
Three dimensional probabilistic slope stability analysis by RFEM 
Trois dimensions probabiliste stabilité des talus par analyze RFEM 

D.V. Griffiths & J. Huang 
Colorado School of Mines, USA 

G. A. Fenton 
Dalhousie University, Canada 

ABSTRACT 
The paper investigates the probability of failure of 2-d and 3-d slopes using the Random Finite Element Method (RFEM). RFEM 
combines elastoplasticity with random field theory in a Monte-Carlo framework. It is found that 2-d probabilistic analysis, by 
implicitly assuming perfect spatial correlation in the third direction, may underestimate the probability of failure of slopes. 

RÉSUMÉ 
Le document examine la probabilité de défaillance de 2-d et 3-d en utilisant les pistes Random méthode des éléments finis (RFEM). 
RFEM combine elastoplasticity avec la théorie des champs aléatoires dans un Monte-Carlo cadre. Il se trouve que le 2-d probabilistic 
analysis, par parfaite supposer implicitement la corrélation spatiale dans la troisième direction, mai sous-estimer la probabilité de 
défaillance des pistes 
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1 INTRODUCTION 

A considerable number of studies (e.g. Duncan 1996) have 
compared the factor of safety from a full 3-d slope analysis 
( 3FS ) with that obtained from a traditional 2-d analysis ( 2FS ) 
and concluded that in the majority of cases for rather uniform 
slopes 3 2/ 1FS FS ≥ . The assumption that 2-d analysis leads to 
conservative factors of safety needs some qualification 
however. Firstly, a conservative result may only be obtained if a 
“pessimistic” section in the 3-d problem is selected for 2-d 
analysis as shown by Griffiths and Huang (2008). In a slope that 
contains layering and strength variability in the third dimension, 
the choice of a 2-d “pessimistic” section may not be intuitively 
obvious. 

In this paper we compare the probability of failure of 3-d and 
2-d slopes involving highly variable soils using RFEM. At the 
time of writing, relatively few investigators have worked on 3-d 
slope reliability analysis. Important early work was reported by 
Vanmarcke (1977) which led other investigators to follow a 
similar framework. For example, Yücemen and Al-Homoud 
(1990) considered 3-d slope reliability incorporating a 1-d 
random field and some quite restrictive assumptions about the 
kinematics of the 3-d failure mechanism. 

In this study, the Random Finite Element Method (RFEM) 
(Fenton and Griffiths 2008) combines 3-d elastoplastic finite 
elements and 3-d random field theory in a Monte-Carlo 
framework to directly assess the reliability of 3-d slopes. The 
influence of the out-of-plane dimension is assessed for different 
combinations of the coefficient of variation of strength and 
spatial correlation length. The 3-d results are compared with an 
equivalent 2-d probabilistic analysis by RFEM which assumes 
plane strain conditions and perfect correlation in the out-of-
plane direction.  It will be shown that under some conditions, 3-
d analysis leads to higher probabilities of failure than 2d. 

 
 

2 DETERMINISTIC ANALYSES 

The method and programs of Griffiths and Lane (1999) and 
Griffiths and Marquez (2007) were used to analyse the stability 
of the 2-d and 3-d slopes presented in this paper.   

The 2-d slope profile shown in Figure 1 uses 8-node plane 
strain finite elements to model a 2:1 undrained clay slope with 
strength parameters 0

u
φ =  and ( ) 0.167u u satC c Hγ= = . Using 

any standard slope stability analysis method it can be shown 
that 1.39FS =  (see e.g. Griffiths and Lane 1999). 
 

 
 
 
 
 
 
 
 
 

Figure 1. 2-d Finite element mesh 
 
The 3-d slope profile, modeled using 20-node hexahedral 

elements shown in Figure 2, is of a uniform slope in which the 
cross-section of the slope shown in Figure 1 is extended by a 
distance L  in the z direction. The bottom of the mesh ( )y H= −  
and the sides ( )0 and z L=  are fixed while the back ( )0x = is 
allowed to move only in the vertical plane. The depth L  of the 
slope was varied in the range 0.8 12L H< <  (because of 
symmetry the actual mesh depth was only half this amount), 
enabling an investigation to be made of the influence of three-
dimensionality. A comparison of the factor of safety obtained in 
the 3-d and 2-d analyses is given in Figure 3. The factor of 
safety in 3-d was always higher than in 2-d but tended to the 
plane strain solution for depth ratios of the order of 10L H = . 
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Figure 2. 3-d Finite element mesh 
 

 

 

 

 

 

 

 

 

 
Figure 3. Comparison of 3-d and 2-d deterministic analyses  
 

3 PROBABILISTIC DESCRIPTIONS OF STRENGTH 
PARAMETERS 

In this study, the dimensionless shear strength parameter u
C  is 

assumed to be a random variable characterized statistically by a 
lognormal distribution (i.e. the logarithm of the property is 
normally distributed). The lognormally distributed shear 
strength u

C  has three parameters; the mean, 
uC

µ , the standard 
deviation 

uC
σ  and the spatial correlation length ln uCθ . The 

variability of u
C  can conveniently be expressed by the 

dimensionless coefficient of variation defined as 

u

u

u

C

C

C

v
σ

µ
=                                                                                    (1) 

The parameters of the normal distribution (of the logarithm 
of u

C ) can be obtained from the standard deviation and mean of  
u

C  as follows: 

{ }2
ln ln 1

u uC C
vσ = +                                                                      (2) 

2
ln ln

1
ln

2u u uC C C
µ µ σ= −                                                                  (3) 

A third parameter, the spatial correlation length ln uC
θ , will 

also be considered in this study. Since the actual undrained 
shear strength field is assumed to be lognormally distributed, its 
logarithm yields an “underlying” normal distribution (or 
Gaussian) field. The spatial correlation length is measured with 
respect to ln

u
C . In particular, the spatial correlation length 

( ln uCθ ) describes the distance over which the spatially random 
values will tend to be significantly correlated in the underlying 
Gaussian field. Thus, a large value of ln uCθ  will imply a 
smoothly varying field, while a small value will imply a ragged 
field. The random field is generated using local average 
subdivision method (see e.g. Fenton and Griffiths 2008). 

In the current study, the spatial correlation length has been 
non-dimensionalized by dividing it by the height of the 
embankment H  and will be expressed in the form, 

ln /
u uC C

HθΘ =                                                                             (4) 
 

4 SINGLE RANDOM VARIABLE APPROACH 

Single random variable (SRV) probabilistic methods do not 
explicitly take account of the spatial variation, hence slopes are 
assumed to be uniform (spatially constant properties) with u

C  
selected randomly from a lognormal distribution. SRV 
probabilistic methods imply a spatial correlation length 

uC
Θ = ∞ .  

Since there is only one random variable in an undrained 
analysis and uFS C∝ , 

uFS Cv v= and the probability of failure 
(  fp ) is simply equal to the probability that FS  will be less than 
unity. Quantitatively, this equals the area beneath the 
probability density function of FS corresponding to 1FS < .   
For the slope shown in Figure 1 which has 1.39

FS
µ =  if we let 

0.5
uC FS

v v= = , Eqs. (2) and (3) give that the mean and standard 
deviation of the underlying normal distribution of ln FS  as 

0.218
FS

µ =  and  0.472
FS

σ =  respectively. The probability of 
failure is therefore given by: 

[ ]1 0.32FS
f

FS

p p FS
µ

σ

 −
= < = Φ = 

 
                                             (5) 

where ( )Φ i  is the cumulative standard normal distribution 
function. 

 
5 RANDOM FINITE ELEMENT METHOD 

The RFEM involves the generation and mapping of a random 
field of properties onto a finite element mesh. Full account is 
taken of local averaging and variance reduction over each 
element, and an exponentially decaying (Markov) spatial 
correlation function is incorporated. After application of gravity 
loads, if the algorithm is unable to converge within a user-
defined iteration ceiling (see e.g. Griffiths and Lane 1999), the 
implication is that no stress distribution can be found that is 
simultaneously able to satisfy both the Mohr-Coulomb failure 
criterion and global equilibrium. If the algorithm is unable to 
satisfy these criteria, typically accompanied by a sudden 
increase in nodal displacements, failure is said to have occurred. 
The analysis is repeated numerous times using Monte-Carlo 
simulations. Each realization of the Monte-Carlo process 
involves the same underlying mean, standard deviation and 
spatial correlation length of soil properties, however the 
properties vary spatially from one realization to the next. 
Following a suite of Monte-carlo simulations ,  fp  can be easily 
estimated by dividing the number of simulations that failed by 
the total number of simulations. Although not implemented in 
the current paper, the analysis has the option of including cross 
correlation between properties and anisotropic spatial 
correlation lengths (e.g. the spatial correlation length in a 
naturally occurring stratum of soil is often higher in the 
horizontal direction). 

 
6 PROBABILISTIC ANALYSES 

The methodology described by Griffiths and Fenton (2004) for 
2-d slope reliability has been extended to 3-d slopes in the 
current work. The boundary conditions are the same as in the 
deterministic case, however in the probabilistic analyses we 
have included the option of smooth side boundaries which 
means the sides ( )0 and z L=  are allowed to move only in the 
vertical plane.  

Figures 4 and 5 show typical failed slopes with (isotropic) 
2.0

uC
Θ =  and 0.25

uC
Θ = . It can been seen that failure, when it 
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occurs, involves a greater volume of soil when the spatial 
correlation length is smaller. 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 4.  Slope failure with (isotropic) 2.0
uC

Θ = and rough boundary 
condition 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 5.  Slope failure with isotropic  0.25
uC

Θ = and rough boundary 
condition 

 
Keeping 1.0

uC
Θ =  and 0.5

uC
v =  fixed, the depth ratio was 

varied in the range 0.2 16L H< <  to investigate the influence of 
three-dimensionality with results presented in Figure 6. In the 
case of smooth boundary conditions, the  fp  of one slice 
( )0.2L H =  in the 3-d analysis is equivalent to that given by a 
2-d RFEM analysis with 0.2fp ≈ . It is also shown in the 
smooth case that as L H is increased,  fp  initially decreases to 
reach a minimum at about 3L H =  before rising to eventually 
exceed the 2-d value at approximately 10L H > .  

In the rough case,  fp  is close to zero for a narrow slice and 
increases continuously as L H  increases and exceeds the 2-d 
value by extrapolation at approximately 18L H > .  In both the 
rough and smooth cases it may be speculated that 1

f
p →  as 

L H → ∞ . It is clear from Figure 6 that regardless of boundary 
conditions, the assumption of an infinite spatial correlation 
length in the third direction, implicit in any 2-d analysis, may 
underestimate  fp  if the slope is long enough. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 6.  Probability of failure versus slope depths  
( )1.0, 0.5

u uC C
vΘ = =  

Figure 7 presents further 3-d RFEM results showing the 
influence of spatial correlation length on  fp  by varying 

uCΘ  in 
the range {0.125,0.25, , 2}

uC
Θ = … . In this case the coefficient of 

variation of strength and the depth ratio have been fixed at 
0.5

uC
v =  and 6L H =  respectively. Also included in this figure 
is the result obtained by the SRV method and 2-d RFEM.  It can 
be seen that compared to the 3-d analysis, the 2-d analysis 
underestimates the probability of failure when 1.5

uC
Θ >  in the 

smooth case and 3.8
uC

Θ >  in the rough case. As might be 
expected, both the 2-d and 3-d (smooth) RFEM analyses 
converge on the solution from the SRV method as 

uCΘ is 
increased. 
 
  

 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 7.  Probability of failure versus spatial correlation length 
( )6, 0.5

uC
L H v= =  

 
The influence of increased strength variability was further 

investigated by setting  1.0
uC

v =  with results shown in Figures 8 
and 9.  Figure 8 shows a similar trend to that observed in Figure 
6, however all the critical depth ratios are lower than those 
given when 0.5

uC
v = . For example 2-d ceases to be conservative 

when 2.4L H >  in the smooth case and when 4L H >  in the 
rough case (compared with 10L H >  and 18L H >  respectively 
when 0.5

uC
v = ). Figure 8 also shows that the  fp  with smooth 

boundary conditions reaches a minimum at  1L H =  (compared 
with 3L H ≈  when 0.5

uC
v = ). The increased strength 

variability has resulted in the cross-over point (2-d RFEM 
analysis begins to give lower  fp than 3-d) occurring at lower 
depth ratios. It has also resulted in a faster convergence of the 
rough and smooth results with increased depth ratio. When 

15L H > , both rough and smooth cases gave essentially similar 
probabilities of failure with 1fp → . 

Figure 9 shows that  fp  from the 3-d RFEM analyses reaches 
a maximum at around 1.0

uC
Θ ≈ for both rough and smooth 

boundary conditions. It can be anticipated that the  fp  of 2-d 
and 3-d with smooth boundary condition will converge to the 
results obtained by the SRV when 

uC
Θ → ∞ . Similarly, as 

uC
Θ → ∞ , the 3-d  fp  with rough boundary conditions will 
converge to the result obtained by the SRV method when 

10L H >  as predicted by the deterministic analyses. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 8.  Probability of failure versus slope depths
  ( )1.0, 1.0

u uC C
vΘ = =  

0 2 4 6 8 10 12 14 16
0.00

0.05

0.10

0.15

0.20

0.25

0.30

p
f

L/H

 3-d RFEM (rough)
 3-d RFEM (smooth)

2-d RFEM

0 2 4 6 8 10 12 14 16
0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

p
f

L/H

 3-d RFEM (rough)
 3-d RFEM (smooth)

2-d RFEM

0 2 4 6 8
0.0

0.1

0.2

0.3

0.4

0.5

 3-d RFEM (rough)
 3-d RFEM (smooth)
 2-d RFEM

p
f

ΘΘΘΘcu

SRV method



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 9.  Probability of failure versus spatial correlation length 
( )6, 1.0

uC
L H v= =

 
 
The influence of spatial correlation length was further 

investigated by setting  2.0
uCΘ = . Figure 10 shows that 2-d 

ceases to be conservative when 5L H > for smooth boundary 
conditions (compared with 10L H =  when 1.0

uCΘ = ). The 
increased spatial correlation length has resulted in the cross-
over point occurring at lower depth ratios. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 10.  Probability of failure versus slope depths 
 ( )2.0, 0.5

u uC CvΘ = =  
 
Finally, Figures 11 and 12 show the influence of spatial 

correlation length on 2-d and 3-d RFEM probabilistic analysis 
of “short” ( )1L H =  and “long” ( )12L H = slopes. For the case 
of 0.5

uC
v = , it can be seen that 2-d probabilistic analysis is 

always conservative for short slopes but may lead to 
unconservative probabilistic estimates for long slopes.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 11.  Probability of failure versus spatial correlation lengths 
( )1, 0.5

uC
L H v= =  

 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 12.  Probability of failure versus spatial correlation lengths 
( )12, 0.5

uC
L H v= =  

 
 
7 CONCLUDING REMARKS  

The paper has investigated the probability of slope failure using 
both 2-d and 3-d RFEM probabilistic analysis. The main 
conclusion is that by implicitly assuming an infinite spatial 
correlation in the third direction 2-d (plane strain) probability 
analysis may underestimate the probability of failure of slopes. 
This is counter to the usual assumption in regular slope stability 
analysis in which 2-d analysis is generally expected to give a 
conservative factor of safety. When performing probabilistic 
analysis of slopes, spatial variability in the out-of-plane 
direction must be properly considered to avoid unconservative 
designs for long slope. 
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