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ABSTRACT 
 
The paper investigates how statistically described soil stiffness parameters affect the 
statistics of the settlement of a rigid strip footing, with the aim of estimating its 
probability of excessive settlement. The paper compares results obtained using the 
approximate Stochastic Finite Element Method (SFEM) based on First Order Second 
Moment (FOSM) principles, with the rigorous Random Finite Element Method 
(RFEM) based on Monte-Carlo simulations. In the SFEM, the paper describes an 
analytical approach for obtaining derivatives of footing settlement with respect to soil 
element stiffness. Finally, the paper demonstrates the range of input soil stiffness 
parameters for which the SFEM gives reasonable results before the first order 
assumptions start to break down.  
 
SUMARIO 
 
En este trabajo se presenta como los parámetros de rigidez del suelo afectan las 
estadísticas de asentamiento de zapatas corridas rígidas, con el objeto de estimar la 
probabilidad de asentamientos excesivos.En este trabajo se comparan los resultados 
obtenidos usando un método aproximado como lo es el Método Estocástico de 
Elementos Finitos (SFEM del nombre del método en ingles) basado en el Segundo 
Momento de Primer Orden (FOSM del nombre en ingles), con el riguroso Método de 
Elementos Finitos Aleatorios (RFEM del nombre del método en ingles) basado en 
simulaciones de Monte-Carlo. Este trabajo describe el SFEM como un método 
analítico para obtener las derivadas del asentamiento de zapatas con respecto a la 
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rigidez de los elementos del suelo. Finalmente, este trabajo demuestra el rango de 
valores de rigidez del suelo para el cual el método SFEM da resultados razonables 
antes de que las suposiciones de primer orden empiezan a no cumplirse. 
 
 
INTRODUCTION 
 
First order methods such as the First 
Order Second Moment (FOSM) and 
the First Order Reliability Method 
(FORM) have received significant 
exposure (e.g. Low 1997, Nadim 2002, 
Duncan, Baecher and Christian) in 
recent years as relatively simple 
methods for estimating the probability 
of events occurring in geotechnical 
analysis. The basic objective is as 
follows: given statistical data (mean 
and standard deviation) for key 
geotechnical input parameters (e.g. 
strength parameters  and tanc φ′ ′ , 
seepage parameters , settlement 
parameters 

k
E ) what are the statistics 

(mean and standard deviation) of the 
key output quantities (e.g. Factor of 
Safety , flow rate , settlement FS Q
δ ). In the case of the output 
parameter, if these statistics are 
combined with an assumed probability 
density function, the probability of 
events such as slope failure, excessive 
flow rates, excessive settlement, etc. 
can then be estimated. 
 
While these methods are relatively 
easy to implement and give useful 
qualitative and sensitivity information 
about the input and output parameters, 
they are based on an underlying 
assumption of a Taylor Series 
truncated after the linear terms—hence 
“first order”. In this paper we take a 
problem of elastic foundation 
settlement, and compare the 
approximate FOSM method, as 
implemented in the stochastic finite 

element (SFEM) method with a 
rigorous approach to the same problem 
using the Random Finite Element 
Method (RFEM). The RFEM includes 
no such approximations relating to the 
Taylor’s series and represents the 
state-of-the-art in probabilistic 
geotechnical analysis.  
 
The fundamental problem considered 
in this paper is shown in Figure 1. 
input parameters consists of  the 
statistics (mean Eµ , standard deviation 

Eσ  and spatial correlation length Eθ ) 
of Young’s modulus with a constant 
Poisson’s ratio.  The values to be 
predicted and compared by the two 
methods under consideration in this 
paper are the mean δµ and standard 
deviation δσ  of the settlement. 
The paper will identify the limits on 
input variability for which the FOSM 
gives reliable estimates of output 
statistics. Once this range has been 
established, guidelines can then be 
produced to help users decide when 
more sophisticated methods such as 
RFEM are warranted.  
 
BRIEF REVIEW OF THE FOSM 
FOR MULTIPLE RANDOM 
VARIABLES 
 
Consider a function 

1 2( , , , )nf X X XK of  correlated 
random variables. To a first order of 
accuracy the mean of the function is 
given by 

n
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The first derivatives in (2) are 
computed at the mean values 

1 2
( , , ,

nX X X )µ µ µK  and can be 
evaluated numerically or, if a 
functional form exists, analytically. 
 
STOCHASTIC FINITE ELEMENT 
METHOD (SFEM) USING FOSM 
 
In this paper, a finite element 
implementation of equations (1) and 
(2) based on the freely available 

software of Smith and Griffiths (2004) 
will be presented in an elastic 
settlement analysis where 
 

1 2( , , , )nf E E Eδ = K                         (3) 
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The random variables in this case are 
now the values of Young’s modulus 
assigned to each element in the finite 
element mesh consisting of square 4-
node plane strain elements shown in 
Figure 2. For illustrative purposes the 
figure shows a very coarse mesh of 18 
elements, but the case studies shown 
later will use a greater mesh 
refinement. 

 

 
 
Figure 1. Benchmark elastic settlement problem of a rigid strip footing on soil with 
spatially random stiffness. 
 
In order to be consistent with the 
rigorous RFEM to come later, the 

input “point” statistics ( , )E Eµ σ  have 
been adjusted to account for local 
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averaging due to element size. If we 
define the side length of the square 
finite elements as αθ , the local 
averaging is expressed through a 
variance reduction factor γ  defined 
 

2 22
4

0 0

4 ( )( ) x yx y e dx dy
α α

γ α α
α

− += − −∫ ∫  

(6)                               
When assuming a lognormal 
distribution of E as we have done in 
this study, local averaging causes both 
the mean and standard deviation to be 
reduced (see e.g. Griffiths and Fenton 
2004). Essentially, local averaging 
becomes more significant when α is 
large and less significant when α is 
small. 
 
The mean settlement from equation (4) 
is easily computed by a single finite 
element analysis as shown in equation 
(8) (with all E values set to the mean), 
but in order to compute the variance 
from equations (5) the covariance and 
the derivatives must first be found. 
 
Covariance 
The covariance between any two 
elements is stored in a “Covariance 
Matrix” given by  
 

2Cov[ , ]=i jE E Eρ σ                             (7)                                                        
 
where 2 /e τ θρ −=  and τ is the 
centroidal distance between element ι  
and element j .  
 
Derivatives 
The basic stiffness relationship for the 
mesh is given by 
 
[ ]{ } { }
[ ]

1 2

 where  

( , , ,
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hence for each random variable 

,   1, 2, ,iE i n= L  
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where [ ] { }and K δ  are evaluated 
using Eµ . For constant loading 
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thus, all the required derivatives can be 
obtained by solution of a single set of 
equations ( n  times). The right-hand-
side is obtained by assembling all the 
element derivative matrices which for 
the square 4-node elements uses in this 
study can be obtained in closed form. 
 
The analyses described by equations 
(8) and (11) involve  equation 
solutions, where  is the number of 
elements in the mesh. Since the left-
hand-side matrix 

1n+
n

[ ]K  is the same in all 
cases it need only be factorized once, 
followed by 1n+  forward and back-
substitutions. 
 
The mesh used in the current study is 
shown in Figure 2 and has 840 
elements, thus each parametric 
combination considered involved one 
matrix factorization followed by 841 
forward and back-substitutions. The 
footing load is held constant at . 1P =

 2



 
Figure 2. Mesh used for SFEM vs. RFEM study of elastic settlement of a rigid 
strip footing on soil with spatially random stiffness. 

                                                                
REVIEW OF THE RANDOM 
FINITE ELEMENT METHOD 
(RFEM) 
 
The Random Finite Element Method 
first described by Griffiths and Fenton 
(1993)  and Fenton and Griffiths 
(1993) involves generating a random 
field of soil properties with controlled 
first and second moment statistics, 
which are then mapped onto a finite 
element mesh. A conventional elastic 
finite element analysis using these 
properties is then performed, after 
which the process is repeated many 
times using Monte-Carlo simulations. 
For each realization of the Monte-
Carlo process the underlying statistics 
of Young’s modulus are held constant, 
however the spatial distribution is 
different and the computed settlement 
of the footing under a constant load is 
different each time. Following a 
sufficient number of repetitions the 
output values become statistically 
stable and can be analyzed. It should 

be noted that unlike the SFEM 
analysis, this method gives a histogram 
of settlement values which can be 
fitted to an appropriate function (e.g. 
lognormal) for probabilistic 
interpretation. In the current study 
1000 realizations were used for each 
parametric combination. The program 
used in this study and many others for 
performing geotechnical analysis by 
RFEM are freely available from web 
site  
http://www.engmath.dal.ca/rfem
 
The random field is generated using 
the Local Average Subdivision (LAS) 
method (Fenton and Vanmarcke 1990) 
which takes full account of local 
averaging as described previously. A 
convenient aspect of LAS is that the 
random field is generated over cells 
that are the same size as the finite 
elements greatly facilitating the 
mapping of properties onto elements. 
A typical result from an RFEM 
analysis is shown in Figure 3. 
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Figure 3. Typical RFEM analysis showing the random field of Young’s 
modulus (darker is stiffer). 

 
 
RESULTS AND DISCUSSION 
 
Parametric studies (e.g. Herlyck 2005) 
based on the mesh shown in Figure 2 
involved the following ranges of 
values: 

1, 0.0 1,
0 5, 0.25

E E

E

µ σ
θ υ
= < <

< < =
. 

 
In the plots that follow, the Coefficient 
of Variation of Young’s modulus, 

E EV Eσ µ= has been used on the 
abscissa. 

 
 
 

                       
Figures 4. Variation of (a) mean and (b) standard deviation of footing 
settlement vs. coefficient of variation of input Young’s modulus. 

 
The results displayed in Figures 4-6 
were obtained with the spatial 
correlation length Eθ  fixed to 1.0.  
Figures 4(a) and (b) show the variation 

of the computed mean ( )mδ and 
standard deviation ( )sδ  of footing 
settlement by both methods. 
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The mean ( )mδ and standard 
deviation ( )sδ  of settlement is clearly 
underestimated by SFEM as compared 
with RFEM with the difference 
growing consistently with the input 
coefficient of variation of Young’s 
modulus . Matthies et al. 1997 
observed a similar divergence between 
Monte-Carlo and “perturbation” 
methods in a quite different 
application.  The percentage difference 
between SFEM and RFEM is similar 

in both plots as shown in Figure 5, 
with the error in the SFEM results 
growing to about 13% for =0.5, 
which might be considered an upper-
bound on stiffness variability for many 
soils. The consistency of the error in 
the mean and standard deviation is 
further emphasized in Figure 6, where 
the coefficient of variation 

( )EV

EV

(V s m )δ δ δ=  of the predicted 
settlement by both methods shows 
remarkable agreement. 

 

  
Figure 5.  Error in SFEM vs. .                   Figure 6.  EV  vs.  EV Vδ

 
 

 
Figures 6. Variation of (a) mean and (b) standard deviation of footing 
settlement vs. spatial correlation length Young’s modulus. 

 
The next  set of results investigate the 
influence on the spatial correlation 

length Eθ . In these cases the 
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coefficient of variation of the input 
Young’s modulus has been fixed to 

. Figures 6(a) and (b) show 
the variation of the computed mean 

0.3EV =

(m )δ and standard deviation ( )sδ  of 
footing settlement respectively, by 
both methods for Eθ  in the range 
0 5Eθ≤ ≤ . As 0Eθ →  the local 
averaging of Young’s modulus is 
maximized and two limiting conditions 
are approached: (i) the mean 
settlement in both cases tends to a 
value corresponding to a homogeneous 
soil with stiffness given by the median 
Young’s modulus, which in this case 
equals 0.96, (ii) the standard deviation 
in both cases tends to zero. 
 
As Eθ  increases, the locally averaging 
effect is reduced and both the mean 
and standard deviation of Young’s 
modulus increase towards the “point” 
values as shown in Figure 6(a). In the 
SFEM analyses, this is clearly evident 
in the reduced mean settlement, which 
as Eθ  increases, tends to about 0.92, 
which is the value that would be given 
in a homogeneous soil with 1E = . The 
RFEM results are more ragged due to 
the Monte-Carlo simulations, however 
there is a clear trend of gradually 
increasing mean settlement which may 
at first seen initially counter-intuitive, 
since the mean Young’s modulus is 
also increasing. The explanation lies in 
the fact that as Eθ  increases, the 
standard deviation of Young’s 
modulus also increases, meaning both 
higher and lower stiffness values are 
being assigned to the elements below 
the footing. The lower stiffness 
elements dominate the solution 
however, and more than compensate 
for the increased mean stiffness. The 

standard deviation of settlement in 
both cases also increases with 
increased Eθ  as shown in Figure 6(b). 
Theoretically, the standard deviation is 
tending towards a limiting value (as 

Eθ →∞ ) of about 0.28 corresponding 
to a coefficient of variation of 

0.3EV Vδ ≈ = . 
 
PROBABILISTIC 
INTERPRETATION 
 
While comparisons of the predicted 
mean and standard deviation of 
settlement have been the focus in the 
previous sections, the usual goal of 
analyses such as SFEM and RFEM is 
to predict the probability that the 
settlement exceeds some design 
criterion. 
 
In the following comparison we take 
the case where the soil has properties 
given by 1, 0.5 ( 0.5)E E EVµ σ= = = , 
and 1Eθ =  which might be considered 
typical values of soil stiffness (see e.g. 
Lee et al. 1983). For this particular 
case, the computed parameters by the 
two methods are summarized in Table 
1. 
 
Table 1.  Footing settlement statistics 

computed by SFEM and RFEM 
 

Method δm  δs  δV  
SFEM 0.928 0.197 0.212
RFEM 1.064 0.228 0.215

 
To illustrate the process, let us assume 
that the distribution of settlement (like 
Young’s modulus) is lognormally 
distributed, and then estimate the 
probability that the footing settlement 
exceeds designδ . 
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First we need to compute the statistics 
of the underlying normal distribution 
of lnδ of using the formulas: 
                                             

{ }

{ }

2
ln

2
ln

1ln ln 1
2

ln 1

m m V

s V

δ δ

δ δ

= − +

= +

δ
   (12)                                

 
leading to the values given in Table 2. 
 

Table 2.  Parameters of underlying 
normal distribution of lnδ  

  
Method ln δm  ln δs  
SFEM -0.097 0.210 
RFEM  0.040 0.212 

 
The required probability is then given 
by 
 

design design

design ln

ln

[ ] 1 [

ln( )
1

P P

m
s

δ

δ

]δ δ δ

δ

> = − ≤

−⎛ ⎞
= −Φ⎜ ⎟

⎝ ⎠

δ

  (13)   

                             
where  is the Cumulative 
Standard Normal function which can 
be obtained from standard tables. 

(.)Φ

 
If we let design 1.4δ = , then in the case 
of the SFEM analysis we get 
 

design[ ]

ln(1.4) 0.0971
0.210

1 (2.06)
1 0.98 0.02(2%)

P δ δ>

+⎛ ⎞= −Φ⎜
⎝

= −Φ
= − =

⎟
⎠                (14)                                    

 
and for RFEM  

design[ ]

ln(1.4) 0.041
0.212

1 (1.40)
1 0.93 0.07 (7%)

P δ δ>

−⎛ ⎞= −Φ⎜
⎝

= −Φ
= − =

⎟
⎠                   (15)                                 

 
The SFEM results underestimate the 
probability of design failure and are on 
the “unsafe” side. This conclusion 
would have been reached for any 
initial choice of Eθ  and . The lower 
probability of failure is clearly due to 
the lower mean settlements 
consistently predicted by SFEM, but 
fundamentally, the shortcomings of 
SFEM as implemented in this paper is 
that unlike the RFEM, it is unable to 
compute the influence of a spatially 
variable soil stiffness. 

EV

  
 
 
CONCLUDING REMARKS 
 
The paper has compared the 
performance of a Stochastic Finite 
Element Method based on First Order 
Second Moment assumptions with the 
Random Finite Element Method in a 
probabilistic study of foundation 
settlement. The analyses considered 
both the coefficient of variation 

variance and spatial correlation 
length 

EV

Eθ  of the input Young’s 
modulus. While holding Eθ  constant, 
the computed mean and standard 
deviation of the settlement by both 
methods were similar for low input 

, but diverged quite rapidly as  
increased. The coefficient of variation 
of the settlement V

EV EV

δ  however, was in 
remarkably good agreement by both 
methods even for high .    EV

 3



 
A key difference between the methods 
was highlighted when  was held 
constant and the spatial correlation 
length 

EV

Eθ  gradually increased. In this 
case the mean settlements went in 
opposite directions with the SFEM 
mean settlement falling to reflect the 
rising locally averaged mean Young’s 
modulus, and the RFEM mean 
settlement slowly rising. Even though 
the locally averaged mean Young’s 
modulus is also rising in the RFEM, 
the rise in mean settlement is 
explained by the fact that Monte-Carlo 
based RFEM is modeling a spatially 
random material in which the less stiff 
elements are having a bigger influence 
on the overall settlement than the 
stiffer elements and overcompensating 

for the increased mean stiffness. The 
SFEM has no direct way of modeling 
the real influence of spatial variability. 
In all parametric combination 
considered, the mean and standard 
deviation of settlement predicted by 
SFEM were smaller than those 
predicted by RFEM.  
 
In conclusion, care must be taken 
when using the less rigorous SFEM 
approach in probabilistic foundation 
settlement analysis While SFEM may 
give reasonable predictions for low 
input property variance, it will always 
lead to underestimates of the 
probability of design failure as 
compared with the state-of-the-art 
RFEM. 
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