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ABSTRACT: The paper presents probabilistic studies that demonstrate the influence of spatially random soil 
properties on the stability of shallow landslides using random fields Results indicate that traditional “first order” 
methods are inherently unconservative when applied to limit analysis problems unless they allow the failure 
mechanism to “seek out” the most critical location. 

1 Introduction 

Recent interest in the analysis of shallow landslides (e.g. Turner and Schuster 2007) has led to the work 
described in this paper, where three different methods of probabilistic analysis are applied to the classical infinite 
slope equations. The objective of the analyses is to produce estimates of the probability of failure as opposed to 
the conventional approach involving a factor of safety. 
 
Consider the infinite slope shown in Figure 1 in which a unit area slice of homogeneous soil subjected to gravity 
and possibly also a pseudo horizontal acceleration.  

 
 

Figure 1. Infinite slope configuration 

The infinite slope equation for this case (e.g. Biondi et al. 2000) is given by 
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where the variable names have the following meanings 
 

FS   factor of safety  

H    depth of the soil layer to potential failure surface 

hk                     horizontal pseudo-acceleration coefficient 
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u    pore pressure at the base of the slice 

β    slope inclination 

γ                         total unit weight 

tanφ ′   tangent of the effective soil friction angle at the base of the slice 

c′   effective cohesion at the base of the slice 

 
The main objective of a probabilistic approach to this problem is to estimate the mean and standard deviation of 

the factor of safety ( ),FS FSµ σ , having defined one or more of the seven input parameters in terms of their 

means and standard deviations. By fitting a suitable probability density function to the distribution of the factor of 
safety, the probability of failure is then given by the probability that the factor of safety is less than unity, hence 

 [ ]1fp P FS= <  (2) 

Other investigators have studied this problem (e.g. Nadim 2006), but the novelty of the current approach lies in 
the use of random field theory to describe the vertical spatial distribution of soil properties. This is combined with 
a Monte-Carlo approach in which each simulation leads to a different factor of safety. The proportion of the 
factors of safety that fall below unity is then computed as the probability of failure. 
 

This approach allows the inclusion of an additional parameter called the spatial correlation length θ  which 

describes the distance over which properties tend to be correlated (or the log of the property if the field is 

assumed lognormal). Figure 2 shows a grayscale which portrays a random field of a soil property (e.g. 
uc ) in 

which black implies high (strong) values and white implies low (weak). A low spatial correlation length indicates 
that soil properties are varying rapidly spatially while a high value implies gradually varying properties. A key 
factor here is that while the fields look quite different from each other, they have the same mean and standard 
deviation of the property being modeled. 
 
 

 
 

Figure 2. Portrayal of spatial correlation in a random field.  

The results presented in Section 2.3 use a dimensionless spatial correlation length Θ  that has been normalized 

with respect to the soil depth, thus HθΘ = .The authors have developed software to optionally generate 

random fields relating to the cohesion c′ , the tangent of the friction angle tanφ ′ , the pore pressure u  and the 

total unit weight γ . Other parameters, such as the soil column height H , the slope angle β  and the pseudo-

acceleration coefficient k
�

 can be generated as ordinary random variables. Variables that are not treated as 

random in an analysis are simply fixed to constant values. The soil column is subdivided into 100 equal 
elements and, following generation of the random variables as shown in Figure 2,  the factor of safety of each 

element is computed using Eq.(1). It should be noted that when implementing Eq.(1), H is replaced by the 
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depth z of each element. This approach will lead to 100 different factors of safety (as it would with a 
homogeneous soil) however with spatially random properties substituted into Eq.(1), the lowest factor of safety 
of the set does not necessarily occur at the base of the soil column.  
 
This is a very important result, because simpler probabilistic approaches such as “first order” methods, have no 
way of explicitly modeling spatial variability, and are locked into the assumption that the critical depth is always 
at the base of the soil column. The simpler approaches are therefore inherently unconservative. This point will 
be demonstrated in the next section by comparing first order solutions with the random field approach as applied 
to an example problem. 
 

2 Example problem solved by different methods 

Although there are seven independent variables in Eq.(1), the example calculations presented here consider just 

one random variable, namely the undrained shear strength uc . Of the other six parameters, three are set to zero 

( )tan 0, 0, 0u hu kφ = = = and the other three ( ), ,Hγ β are set to constant values. Equation (1) therefore 

simplifies to the form 

 
sin cos

u
c

FS
Hγ β β

=  (3) 

The problem now amounts to finding the mean and standard deviation of the factor of safety ( ,FS FSµ σ ) given the 

mean and standard deviation of the undrained shear strength ( ,
u uc c

µ σ ). In the random field calculations 

described later in this section, an additional parameter, the spatial correlation length (θ ), will also be provided as 

input. In the following, units will not be included, but any consistent system of units can be assumed. 

 

The example problem has the following random parameters: 25, 2.5
u uc c

µ σ= =  with the other deterministic 

parameters fixed to 20, 2.5Hγ = = and 30β = ° . Values of the spatial correlation length θ will be introduced in 

the description of the random field solutions in Section 2.3. 

 

2.1 First Order Second Moment (FOSM) Method 

Details of this classical method are described elsewhere (e.g. Harr 1987, Baecher and Christian 2003)  
The right hand side of Eq.(2) involves a single random variable equation, hence 

   and  
cos sin cos sin

u uc c

FS FS
H H

µ σ
µ σ

γ β β γ β β
= =  (4) 

In order to compute the probability of failure, we must assume a distribution for FS . Since FS is always a 

positive quantity, we could assume that FS is lognormal (that is, ln FS is normal). The probability of failure is then 

given by 

 [ ] [ ] ln

ln

ln1
=P <1 P ln <ln1 FS

f

FS

p FS FS
µ

σ

 −
= = Φ  

 
 (5) 

where the mean and standard deviation of the underlying normal distribution of ln FS are given by 

 { } { }2 2

ln ln

1
ln ln 1   and  ln 1

2
FS FS FS FS FSv vµ µ σ= − + = +  (6) 

and ( ).Φ  is the cumulative standard normal function.  

Using the parameters of the example problem, Eq.(6) gives
lnFS lnFS0.13887 and 0.09975µ σ= = .  

Which after substitution into Eq.(5) gives 

 [ ] [ ]0.13887
1.39212 1 1.39212 1 0.918 0.082

0.09975
fp

− = Φ = Φ − = − Φ = − = 
 

 (7) 

hence the FOSM method predicts a probability of failure of 8.2%. 
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2.2 First Order Reliability Method (FORM)  

A drawback of the FOSM method is that is can lead to non-unique probabilities of failure for the same problem 

when stated in equivalent, but different ways (e.g. Ditlevsen 1973, Madsen et al. 1986, Nadim et al. 2005) . What 

the FOSM method is doing is computing the distance from the mean point to the failure surface in the direction 

of the gradient at the mean point. Hasofer and Lind (1974) solved the non-uniqueness problem in the FORM by 

looking for the overall minimum distance between the mean point and the failure surface, rather than looking just 

along the gradient direction. FORM is essentially an optimization problem, which is easily coded in widely 

available software such as Excel (see e.g. Low and Tang 1997, Griffiths et al. 2007). 

 

Unlike FOSM, the user must decide on the form of the input probability density function(s) before using FORM. 

If uc  is assumed to be normally distributed in the example considered above, FORM gives 0.090fp =  (9.0%) 

whereas if uc  is assumed to be lognormally distributed, 0.082fp =  (8.2%). Clearly in this case both the first 

order methods are in close agreement. 

2.3  Random Field (RF) Method 

In this section we present results obtained using the authors’ RF infinite slope analysis model as described in 

Section 1. All results presented in this section used 5000 Monte-Carlo simulations. Figure 3 shows the computed 

probability of failure for the test problem assuming a lognormally distributed 
uc  for spatial correlation lengths 

varying in the range 0.04 2.56< Θ <  

 

 
Figure 3. Comparison of FORM and Random Field approach for example problem showing the importance of the 

spatial correlation length Θ   

The result clearly demonstrates the unconservative nature of the first order approaches. The RF solutions give a 

higher probability of failure for all reasonable correlation lengths and converge asymptotically on the first order 

solution as the correlation length becomes large ( Θ → ∞ ). This convergence emphasizes the fact that first order 

approaches are “single random variable” methods in which the soil column is always assumed to be 

homogeneous, albeit with a shear strength that varies randomly. 
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3 Discussion of results from example problem 

3.1  Location of critical failure plane 

Consider once more Eq.(3) with the column depth H replaced by the depth coordinate z  to give 

 
sin cos

u
c

FS
zγ β β

=  (8) 

The minimum factor of safety will clearly occur where 
uc z is a minimum (e.g. Duncan and Wright 2005). For 

homogeneous soil with a constant 
uc , the critical failure surface will always occur at the base of the column 

where z H= . When 
uc  is treated as a spatially random variable in the RF approach, the minimum value of 

uc z will tend to be near the bottom of the column, but will frequently occur further up. 

 

An additional set of analyses have been performed on the infinite slope problem using the random finite element 

method (RFEM) (Griffiths and Fenton 1993, Fenton and Griffiths 1993). These analyses have the ability to 

compute failure deformations as well as factors of safety for each Monte-Carlo simulation (Griffiths et al. 2007). 

Figure 4 shows some deformed meshes for simulation that were deliberately chosen because they gave 

mechanisms that were well removed from the base. In addition, some of the simulations display simultaneous 

failure mechanisms at different depths, implying multiple elevations exhibiting the same minimum factor of 

safety. 

 

 

 
 

 
Figure 4. Failure modes of RFEM analyses showing mechanisms well removed from the base of the column.  

 

From Figure 3, the first order methods were most unconservative when the spatial correlation length was 
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relatively low. The histogram shown in Figure 5 for 0.04Θ =  indicates that only about 23% of the critical 

mechanisms occurred at the base with 77% occurring higher up the soil column. Figure 6 shows a similar plot for 

1.28Θ = . For the higher spatial correlation length, the percentage of mechanisms occurring at the base ( 51%≈ ) 

is considerably increased as the RF solutions tend to the spatially uniform soil implied by first order. 

 

 
Figure 5. Histogram showing the frequency with which the critical depth occurs at different depths throughout the 

100 element column in RF analysis ( 0.04Θ = ) 

 
Figure 6. Histogram showing the frequency with which the critical depth occurs at different depths throughout the 

100 element column in RF analysis ( 1.28Θ = ) 

3.2 Distribution of FS  values 

In the previous sub-section, the probability of failure fp  was computed simply as the proportion of the total 

number of Monte-Carlo simulations that resulted in 1FS < . Since each random field simulation computes a 

different factor of safety, the full probability density function of FS values can be plotted and used for further 

analysis. For example, Figure 7 shows a probability density plot of FS values computed for the example problem 

when 0.16Θ = . Included on the figure are analytical normal and lognormal fits to the random field results based 

on the computed mean and standard deviation values of 1.102FSµ = and 0.093FSσ = . Both analytical curves 

agree well with the random field results, although this might be expected in view of the rather low coefficient of 

variation 0.084FSv ≈ .  

 

Figure 8 shows similar fits to random field results for the same correlation length, but with a much higher input 

coefficient of variation of 1.0
ucv = . In this case 0.307FSµ = and 0.170FSσ =  and the distribution of FS is 
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clearly much better fitted to the lognormal curve. This might be expected considering that the input random 

variable on the right hand side of Eq.(3) is also lognormal. Certainly as Θ → ∞  the distribution of FS will 

theoretically tend to the lognormal in this case.  

 

 

 

 

 

 
Figure 7. Random field histogram of FS  frequency distribution for the example problem with 0.1

uc
v = together 

with normal and lognormal fits based on the computed mean and standard deviation of FS  

 

 
 

Figure 8. Random field histogram of FS  frequency distribution for the example problem with 1.0
uc

v = together 

with normal and lognormal fits based on the computed mean and standard deviation of FS  
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4 Conclusions 

Any probabilistic method of geotechnical limit analysis that does not have the ability to “seek out” the critical 

failure plane will lead to unconservative results. This follows from classical upper bound limit analysis theory, 

which dictates that the wrong failure surface will always overestimate the failure load. This conclusion applies to 

all probabilistic geotechnical limit analysis applications, and particularly methods of slope stability that assume 

classical circular failure mechanisms (e.g. Bishop’s method). The infinite slope example offers a particularly 

clear demonstration of this effect however, since the system exhibits no progressive failure and is essentially 

“brittle’ in that the first component to fail results in overall system failure. The first order applications (FOSM 

and FORM) described in this paper, properly accounted for probabilistic input variables, but assumed a priori 

that the failure surface was always at the base of the soil column. The RF analyses indicated that for reasonable 

spatial correlation lengths, a significant proportion of failures in a Monte-Carlo analysis occurred above the base, 

where the factor of safety is lower. The first order methods always underestimated the probability of failure but 

were shown to be special cases of the RF analysis as the spatial correlation length tended to infinity. 
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