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ABSTRACT 
By modeling soil as a three-dimensional spatially random material, the reliability of shallow rectangular footings against 
serviceability limit state failure in the form of excessive settlement can be estimated. The methodology to be used is the 3-d random 
finite element method (RFEM) which combines finite element analysis with random field theory, where the mean, the standard
deviation and the spatial correlation length of the modulus of the underlying soil can be controlled through the input data. The study
starts by comparing settlements of rectangular footings against classical solutions for homogeneous deposits and then goes on to
investigate the influence of footing aspect ratio on probabilistic settlements. Of particular interest is the relationship between the
rectangular footing dimensions and the spatial correlation length of the underlying soil. The results of the studies are presented in
probabilistic form, where for given statistics of soil input parameters, the probability of footing settlement exceeding a design
criterion is assessed. Earlier studies on adjacent square footings indicated that distributions of settlements and differential settlements 
can be predicted using the geometric average of the underlying elastic soil modulus field. The current work on rectangular footings
represents a further step towards developing a general probabilistic design framework for assessing settlements of shallow footings. 

RÉSUMÉ 
En modelant le sol comme un matériel spatialement fait au hasard à trois dimensions, la fiabilité de fondations rectangulaires peu
profonds contre la limite d'aptitude à l'usage échec de l'état sous forme de règlement excessif peut être estimé. La méthodologie être
utilisée est la méthode d'élément finie, faite au hasard et de 3 d (RFEM) qui combine l'analyse d'élément finie avec la théorie de
champ faite au hasard, où les moyens, la déviation standard et la longueur de corrélation spatiale de la compressibilité (ou modulus)
du dépôt fondamental peut être contrôlé par les données d'entrée. L'étude commence en comparant des règlements de fondations
rectangulaires contre les solutions classiques pour les dépôts homogènes et va alors sur examiner l'influence de fondation de
proportion d'aspect sur les règlements de probabilistic. D'intérêt particulier est la relation entre les dimensions de fondation
rectangulaires et la longueur de corrélation spatiale du sol fondamental. Les résultats des études sont présentés dans la forme de
probabilistic, où pour la statistique donnée de sol paramètres d'entrée, la probabilité de fondation de règlement dépassant un critère de
conception est évalué. Plus tôt les études sur les fondations carrés adjacents indiqués que les distributions de règlements et de
règlements différentiels peuvent être prédites utilisant la moyenne géométrique du champ de modulus de sol élastique fondamental.
Une approche similaire sera utilisée dans le courant traite des fondations rectangulaires, comme une plus ample étape vers le
développement d'un cadre de conception de probabilistic général pour évaluer de règlements de fondations peu profonds. 

1 SETTLEMENT OF RECTANGULAR FOOTINGS 

The settlement of structures founded on soil is a subject of 
considerable interest to practicing engineers since excessive 
settlements can lead to serviceability or even failure states in the 
structural elements above. Settlements are typically predicted 
using elastic theory where soil properties are generally 
expressed in terms of “compressibilities” (essentially the 
reciprocal of  “moduli” values preferred by structural 
engineers).  Due to the common problem of limited site 
investigation data, engineers typically use a rather conservative 
approach to settlement prediction based on experience, 
combined with pessimistic estimates of compressibility and 
loading conditions. In view of the variable nature of soil 
properties, a probabilistic approach to this problem has 
attractions because it enables the analyst to estimate the 
probability of settlement limits being exceeded (see e.g. 
Baecher and Ingra 1981,  Righetti and Harrop-Williams 1981, 
Paice et al 1996). The approach also facilitates an understanding 
of the sensitivity of settlement prediction to various input 
parameters describing the soil variability. 

In this paper, a probabilistic investigation of settlement of a 
single rectangular footing is described. Only the influence of  
uncertainties in the soil properties are considered here, with 
uncertainties that arise due to the model and loading conditions 

left for future study. In addition, the soil is assumed to be 
isotropic, that is, the correlation structure is assumed to be the 
same in both the horizontal and the vertical  directions. 
Although soils generally exhibit a stronger correlation structure 
in the horizontal direction, and the analysis tools used in this 
study can model anisotropy, this site specific refinement is not 
considered here. Our priority in this work is to establish the 
probabilistic behavior of the settlement of rectangular footings 
as a function of the various statistics of the underlying soil. 

2 THE RANDOM FINITE ELEMENT METHOD (RFEM) 

The method involves combining finite element analysis (e.g. 
Smith and Griffiths 2004) with random field theory (Vanmarcke 
1984, Fenton and Vanmarcke 1990), where the latter is used  to 
generate the material properties based on an underlying mean 
standard deviation and spatial correlation length. The analyses 
are then repeated using a Monte-Carlo approach until the output 
statistics of interest have stabilized. The authors have applied 
the method to a number of classical geotechnical problems (e.g. 
Griffiths and Fenton 2001,2004) and the interested reader is 
referred to those references for further details of the method. In 
this work the finite element simulations are simple elastic 
analyses, and the random field method is used to provide the 
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Young’s modulus values to be assigned to each element. The 
analyses involve a rigid, rough, rectangular footing at the 
surface of a spatially random soil defined by the three properties 
relating to Young’s modulus (E)
 
µE = mean, [1.0]  
σE = standard deviation [0.1, 0.5, 1.0]  
θlnE = correlation length [ 0.25, 0.5, 1.0] 

The numbers in square parentheses refer to the range of values 
considered in the parametric studies. The Young’s modulus 
distribution was assumed to be lognormal throughout this study.  

Rigid rectangular footings with three different aspect ratios 
were considered with dimensions [1:1, L=0.4, B=0.4], [2:1, 
L=0.8,  B=0.4] and [3:1, L=1.2, B=0.4]. The soil layer was finite 
with a depth of H=1.0. It should  be noted that θlnE has units of 
length and must be given in the same system of units as that 
used to define the footing dimensions [B,L] and soil layer depth 
H.  Poisson’s ratio was fixed and set to υ=0.3.
Since rectangular footings are being considered in this study, 
three-dimensional analyses are required and the present study 
makes use of  8-node hexahedral elements. A typical mesh used 
in this study is shown in Figure 1 and involves 60x60x20 
(72,000) cubic elements and 234,423 degrees of freedom. This 
kind of  mesh density is needed to model the random field to a 
reasonable resolution, but also leads to a stiffness matrix that is 
too big to store in the core of most conventional desktop 
computers (e.g. for the case shown in Figure 1, the stiffness 
matrix would require nearly a billion locations of storage even 
using the most efficient skyline storage strategy). Consequently 
a preconditioned conjugate gradient  iterative solution strategy 
has been implemented in the current work that uses element-by-
element products to entirely avoid the need to assemble large 
global matrices. 

Figure 1, Mesh used for footing settlement study 

The cubic elements each have a side length of 0.05, thus there 
are 8 elements under the width dimension of the footings and up 
to 24 under the length dimension.  

In order to model a  rigid rough footing, all the freedoms 
connected to the footing were “tied” and a single vertical force 
applied. In all cases a vertical force that would result in a net 
pressure on the footing equal to 1.0 was applied. Thus with a 
footing of dimensions [B=0.4, L=0.8], a force of 0.32 was 
applied and so on. The use of tied freedoms in this context 
ensures that all footing nodes settle vertically by the same 
amount with no rotation.  

3 VALIDATION RUNS ASSUMING A HOMOGENEOUS 
SOIL 

Before starting the Monte-Carlo simulations with random field 
generation, a series of validation runs were performed to 
estimate the footing settlement on a uniform elastic layer. The 
deformations shown in Figure 1 came from such  an analysis in 
which E=1.0, υ=0.3 with footing dimensions L/B=2, and depth 
ratio H/B=2.5 (where H is the depth of the soil layer). For a 
rigid rectangular foundation of these dimensions subjected to an 
average vertical pressure of unity, Milovic(1992) gives a 
settlement of 0.36 while the finite element analysis gave 

det 0.29δ = . Selective reduced integration, non-conforming 
elements and even higher order (20-node) elements were 
attempted without significantly increasing the computed 
settlement. It is thought that the shear discontinuity at the edge 
of the “rigid” footing is responsible for the overstiff response 
and is the subject of further research. For the purposes of this 
investigation, the settlement obtained with a uniform stiffness  
set equal to the mean of the input distribution det( )δ will be used 
as the baseline for comparison with results obtained later with 
variable properties. In any case, the probabilistic results can be 
easily scaled by detδ  so that the results are applicable even if the 
finite element results are too stiff by a multiplicative factor (see 
equation 3 for example). 

4 SETTLEMENT ANALYSIS USING THE RANDOM 
FINITE ELEMENT METHOD (RFEM) 

After the random field of properties has been mapped onto the 
mesh, a conventional elastic analysis is performed and the 
settlement of the rigid footing is recorded. The process is then 
repeated in the form of Monte-Carlo simulations with the same 
unit loading in each case. Each simulation involves the same 
random field parameters (mean, standard deviation and spatial 
correlation length) however the spatial location and values of 
the less stiff elements are different from one simulation to the 
next. For example, in one simulation the stiffer elements may 
happen to lie beneath the footing leading to a relatively small 
settlement value, whereas in another simulation the opposite 
may be the case. Each simulation leads to a different settlement 
value, and after a “sufficient” number of simulations have been 
performed, the statistics (mean and standard deviation) of the 
settlement start to stabilize.  

The accuracy of these output values is a function of the 
input statistics of the Young’s modulus field and the number of 
Monte-Carlo simulations performed. For example the greater 
the standard deviation of the Young’s modulus field, the greater 
the number of simulation required to achieve a given level of 
accuracy. If  simn  Monte-Carlo simulations are performed, the 
estimated (sample) mean settlement will have a standard error 
( ± one standard deviation) equal to the sample standard 
deviation times 1 simn√ . Many of the results presented in this 
paper used 1000simn = , hence the estimated standard error will 
be 1 1000 0.032√ =  or about 3% of the sample standard 
deviation of the settlement. Similarly, the estimated variance 
will have a standard error equal to the sample variance times 

2 /( 1))simn√( −  or (2 999)√ which is about 4% of the settlement 
sample variance. 

5 PROBABILISTIC INTERPRETATION OF RFEM 
RESULTS  

The first plot that should be considered is a histogram of the 
computed settlements for all the Monte-Carlo realisations. If 
this plot is normalised such that the area enclosed beneath it is 
unity, the interpretation of probabilities is particularly 
convenient. For example, Figure 2 shows the histogram 
obtained for a 3:1 rectangular footing following 1000 
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realisations with the following input parameters relating to the 
statistics of Young’s modulus: 

These input parameters correspond to a Coefficient of Variation 
0.5EV = and a correlation length given in dimensionless form in 

relation to the footing width as ln 0.625E Bθ =
   

Figure 2. Histogram of RFEM settlement for a 3:1 rectangular footing. 
Lognormal fit to data is also shown  

In the figure, the variable δ  is the rigid footing settlement.The 
smooth line in Figure 2 represents a lognormal fit to the RFEM 
results from which probabilistic interpretations can be made.  
For example, the probability of a particular design settlement 
value being exceeded is given by the area under the curve to the 
right of that value. In order to obtain these probability estimates 
it is best  to perform the calculation in the normal space 
corresponding to the log of settlement.  

The probability of the settlement exceeding designδ , which will 
be written as design( )p δ δ> , is given by: 

    

where Φ  is the cumulative normal function. 
As an example, let 0.4designδ = . The lognormal fit shown in 

Figure 2 curve has the parameters, 

hence, 

indicating a probability of about 4.5% that the settlement will 
exceed 0.4.  

6 PARAMETRIC STUDIES 

In this section, some of the results are presented relating to the 
different footing aspect ratios and input statistics indicated in 
Section 2.  Figure 3 shows the influence of the correlation 
length ln Eθ  on the mean settlement for a square footing and a 
rectangular footing with an aspect ratio of 3:1. The settlements 

are non-dimensionalised by dividing the mean settlement by the 
deterministic settlement detδ  that would be obtained in a 
homogeneous soil with the stiffness everywhere equal to Eµ .
The correlation length is non-dimensionalised by dividing it by 
the width of the footing B . It is shown that in all cases, the 
randomly distributed Young’s modulus causes the mean 
settlement to be greater than the deterministic value. 

Figure 3. Normalised results for square and 3:1 rectangular footings for 
0.5ECV = .  Mean settlement vs. correlation length 

As ln /E Bθ is increased, the mean settlement also increases, 
however the rate of increase decreases. The increased settlement 
due to the stochastic foundation is more pronounced for the 
square footing than for the rectangular one. 

Figure 4. Normalised results for square and 3:1 rectangular footings 
for 0.5ECV = . Standard deviation of settlement vs. correlation length. 

A similar plot is shown in Figure 4 in which the standard 
deviation of the settlement is shown as a function of spatial 
correlation length. It is seen that in this case the standard 
deviation also increases with the spatial  correlation and is 
higher for the square footing. Figures 3 and 4 together indicate 

ln0.4 1.047( 0.4) 1
0.077

1 (1.698)

1 0.955

0.045

p δ +� �> = − Φ � �
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=
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p δ δ
δ

δ δ � �−
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that within the range of ln Eθ values considered, the square 
footing will always lead to a higher probability that the 
settlement will exceed a design value.   

In probabilitic analyses such as those presented in this 
paper, it is often instructive to consider the results that would be 
obtained with limiting values of spatial correlation length 
changing from very large to very small values. As lnEθ → ∞ ,
each Monte-Carlo simulation involves an essentially uniform 
soil with stiffness E  varying from one realisation to the next. At 
each realisation, the settlement is inversely proportional to the 
Young’s modulus value and is given by 

where detδ  is the settlement that would be obtained 
deterministically on a homogeneous soil with a stiffness given 
by Eµ . Taking logs of both sides of equation 3 leads to 

detln ln ln lnE Eδ δ µ= + −

Since detlnδ  and ln Eµ are constant, this shows that if lnE is
normally distributed ( E is lognormal), then lnδ will also be 
normal with parameters 

At the other extreme, as ln 0Eθ → , the influence of local 
averaging is to remove all variance of Young’s modulus, 
leading to essentially identical analyses at each realisation with 
the soil stiffness homogeneous and equal to the median of the 
input distribution. 

Thus if Eµ and Eσ are the input parameters of the lognormal 
distribution, then with ln 0Eθ → , the Young’s modulus assigned 
to each element tends to the median, thus                                         

where the median is given by lnexp( )Eµ .
An important observation from these studies is that taking 

ln Eθ  large is conservative. The assumption that E is 
lognormally distributed and spatially constant leads to the 
largest variability across realisations in footing settlement.This 
observation is consistent with the higher mean and standard 
deviation observed in Figures 3 and 4 for the smaller (square) 
footing in which the  relative size of ln Eθ  was larger than for the 
elongated 3:1 footing. Thus, traditional approaches to 
randomness in footing settlement using a single random variable 
to characterise E are conservative and will lead to 
overestimated probabilities of design “failure”. 

7 CONCLUDING REMARKS 

At some sites, unusual ground conditions or foundation 
geometry will  benefit from an entirely new set of analyses 
using the RFEM. For qualitative and “quick” estimates of 
probabilistic settlement, the authors have developing some 
empirical approaches using curve fits to comprehensive suites 
of RFEM results. These approaches enable engineers to 
estimate the probabilistic performance of sites without having to 
resort to the relatively time-consuming and computationally 
intensive RFEM approach. The authors are also currently 
preparing the software used in these analyses (called rsetl3d)
for dissemination in the public domain. In the meantime, 
interested readers should refer to Fenton and Griffiths (2002, 
2004) for the design methodology. In brief, the empirical 

approaches are based on using a geometric average of the soil 
modulus taken over a strategic 3-d zone beneath the footing. 

Many more parametric studies have been perfomed by the 
authors than have been presented and discussed  in this paper. A 
companion paper is also being prepared that will include a more 
comprehensive review of these results. 
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