two points in the field.
Note that the correlation structure has been assumed

isotropic in this study. The use of an anisotropic corre-
lation is straightforward, within the framework devel-
oped here, but is a site specific extension which does
not particularly contribute to the overall understanding
of the stochastic nature of the problem.
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Figure 1. Mesh used for slope stability analysis.

The correlation function has a single parameter, � ln cu ,
the correlation length. Because cu is assumed to be
lognormally distributed, its logarithm, ln cu, is nor-
mally distributed. The correlation function is mea-
sured in this study relative to the underlying normally
distributed field. Thus, �ln cu(� ) gives the correlation
coefficient between ln cu at two points in the field sep-
arated by a distance � . In practice, the parameter
�ln cu is estimated from spatially distributed cu sam-
ples by using the logarithm of the samples rather than
the raw data themselves. If the actual correlation be-
tween points in the cu field is desired, the following
transformation can be used (Vanmarcke, 1984),

�cu(� ) =
expf�ln cu(� )�2

ln cug � 1
expf�2

ln cug � 1
(2)

Since �ln cu is a length, it can be non-dimensionalized
by dividing it by H , a measure of the embankment
size. Thus, the results given here can be applied to
any size problem, so long as it has the same slope and
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same depth to height ratio. The standard deviation, �cu
may also be expressed in terms of the dimensionless
coefficient of variation

V =
�cu
�cu

(3)

If the mean and variance of the underlying ln cu field
are desired, they can be obtained through the transfor-
mations

�2
ln cu = ln

�
1 + V 2

�
; �ln cu = ln(�cu)� 1

2�
2
ln cu (4)

By using Monte Carlo simulation, where the soil slope
is simulated and analyzed by the finite element method
repeatedly, estimates of the probability of failure are
obtained over a range of soil statistics. The failure
probabilities are compared to those obtained using a
harmonic average of the cohesion field employed in
Taylor’s stability coefficient method and very good
agreement is found. The study indicates that the sta-
bility of a spatially varying soil slope is well modeled
using a harmonic average of the soil properties.

2 THE RANDOM FINITE ELEMENT MODEL

The slope stability analyses use an elastic-perfectly
plastic stress-strain law with a Tresca failure criterion.
Plastic stress redistribution is accomplished using a
viscoplastic algorithm which uses 8-node quadrilat-
eral elements and reduced integration in both the stiff-
ness and stress redistribution parts of the algorithm.
The theoretical basis of the method is described more
fully in Chapter 6 of the text by Smith and Griffiths
(1998), and for a discussion of the method applied to
slope stability analysis, the reader is referred to Grif-
fiths and Lane (1999) and Paice and Griffiths (1997).

In brief, the analyses involve the application of gravity
loading, and the monitoring of stresses at all the Gauss
points. If the Tresca criterion is violated, the program
attempts to redistribute those stresses to neighboring
elements that still have reserves of strength. This is
an iterative process which continues until the Tresca
criterion and global equilibrium are satisfied at all
points within the mesh under quite strict tolerances.

In this study,“failure” is said to have occurred if, for
any given realization, the algorithm is unable to con-
verge within 500 iterations. Following a set of 2000
realizations of the Monte-Carlo process the probabil-
ity of failure is simply defined as the proportion of
these realizations that required 500 or more iterations
to converge.

While the choice of 500 as the iteration ceiling is
subjective, Griffiths and Fenton (2000) found that the
probability of failure computed using this criterion is
quite stable even for as few as 200 iterations.

The random finite element model (RFEM) combines
the deterministic finite element analysis with a random
field simulator, which, in this study, is the Local Aver-
age Subdivision (LAS) method developed by Fenton

and Vanmarcke (1990). The LAS algorithm produces
a field of random element values, each representing a
local average of the random field over the element do-
main, which are then mapped directly to the finite ele-
ments. The random elements are local averages of the
log-cohesion, ln cu, field. The resulting realizations of
the log-cohesion field have correlation structure and
variance correctly accounting for local averaging over
each element. Much discussion of the relative merits
of various methods of representing random fields in
finite element analysis has been carried out in recent
years (see, for example, Li and Der Kiureghian, 1993).
While the spatial averaging discretization of the ran-
dom field used in this study is just one approach to the
problem, it is appealing in the sense that it reflects the
simplest idea of the finite element representation of a
continuum as well as the way that soil samples are typ-
ically taken and tested in practice, ie. as local averages.
Regarding the discretization of random fields for use
in finite element analysis, Matthies et al. (1997) makes
the comment that “One way of making sure that the
stochastic field has the required structure is to assume
that it is a local averaging process.”, refering to the
conversion of a nondifferentiable to a differentiable
(smooth) stochastic process. Matthie further goes on
to say that the advantage of the local average repre-
sentation of a random field is that it yields accurate
results even for rather coarse meshes.

Figure 2 illustrates two possible realizations arising
from the RFEM. In this figure, dark regions corre-
spond to weaker soil. Notice how convoluted the
failure region is, particularly at the smaller scale of
fluctuation. In addition, it can be seen that the slope
failure involves the plastic deformation of an entire re-
gion above a vaguely defined failure ‘surface’. Thus,
failure is more complex than just a rigid ‘circular’
region sliding along a clearly defined interface as is
typically assumed.

θln cu
/ H  =  0.5

θln cu
/ H  =  2.0

Figure 2. Two typical failed random field realizations.
Low strength regions are dark.
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3 PARAMETRIC STUDIES

To keep the study non-dimensional, the mean soil
strength is expressed in the form of a mean dimen-
sionless shear strength,

�
Ns

=
�cu

H
(5)

where  is the unit weight of the soil. In the case
where the cohesion field is everywhere the same and
equal to �cu , a value of �Ns

= 0:17 corresponds to a
factor-of-safety, F = 1:0, which is to say that the slope
is on the verge of failure.

This study considers the following values of the input
statistics, �Ns

, �ln cu=H , and V ;

�Ns
= 0:15; 0:17; 0:20; 0:25; 0:30

�ln cu=H = 0:10; 0:20; 0:50; 1:00; 2:00; 5:00; 10:0
V = 0:10; 0:20; 0:50; 1:00; 2:00; 5:00

For each set of the above parameters, 2000 realiza-
tions of the soil field were simulated and analyzed,
from which the probability of slope failure was es-
timated. The detailed probability estimates are pre-
sented in Griffiths and Fenton (2000). In this paper
only the estimated failure probabilities are presented
(see Figure 6) and compared to those predicted using
the harmonic average model.

4 SEMI-THEORETICAL MODEL

In Taylor’s stability coefficient approach to slope sta-
bility, the coefficient

Ns =
cu
H

(6)

assumes that the soil is completely uniform, having
cohesion equal to cu everywhere. This coefficient may
then be compared to the critical coefficient obtained
from Taylor’s charts to determine if slope failure will
occur or not. For the slope geometry studied here,
slope failure will occur if Ns < 0:17.

In the case where cu is randomly varying in space, two
issues present themselves. First of all Taylor’s method
cannot be used on a non-uniform soil and secondly
Eq. (6) now includes a random quantity on the right-
hand-side (namely, cu = cu(x

�

)) so that Ns becomes
random. The first issue can be solved by finding some
representative value of cu, which will be refered to
here as c̄u, such that the stability coefficient method
still holds. That is, c̄u would be the cohesion of a
uniform soil such that it has the same slope stability
as the real spatially varying soil.

The question now is, how should this effective soil
cohesion value be defined? First of all, each soil
realization will have a different value of c̄u, so that
Eq. (6) is still a function of a random quantity, namely,

Ns =
c̄u
H

(7)

and, if the distribution of c̄u is found, the distribution
of Ns can be derived. The failure probability of the
slope then becomes equal to the probability that Ns is
less than the Taylor critical value of 0.17.

This line of reasoning suggests that c̄u should be de-
fined as some sort of average of cu over the soil do-
main where failure is occurring. Three common types
of averages present themselves;

1) Arithmetic average: the arithmetic average over
some domain, A, is defined as,

Xa =
1
n

nX
i=1

cui =
1
A

Z
A

cu(x
�

) dx
�

(8)

for the discrete and continuous cases, where the
domainA is assumed to be divided up into n sam-
ples in the discrete case. The arithmetic average
weights all of the values of cu equally. In that
the failure surface seeks a path through the weak-
est parts of the soil, this form of averaging is not
deemed to be appropriate for this problem.

2) Geometric average: the geometric average over
some domain, A, is defined as,

Xg =

 
nY
i=1

cui

!1=n

= exp

�
1
A

Z
A

ln cu(x
�

) dx
�

�
(9)

The geometric average is dominated by low val-
ues of cu and, for a spatially varying cohesion
field, will always be less than the arithmetic aver-
age. This average potentially reflects the reduced
strength as seen along the failure path and has been
found by the authors (Fenton and Griffiths, 2002
and 2003) to well represent the bearing capacity
and settlement of footings founded on spatially
random soils. The geometric average also is a
‘natural’ average of the lognormal distribution,
since an arithmetic average of the underlying nor-
mally distributed random variable, ln cu, leads to
the geometric average when converted back to the
lognormal distribution. Thus, if cu is lognormally
distributed, its geometric local average is also log-
normally distributed.

3) Harmonic average: the harmonic average over
some domain, A, is defined as,

Xh =

"
1
n

nX
i=1

1
cui

#�1

=

�
1
A

Z
A

dx
�

cu(x
�

)

��1

(10)

This average is even more influenced by small
values than is the geometric average. In general,
for a spatially varying random field, the harmonic
average will be smaller than the geometric aver-
age, which in turn is smaller than the arithmetic
average. Unfortunately, the mean and variance of
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the harmonic average, for a spatially correlated
random field, are not easily found.

Putting aside for the moment the issue of how to com-
pute the effective undrained cohesion, c̄u, the averag-
ing domain must also be determined. This should be
approximately equal to the area of the soil which fails
during a slope failure. It is expected that the value
of c̄u will change slowly with changes in the averag-
ing area, and so only an approximate area need be
determined. The area selected for this model is a par-
allelogram, as shown in Figure 3, having slope length
equal to the length of the slope and horizontal surface
length equal to H . For the purposes of computing
the average, it is further assumed that this area can be
approximated by a rectangle of dimension w � h (the
variance function which gives the variance reduction
after local averaging is commonly defined on a rect-
angle). As far as the local averaging is concerned, the
parallelogram and rectangle will have practically the
same local averages and, thus, the same statistics.

H

w

h

2H 2H 2H

H

HA

Figure 3. Assumed averaging domain.

The values of w and h are

w = H= sin�; h = H sin� (11)

such that w � h = H2, where � is the slope angle (in
this case 26:6o). It appears, when comparing Figure
2 to Figure 3, that the assumed averaging domain of
Figure 3 is smaller than the deformed regions seen
in Figure 2. A general prescription for the size of the
averaging domain is not yet known, although it should
capture the approximate area of the soil involved in
resisting the slope deformation. The area assumed in
Figure 3 is to be viewed as an initial approximation
which, as will be seen, yields reasonably good results.
A considerably expanded parametric study, including
different slope geometries, needs to be performed to
resolve the issue.

With an assumed averaging domain, A = w � h, the
geometric average leads to the following definition for
c̄u,

c̄u = Xg = exp

�
1
A

Z
A

ln cu(x
�

) dx
�

�
(12)

which, if cu is lognormally distributed, is also lognor-
mally distributed. The resulting coefficient

Ns =
c̄u
H

(13)

is then also lognormally distributed with mean and
variance

�lnNs
= �ln cu � ln(H) (14a)

�2
lnNs

= �2
ln c̄u = (w; h)�2

ln cu (14b)

The function (w; h) is the so-called variance function
which lies between 0 and 1 and gives the amount that
the variance of a local average is reduced from the
point value. It is formally defined as the average
of correlations between every pair of points in the
averaging domain,

(w; h) =
1
A2

Z
A

Z
A

�(�
�

� �
�

) d�
�

d�
�

(15)

Solutions to this integral, albeit sometimes approxi-
mate, exist for most common correlation functions.

The probability of failure, pf , can now be computed
by assuming that Taylor’s stability coefficient method
holds when using this effective value of cohesion,
namely by computing

pf = P [Ns < Ncrit] = �

�
lnNcrit � �lnNs

�lnNs

�
(16)

where the critical stability coefficient for the slope
considered is Ncrit = 0:17 and � is the cumulative
distribution function for the standard normal. These
values of failure probability can then be compared to
those obtained via simulation.

The geometric average for c̄u generally led to pre-
dicted failure probabilities which significantly under-
estimated the probabilities determined via simulation
and changes in the averaging domains size did not
particularly improve the prediction. This means that
the soil strength as ‘seen’ by the finite element model
was even lower, in general, than that predicted by the
geometric average. Thus, the geometric average was
abandoned as the correct measure for c̄u.

Since the harmonic average yields values which are
even lower than the geometric average, the harmonic
average over the same domain, A = w � h, is now
investigated as representative of c̄u, namely,

c̄u = Xh =

�
1
A

Z
A

dx
�

cu(x
�

)

��1

(17)

Unfortunately, so far as the authors are aware, no rel-
atively simple expressions exist for the moments of
c̄u, as defined above, for a spatially correlated ran-
dom field. The authors are continuing research on this
problem but, for the time being, these moments can
be obtained by simulation. It may seem questionable
to be developing a probabilistic model with the nom-
inal goal of eliminating the necessity of simulation,
when that model still requires simulation. However,
the moments of the harmonic mean can be arrived at
in a small fraction of the time taken to perform the
non-linear slope stability simulation.
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Figure 4. Histogram of harmonic averages along with
fitted lognormal distribution.

In order to compute probabilities using the statis-
tics of c̄u, it is necessary to know the distribution
of Ns = c̄u=(H). For lognormally distributed cu,
the distribution of the harmonic average is not simple.
However, since c̄u is strictly non-negative (cu � 0),
it seems reasonable to suggest that c̄u is at least ap-
proximately lognormal. A histogram of the harmonic
averages obtained in the case where V = 0:5 and
�ln cu=H = 0:5 is shown in Figure 4, along with a
fitted lognormal distribution. The p-value for the Chi-
Square goodness-of-fit test is 0.44, indicating that the
lognormal distribution is very reasonable, as also in-
dicated by the plot. Similar results were obtained for
other parameter values.

The procedure to estimate the mean and variance of
the harmonic average, c̄u, for each parameter set (�

Ns
,

V , and �ln cu=H) considered in this study involves; a)
generating a large number of random cohesion fields,
each of dimension w� h, b) computing the harmonic
average of each using Eq. (10), and c) estimating the
mean and variance of the resulting set of harmonic
averages. Using 5000 random field realizations, the
resulting estimates for the mean and standard devia-
tion of lnXh are shown in Figure 5 for random fields
with mean 1:0. Since c̄u is assumed to be (at least ap-
proximately) lognormally distributed, having param-
eters �ln c̄u and �ln c̄u , the mean and standard deviation
of the logarithm of the harmonic averages are shown
in Figure 5.

The slope failure probability can now be computed as
in Eq. (16),

pf = P [Ns < Ncrit] = �

�
ln Ncrit � �lnNs

�lnNs

�
(18)

except that now the mean and standard deviation of
lnNs are computed using the harmonic mean results
of Figure 5, suitably scaled for the actual value of
�cu=H ,

�lnNs
= ln(�cu=H) + �ln x̄h = ln(�Ns

) + �ln x̄h (19a)

�lnNs
= �ln x̄h (19b)

where �ln x̄h and �ln x̄h are read from Figure 5, given
the scale of fluctuation and coefficient of variation.
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Figure 5. Mean and standarddeviation of log-harmonic
averages estimated from 5000 simulations.

Figure 6 shows the predicted failure probabilities ver-
sus the failure probabilities obtained via simulation
over all parameter sets considered. The agreement is
remarkably good, considering the fact that the averag-
ing domain was rather arbitrarily selected, and there
was no a-priori evidence that the slope stability prob-
lem should be governed by a harmonic average. The
results of Figure 6 indicate that the harmonic average
gives a good probabilistic model of slope stability.

There are two outliers in Figure 6 where the predicted
failure probability considerably overestimates that ob-
tained via simulation. These correspond to the cases
where 1) �

Ns
= 0:3, V = 1:0 and �ln cu=H = 0:1 (simu-

lated probability is 0.047 versus predicted probability
of 0.82) and 2) �

Ns
= 0:3, V = 1:0 and �ln cu=H = 0:2

(simulated probability is 0.31 versus predicted prob-
ability of 0.74). Both cases correspond to the largest
factor of safety considered in the study (�

Ns
= 0:3

gives a factor of safety of 1.77 in the uniform soil
case). Also the small scales of fluctuation yield the
smallest values of �lnNs

which, in turn, implies that
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the cumulative distribution function of lnNs increases
very rapidly over a small range. Thus, slight errors
in the estimate of �lnNs

makes for large errors in the
probability. For example, the worst case seen in Fig-
ure 6 has predicted values of

�lnNs
= ln(�

Ns
) + �ln x̄h = ln(0:3)� 0:66 = �1:864

�lnNs
= �lnxh = 0:10

The predicted failure probability is thus

P [Ns < 0:17] = �

�
ln 0:17 + 1:864

0:10

�
= �(0:92)

= 0:82
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Figure 6. Simulated failure probabilities versus failure
probabilities predicted using a harmonic average of cu
over domain w � h.

A relatively small error in the estimation of � lnNs
can

lead to a large change in probability. For example, if
�lnNs

was �1:60 instead of �1:864, a 14% change,
then the predicted failure probability becomes

P [Ns < 0:17] = �

�
ln 0:17 + 1:6

0:10

�
= �(�1:72)

= 0:043

which is about what was obtained via simulation. For
small values of �ln cu=H and other coefficients of vari-
ation, the failure probability tends to be either close
to zero (V < 1:0) or close to 1.0 (V > 1:0), in which
case the predicted and simulated probabilities are in
much better agreement. The conclusion that can be
drawn from these two outliers is that the harmonic
average model is not a perfect predictor in the region
where the cumulative distribution is rapidly increas-
ing. However, in these cases, the predicted failure

probability is over-estimated, which is at least conser-
vative. Further study is required to see if the prob-
ability prediction can be refined by using a different
averaging domain.

For all other results, especially where the factor of
safety is closer to 1.0 (�

Ns
< 0:3), the harmonic aver-

age model leads to very good estimates of failure prob-
ability. In particular, for small failure probabilities, the
predicted failure probability is generally conservative,
slightly overestimating the failure probability.

5 CONCLUSIONS

This study considers just one possible geometry for
an undrained clay slope. Nevertheless, the results
are instructive. The basic idea pursued here is that
the Taylor stability coefficients can still be used for
a soil with spatially varying properties so long as an
‘effective’ soil property is found to represent the slope.
A property which closely captures the slope failure
probability was found to be the harmonic average of
cu over a domain of sizew�h. The harmonic average
is dominated by low strength regions appearing in the
soil slope, which agrees with how the failure surface
will seek out the low strength areas.

The averaging region used to characterize the slope
stability problem is still an area requiring additional
research. While preliminary simulation studies by the
authors indicate that the results are not particularly
sensitive to the actual size of the area used, the area
should be related to the slope geometry under con-
sideration. In addition, simplified moments of the
harmonic average for a spatially correlated random
field are needed.

One important observation arising from this study is
that soil slopes appear to be well characterized by com-
puting a harmonic average of soil sample values, rather
than by using an arithmetic average, as is done tradi-
tionally. That is, the reliability of an existing slope can
be estimated by sampling the soil at a number of loca-
tions in the slope, computing the harmonic average of
the sample values, and then applying Taylor’s stability
coefficient approach to assess the factor-of-safety.
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