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ABSTRACT

The ground is a complex engineering material and how to chetiae it real-
istically is a very difficult problem. It is well known that éhengineering properties of
the ground can vary quite dramatically from point to poinbtighout a site, and even
more so from site to site, and that these properties areyhigidertain. It is also well
known that the ground, when subjected to an imposed or gatf;Iwill fail along its
weakest path, however tortuous that might be.

Given the complexity of the ground, it makes sense to charaetthe ground
using models which allow for its quite uncertain spatial&haility. It also makes sense to
use response prediction models which take both spatiahidity in ground properties
and the tendency of failure to follow weakest paths throdnghground into account.

The Random Finite Element Method (RFEM) combines spatiallying ran-
dom field ground models with the finite element method to yeelkliability-based
geotechnical methodology which accounts for both spasiahbility and weakest path
failure mechanisms. Besides being able to realisticall@hepatial variability in
ground properties along with being able to follow the weéalpegh through the soil,
mass, RFEM also provides the significant advantage of bétegta account for site
understanding in the design process.

This paper describes the Random Finite Element Method alstiga few of
its significant results over a variety of common geotecHnicablems. The latter
include ground-water modeling, shallow foundation set#et and bearing capacity,
deep foundation capacity, and slope stability. LRFD codeldpment will be discussed
along the way.

INTRODUCTION

In an effort to harmonize with structural codes, geotedhlrdesign codes around
the world are beginning to migrate towards some form of béliig-based design (RBD).
Significant steps in this direction can be found in, for exemnjiEurocode 7, 2003,
Australian Standard AS 5100, 2004, AASHTO, 2007, and theoNat Building Code
of Canada, 2005. These RBD provisions are most often presentthe form of a
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Limit States Design (LSD), to define critical failure stgteembined with load and
resistance factors calibrated to achieve the target ikfiabassociated with the various
limit states. The use of load and resistance factors is génpeeferred to as Load and
Resistance Factor Design (LRFD).

By and large, the random characteristics of loads, or “astidn civil engineer-
ing projects, are fairly well known and so load factors asmnably well established.
On the resistance side, for most common structural maserggresentative tests can
easily be performed, and have been, to establish mateonalepy distributions that
apply with reasonable accuracy anywhere that the matariasééd. Thus, resistance
factors for materials such as concrete, steel, and woodleem known for decades.

Unfortunately, the development of resistance factors & in geotechnical
engineering is much more difficult than for quality-conkedl engineering materials,
such as concrete, steel, or wood. For example, while the steangth of a batch of
30 MPa concrete delivered to a site in one city, might diffgblto 10% from a batch
delivered to a site in a second city, the solil strengths atwlesites may easily differ
by orders of magnitude. A significant advantage of designsigg quality-controlled
materials is that the general form and, in particular, theavae of the material property
distribution is well enough accepted by the engineeringgssion that only a few
samples of the material are deemed necessary to ensura degigrements are met.
That is, engineers rely on aypriori estimate of the material variance which means that
testing can be aimed at only ensuring that the mean matesatance is sufficiently
high (the number of samples taken is usually far too few taistely estimate the
variance). This is essentially a hypothesis test on the matnvariance known.
Using this test to ensure that design requirements are motbioed with the known
distributions and resulting codified load and resistanctofs, is sufficient to provide a
reasonably accurate reliability-based design.

Contrast the knowledge regarding the distribution of, sapcrete with that of
soils. In analogy to the above discussion, it would be nideatcee a reasonably accurate
a priori estimate of soil property variance, so that only the meahpsoperty would
have to be determined via a site investigation. Thjgriori variance for soils would
generally be much larger than the actual variance at a sBigdeand its use would
typically lead to significant overdesign in the attempt thiace a certain reliability. In
practice, due to the spatial persistence of ground pragserites usually do not show the
same level of variability that one sees over very large dista. In fact, itis the residual
site specific variability about the locally estimated meaat governs site uncertainty.
So the problem becomes how to determine a reasonable agtévariance for use in
reliability-base design?

The above discussion suggests that in order to achieveestficeliability-
based geotechnical designs, site investigations musttersine enough to allow the
estimation of both the soil mean and gain some idea of itabdity — this level of site
investigation intensity is typically what is aimed at in neod geotechnical codes, with
varying degrees of success (for example, Australian Stdndld 4678, 2002, specifies
three different investigation levels, associated witleédifferent reliability levels). To
date, however, little guidance is provided on how to deteaYicharacteristic” design
values for the soil on the basis of the gathered data, nor antbaise the estimated
variance to adjust the design.



Another complicating factor, which is more of a concern ifissthan in other
quality-controlled materials, is that of spatial variagiland its effect on design relia-
bility. Soil properties often vary markedly from point toipband this variability can
have quite different importance for different geotechhissues. For example, footing
settlement, which depends on an average property undesdtiad, is only moderately
affected by spatial variability, while slope stability, igh involves the path of least re-
sistance, is more strongly affected by spatial variabilitythis paper, spatial variability
will be simply characterized by a parameter referred to lasréhe correlation length
— small correlation lengths imply more rapidly varying peojees, and so on. In order
to adequately characterize the probabilistic nature ofibasal arrive at reasonable
reliability-based designs, then, three parameters nebd &stimated at each site; the
mean, variance, and correlation length.

Fortunately, evidence compiled by the authors indicatas #h‘worst case’
correlation length typically exists — this means that, ia #bsence of sufficient data,
this worst case can be used in reliability calculations. ilt generally be true that
insufficient data are collected at a site to reasonably eséitie correlation length, so
the worst case value is conservative to use in design.

Once the random soil at a site has been characterized in say¢he question
becomes how should this information be used in a reliabidaged design? This paper
describes the random finite element method along with somte®ignificant results for
anumber of common geotechnical problems. The tool can littasessess geotechnical
risk in design and to aid in the development of reliabiligskd geotechnical design
codes.

All of the computer codes used in this paper are freely avbalat
http://ww. engmat h. dal . ca/ rf em The website also contains a list of the
papers by the authors which cover in considerably moreldle¢iopics briefly presented
here. The interested reader will also find a very comprekendescription of the
background theory and all of these applications in FentahGiffiths (2008).

THE RANDOM FINITE ELEMENT METHOD

The Random Finite Element Method (RFEM) combines randorm $ie@hulation
and finite element (FE) analysis within a Monte Carlo framgwoOne of the great
benefits of the finite element method is that it is easy to mpd®lems with spatially
variable properties. For example a given soil deposit maysisb of layers having
different permeability values in which rows of element mayassigned different prop-
erties. In the RFEM, this feature is taken to the limit by gaalg problems in which
everyelement in the mesh has a different property based on sonezlyimgj statistical
distribution. The finite element method used in RFEM is déscr in complete detail
by Smith and Griffiths (2004).

Random fields are used to realistically represent the groaihmlving for the
ground properties to varying spatially, as they do in natufidhe simplest random
field models follow a normal distribution. This is because thulti-variate normal
distribution is relatively simple to use, both analytigaind to simulate. A normal
random field is characterized by a meana varianceg?, and a correlation structure.
The mean could be spatially varying(z), and it is appropriate to do so when a trend
has been identified at the site being modeled. In concept/ahance could also be
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spatially varyings2(z), although this is rarely implemented since a very extensite
investigation would be required in order to even roughlyneste the variance trend.
Generally, the variance is assumed tetaionary in other words the same everywhere.
The most difficult aspect of random field models to both urtdexsand estimate
is its correlation structure. The purpose of a correlatiomcsure is to provide for some
‘persistence’ in the random field — points close togethel nalve similar properties
while widely separated points could have quite differerdperties. This feature of
random fields is what makes it a realistic soil model sinceganeral, real soils also
tend to have similar properties at nearby points and lesgasiat larger separations.
Unfortunately, the correlation structure of a soil is veifficlilt to estimate even
if a large data set is available. For this reason, correlagtouctures used in practice
tend to be very simple, almost always requiring only a sinleameter. One of the
simplest and most widely used correlation structures idhekov correlation function,

oty =exp{ 21| @)

which gives the correlation coefficient between two poirdpasated by distance.
The single paramete#, is thecorrelation length also called thescale of fluctuation
Roughly speaking, it is the separation distance beyondmwiaio points in the field are
largely uncorrelated (which, for a normal distributiors@means largely independent).

In practice, the estimation of the (directional) corredatiength involves gather-
ing data at a series aefequispaced locations along a line and fitting Eq. 1 to the &amp
correlation function,

Y 1 = . .
p(jAz) = n—j 152 ; (X; — fix) (Xisj — fix) 2)

whereAz is the spacing between sample observations Xo, ..., X,,, andu, ando
are the estimated mean and standard deviations. Reasathisate estimates of ~
requires a large dataset, which for most geotechnical gioje not feasible. For almost
all sites, the correlation length remains unknown, whiclihy the existence of a ‘worst
case’ correlation length is so important. It allows a conagve reliability-based design
to proceed without having to specifically know the correatiength. As will be shown
in the following sections, the worst case correlation lerighds to be of the same order
of magnitude as characteristic dimensions of the probleteudesign (e.g. foundation
width, distance to sampling location, etc.).

Once the theoretical nature of the random field has beenet®cigon (i.e. the
distribution form and its mean, variance, and correlatiobncture) the next step in
RFEM is the simulation of realizations of the random field. efidhare a variety of
possible simulation algorithms available (see, e.g., ¢/®rit994) but the approach that
the authors have elected to use in combination with the felgenent method is the
Local Average Subdivision (LAS) method (Fenton and Vanikard990). The LAS
method produces realizations of local averages of the rarfadd, each local average
taken over a region the same size as the finite elements tbelyear mapped to. There
are a number of significant advantages to using local averaigground properties in
conjunction with finite element analysis;



1) finite elements are basically continuum representatbtise material they model
in which certain simplifying assumptions are made aboustren field within the
element. For example, the shape functions of a 4-node datsidl element are
exact if loading/displacements are applied at the nodesrenchaterial properties
within the element are constant. Thus, it is natural to asHig average of the
random field over the element domain to that constant prppert

2) the statistics of local averages (mean and variance)gehas the size of the aver-
aging domain changes, which is as specified by statistieakyh Thus, the use of
alocal average random field is also consistent with the felément method in the
sense that as the element (averaging domain) decreasespthsentation of both
the FE and LAS models tend harmoniously towards the poisewarying random
field.

3) most ground properties are measured as local averagey itaae. For example,
hydraulic conductivity is not measured at the atomic levélis almost always a
measure of the flow taking place through some volume of the@able material,
which is clearly an average of some sort. These physical uneaents show the
same variance reduction as the volume of the sample in@@aso local averages
of arandom field. Thus, local averages are consistent wisipal measurements
of ground properties.

Figure 1 illustrates the basic idea behind Local Averaged&udgion (see Fenton and
Griffiths, 2008, for the details). The method proceeds ftesly by first randomly
generating a local average for the entire figl)(which has the correct statistics for

an average of that dimension. The field is then subdividenl éoual parts and the
local averageg;} andZ2 are generated in such a way that they have the correct average
statistics, are properly correlated with one another, aredage to the parent valug?.

The process is repeated, progressively subdividing theb diklil the desired resolution

IS achieved.

Stage 0 Z7

Stage 1 Zi Z;
Stage 2 Z7 Z3 Z3 Zi
Stage 3 | Z2| Z2| Z3| z3| z2| z§| Z7| Z§

Stage 4 l l

Figure 1. Top-down approach to LAS construction of a local average ran
dom process.

The final component of RFEM is the Monte Carlo simulation fesvork. Monte Carlo
simulation is a very straightforward way to estimate mesasgances, and probabilities
associated with the response of complex systems to rangautsinWhile it is generally
preferable to evaluate these response statistics and/balpitities analytically, where
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possible, we are often interested in systems which defyytoal solutions. For such
systems, simulation techniques are ideal, since theym@eiand lead to direct results.
The main disadvantage of simulation derived moments orghitibes is that they do
not lead to an understanding of how the probabilities or mumsvill change with
changes in the system or input parameters. If the systemaisgeld, the simulation
must be repeated in order to determine the effect on restausstics and probabilities.
In that analytical solutions are often not possible, thissisally an acceptable trade-off.

Monte Carlo simulation basically involves randomly genieigha realization of
the spatially variable ground properties, determiningrésponse of the geotechnical
system by a finite element analysis, and then repeating niraeg to estimate proba-
bilities and statistics of the response. An important goeghat arises is, how many
realizations should be performed in order to estimate fitibas, such as the proba-
bility of failure p, to within some acceptable accuracy? This question is nedip
easily answered by recognizing that each realization isadadli random variable that
either fails or doesn’'t. The standard deviation of the phbilitg estimate,p? is then
given by

Uﬁf ~ Z% (3)

where the estimate ¢f; is used (since; is unknown) andy; =1 — p;.

In general, if the maximum acceptable erropgns e at confidence level (1 o),
then the required number of realizations to achieve thisracy is

Za/2\ 2
n =Py (%) (4)
wherez,, is the point on the standard normal distribution having dpzabability)
a/2 to the right.

We note that we are often interested in estimating very daialre probabilities
— most civil engineering works have target failure proki&ibs between 1/1000 and
1/100,000. Estimating failure probabilities accuratelyhis range typically requires a
very large number of realizations. Since the system regpsosietimes takes a long
time to compute for each realization, for example when a lirgar finite element
analysis is involved, large numbers of realizations maybegpractical.

There are at least three possible solutions when a large enufaly. hundreds
of thousands or millions) of realizations are impractical;

1) perform as many realizations as practical, form a histogof the response and fit
a distribution to the histogram. The fitted distributionhieh used to predict failure
probabilities. The assumption here is that the distributbthe system response
continues to be modeled by the fitted distribution in thestail the distribution.
This is often believed to be a reasonable assumption. I togeoduce a reason-
ably accurate histogram, the number of realizations shstillbe relatively large
(e.g. 500 or more).

2) develop an analytical model for the probability of faduyy determining the distri-
bution of the geotechnical response being studied. If tlady&inal model involves
approximations, as they often do, some simulations shafgebformed to validate
the model. The analytical model is then used to predictifaiprobabilities.



3) employ variance reduction techniques to reduce the redjaumber of realizations
to achieve a desired accuracy. In the context of random fitfldse techniques tend
to be difficult to implement and are not used by the author® ifterested reader
is referred to Law and Kelton (2000) or Lewis and Orav (1989).

In summary, the Random Finite Element Method has a numbesbhd advantages

over most other common probabilistic methods;

1) The LAS method allows for the realistic, efficient, andistacally accurate model-
ing of soils, in which the representation of spatial varipis a natural component,

2) The FE method is a sophisticated analysis tool which althve soil to fail along
its weakest paths, without the need &priori decisions about failure mechanisms
and locations. As a result, the combination of LAS and FE washs an important
step forward in reducing geotechnical model error.

3) RFEM allows the effect of site investigation intensity design reliability to be
studied (see the Sections on Settlement and Bearing Capaddllow). Because
each random field realization is one possible ‘picture’ & Hoil site, the entire
investigation/design process is easily simulated. Thecefbf various sampling
schemes on geotechnical system reliability is thus simplgstigated. This ability,
in turn, allows the method to provide quantitative probiabd guidance in the
development of reliability-based geotechnical desigresod

GROUND-WATER MODELING

Attention is now turned to the problem of steady-state sgeparough a soil
mass with spatially random permeability. The goal of thistisa is to present RFEM
results which allow the assessment of probabilities meggtio quantities of interest such
as steady-state flow rates, exit gradients, and uplift press although we will only
present results relating to flow rates in this paper. Theasted reader is directed to
Griffiths and Fenton (1993) or Fenton and Griffiths (2008)ftother details.

The equation of steady groundwater flow followed here is gk equation

V- [EVe]=0 ()

whereK is the permeability tensor anglis the hydraulic head.

To illustrate probabilistic ground-water modeling, a tdiorensional confined
seepage problem is considered, with particular referemftevw under a water retaining
structure founded on a stochastic soil. In the study of speparough soils beneath
water retaining structures, three important quantitiednte be assessed by designers
(see Figure 2); 1) seepage quantity, 2) exit gradients, aoglBt forces. The classical
approach for estimating these quantities involves the @isarefully drawn flow nets
(Casagrande 1937, Cedergren 1967, Verruijt 1970).

Various alternatives to flow nets are available for solvimg $eepage problem,
however in order to perform quick parametric studies, foaregle relating to the
effect of cut-off wall length, powerful approximate techues such as the Method of
Fragments (Pavlovsky 1933, Harr 1962, Griffiths 1984) acesasingly employed. The
conventional methods are deterministic, in that the sainaability is assumed to be
uniform (everywhere the same), although anisotropic propertidssamatification can
be taken into account.



A more rational approach to the modeling of soil is to assumegoermeability
of the soil underlying a structure, such as that shown inf@d is random, i.e. the
soil is assumed to be a ‘random’ field (e.g. Vanmarcke 1984jastierized by a mean,
standard deviation, and some correlation structure. WHidéer joint moments are
possible, they are very rarely estimated with any accusargenerally just the first two
moments (mean and covariance structure) are specified.

h 4 Exit Qradient
% Upstream le
®=10
Downstream
y 970
)
1m ?
A
Uplift ForceU 3m
plift Force AL 4Am
4.2m } 6m 4.2m

Figure 2. Confined seepage boundary value problem. The two vertical
walls and the hashed boundaries are assumed impermeable.

The stochastic flow problem posed in Figure 2 is far too diffimucontemplate solving
analytically (and/or the required simplifying assumptieould make the solution use-
less). The determination of probabilities associated Wath, uplift, and exit gradients
are conveniently done using RFEM, described above. Inldétai simulated field of
permeabilities is mapped onto a finite element mesh, anchpatand stream function
boundary conditions are specified. The governing elliptjoagion for steady flow
(Laplace) leads to a system of linear ‘equilibrium’ equasiavhich are solved for the
nodal potential values throughout the mesh using conveatiGaussian elimination
within a finite element framework.

Note that Eq. 5 is strictly only valid for spatially constaiit In this analysis
the permeability is taken to be constant within each elemenvalue being given by
the local geometric average of the permeability field overélement domain. The
geometric average was found to be appropriate for squamseals by Fenton and
Griffiths (1993). From element to element, the valuefoiwill vary, reflecting the
random nature of the permeability.

Generation of Permeability Values

The permeability is assumed to be lognormally distributad & obtained
through the transformation

K; = eXp{MInK +on KGi} (6)

in which K, is the permeability assigned to tHé element; is the local (arithmetic)
average of a standard Gaussian random fi&(d;), over the domain of thé'i element,
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andu, » andoy, . are the mean and standard deviation of the logarithis ¢bbtained
from the ‘target’ mean and standard deviatipnando ).

Realizations of the permeability field are produced usinél discussed above,
which renders realizations of local averag€$, of a random field=(z) having zero
mean, unit variance, and a spatial correlation correldéogth,d,, .. As the correlation
length goes to infinity(7; becomes equal t@; for all elements and; — that is the field
of permeabilities tends to become uniform on each reatinatit the other extreme,
as the correlation length goes to zeth,andG'; become independent for alt? j — the
soil permeability changes rapidly from point to point.

In the two dimensional analyses presented in this sectiercdrrelation lengths
in the vertical and horizontal directions are taken to beaéjaotropic) for simplicity.
Since actual soils are frequently layered, the correldgagth horizontally is generally
larger than it is vertically. However, the degree of laygria site specific and is left
to the reader as a refinement. The results presented hergree @ establishing the
basic probabilistic behaviour of flow under water retainstigictures. In addition, the
two-dimensional model used herein implies that the outtafie correlation length is
infinite — soil properties are constant in this direction —+akhs equivalent to specifying
that the streamlines remain in the plane of the analysiss iBhtlearly a deficiency of
the two-dimensional model, however most of the charadiesisf the random flow are
nevertheless captured by the two-dimensional model (@Gsfand Fenton, 1995).

Before discussing the results from multiple realizatioms,example of what
a flow net might look like for a single realization is given ifg&res 3a and 3b for
permeability statisticg, =1 m/s,o,, =1 m/s and, , = 1.0 m.

In Figure 3a, the flow net is superimposed on a ‘grey-scalétwimdicates the
spatial distribution of the permeability values. Dark arearrespond to low permeabil-
ity and light areas to high permeability. The streamlineady try to ‘avoid’ the low
permeability zones, but this is not always possible as s@akzations may generate
a complete ‘blockage’ of low permeability material in cémtparts of the flow regime.
This type of ‘blockage’ is most likely to occur where the flosute is compressed, such
as under a cut-off wall. An example where this happens is showigure 3b. Flow in
these (dark) low permeability zones is characterized bygttgamlines moving further
apart and the equipotentials moving closer together. Gsaixe flow in the (light)
high permeability zones is characterized by the equip@tisnnhoving further apart and
the streamlines moving closer together. In both of thesedgthe contrast between
stochastic flow and the smooth flow lines that would occurugloa deterministic
and uniform field, is clear. In addition, the ability for theamlines to avoid low
permeability zones means that the average permeabilitylsethe flow is higher than
if the flow was constrained to pass through the low permeagtabnes. This ability
to circumnavigate the blockages is why the geometric aeera@ better model for
two-dimensional flow than is the harmonic average.

Althoughlocal variations in the permeability have an obvious effect orlabal
paths taken by the water as it flows downstreghobally the stochastic and determin-
istic flow nets exhibit many similarities. The flow is predorantly in a downstream
direction, with the fluid flowing down, under and around thé-afi walls. For this
reason the statistics of the output quantities might be&epdo be rather insensitive to
the geometry of the problem (e.g. length of walls etc.), amalitptively similar to the
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properties of a 1-d flow problem, aside from an average éffepermeability which is
higher than in the 1-d case.

(b) .

Figure 3. Stochastic flow net for two typical realizations.
Flow Rate Statistics

In the case of the flow rate, the global flow vecfprvas computed by forming
the product of the potentials and the global conductivityriran the finite element
model. Assuming no sources or sinks in the flow regime, thg ooh-zero values i)
correspond to those freedoms on the upstream side at whéghotientials were fixed
equal to 10 m. These values were summed to give the total flvgan m*/s/m,
leading to a non-dimensional flow rafedefined by

Q
e AH

Q= (7
where 1, is the (isotropic) mean permeability anslH is the total head difference
between the up- and downstream sidé€g.is equivalent to the ‘shape factor’ of the
problem, namely the ratio of the number of flow channels digidy the number
of equipotential dropsi{; /n,) that would be observed in a carefully drawn flow net;
alternatively it is also equal to the reciprocal of the ‘Fdfactor’ utilized by the Method
of Fragments. _

In the following, the distribution of) will be investigated. The actual flow rate
is determined by inverting Eq. 7,

Q= uAHQ 8)

which will have the same distribution é}sexcept with mean and standard deviation,

o = pxAHpg (9a)
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o, = pAHog (9b)

Figure 4a shows a significant fall img (wherem, is the simulation-based
estimate of.;) aso . /1, increases fofl, ., < 8 m. Asthe correlation length approaches
infinity, the expected value 6§ approaches the constant 0.226. This curve is also shown
in Figure 4a, although it should be noted it has been obtahmedigh theory rather than
simulation. In agreement with this result, the cutyg, = 8 m shows a less marked
reduction inmg with increasing coefficient of variation, /1.,.. However, over typical
correlation lengths, the effect on average flow rate is slighe decrease in flow rate as
a function of the variability of the soil mass is an importabservation from the point of
view of design. Traditional design practice may very welrélging on this variability
to reduce flow rates on average. It also implies that enstnigiger uniformity in the
substrate may be unwarranted unless the mean permeabKitgwn to be substantially
reduced and/or the permeability throughout the site isfayeneasured.

deterministic (0.226)

0.05 0.1 0.15 0.2 0.25

0

1 ® /o By = 4

)
0 005 01 0.15 0.2 0.25

Ok/Hk

Figure 4. Effect of the correlation length and the coefficient of vada
of permeability on a) the mean flow rate, and b) the flow rate
standard deviation.
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It may be noted that the deterministic result(pt= 0.226 has been included in Figure
4a, and as expected, the stochastic results converge orathesass,. /1, approaches
zero.

Figure 4b shows the behaviourgf, the estimate af 5, as a function ofr . /1.
Of particular note is that; reaches a maximum correspondingrto/ /. in the range
1.0- 2.0 forfinited,, .. Clearly, wherr,. = 0, the permeability field will be deterministic
and there will be no variability in the flow ratet; will be zero. What is not quite
So obvious is that because the mear(ofalls to zero wherv, /u, — oo for finite
O « (see Figure 4 — the curves go to zero as the permeabilitybibityancreases), the
standard deviation of) must also fall to zero, sinc@ is nonnegative. Thus;; = 0
when the permeability variance is both zero and infinite. uistntherefore, reach a
maximum somewhere between these two bounds. The point ahwie maximum
occurs moves to the right &g . increases. B

In general, it appears that the greatest variabilityliroccurs under rather
typical conditions: ‘worst case’ correlation lengths beeém 1 and 4 m and coefficient
of variation of permeability of around 1 or 2.

SHALLOW FOUNDATION SETTLEMENT

Consider now a serviceability limit state, namely that dflseent of a shal-
low foundation. In structural design, serviceability linstates are investigated using
unfactored loads and resistances. In keeping with thi$, thet Eurocode 7 (2003) and
Australian Standard AS 2159 (1995) specify unit resistdaceors for serviceability
limit states. The Australian Standard AS 5100.3 (2004)estdélhat “a geotechnical
reduction factor need not be applied” for serviceabilityitistates.

Due to the inherently large variability of soils, howeverddecause settlement
often governs a design, it is the opinion of the authors thapgrly selected resistance
factors should be used for both ultimate and servicealifitit states in the settlement
design of most geotechnical systems. The Australian Stdnd& 4678 (2002), for
example, agrees with this opinion and, in fact, distingessbetween resistance factors
for ultimate limit states and serviceability limit statethe factors for the latter are closer
to 1.0, reflecting the reduced reliability required for seeability issues. Although
the Canadian Foundation Engineering Manual (3rd Ed.,1988yests the use of a
“performance factor” (foundation capacity reduction &agtof unity for settlement, it
goes on to say “However, in view of the uncertainty and greatability in in situ
soil-structure stiffnesses, Meyerhof (1982) has suggdsiat a performance factor of
0.7 should be used for an adequate reliability of servidisaleistimates.”

If resistance factors are to be used, how should they betsdlso as to achieve
a certain reliability? Statistical methods suggest thatrésistance factors should be
adjusted until a sufficiently small fraction of possiblelreaions of the soil enter the
limit state being designed against. Unfortunately, therenly one realization of each
site and, since all sites are different, it is difficult to gpptatistical methods to this
problem. For this reason geotechnical reliability-basediecdevelopment has largely
been accomplished by calibration with past experience piigd in previous codes.
This is quite acceptable, since design methodologies havlwezl over many years
to produce a socially acceptable reliability, and this @sctéated information is very
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valuable — see, for example, Vick’s (2002) discussion of\uakie of judgement in
engineering.

On the other hand, a reliability-based design code deriveely from de-
terministic codes cannot be expected to provide the additieconomies that a true
reliability-based design code could provide, eg. by allayvihe specification of the
target reliability (lower reliability for less importantrsictures, etc.), or by improving
the design as uncertainty is reduced, and so on. To attandel of control in a
reliability-based design code, probabilistic modeling/an simulation of many possi-
ble soil regimes should also be employed to allow the ingastin of the effect that
certain design parameters have on system reliability. Bh&n important issue — it
means that probabilistic modeling is necessary if religbhbased design codes are to
evolve beyond being mirror images of the deterministic cathey derive from. The
randomness of soils must be acknowledged and properly atabor.

This section presents some results of a study in which aikliabased settle-
ment design approach is proposed and investigated via afimwilusing the Random
Finite Element Method (RFEM). In particular, the effect o$ail’s spatial variability
and site investigation intensity on the resistance fagsogsiantified. The results of the
study can and should be used to improve and generalize fatdil’ code provisions
based purely on past experience. Further details of thiysite given by Fenton et al.
(2005) or Fenton and Griffiths (2008).

The settlement problem considered is that of a rigid rouglasgipad footing
founded on the surface of a three-dimensional linearlytiela®il mass underlain by
bedrock at deptlf, as illustrated in Figure 5. The soil property of primaryeirgst
to settlement is elastic modulug;,, which is taken to be spatially random and may
represent both the initial elastic and consolidation b&hayv Its distribution is assumed
to be lognormal for two reasons: the firstis that a geometrcage tends to alognormal
distribution by the central limit theorem and the effectlastic modulus, as ‘seen’ by
a footing, was found to be closely represented by a geonmterage, and the second
is that the lognormal distribution is strictly nonnegatwieich is physically reasonable
for elastic modulus. The correlation structure is assurodzetMarkovian (see Eq. 1).
Poisson’s ratio, having only a relatively minor influencesettlement, is assumed to be
deterministic and is set equal to 0.3.
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Figure 5. Cross-section through a realization of the random soil tpde
ing the footing. Darker soils are stiffer.

Realizations of the random elastic modulus field are produséng the Local Average
Subdivision (LAS) method which produces a discrete gridauial averages(s;, of

a standard Gaussian random field, having correlation sireicfiven by Eq. 1, where
averaging is performed over the domain of thie finite element. These local averages
are then mapped to finite element properties according to

E, = eXp{NInE + o EGZ} (10)

Footing settlement is predicted here using a modified Jaglationship (Janbu
et al.,1956), and this is the basis of design used in thig/stud

qB
p = ul? (11)

whered,, is the predicted footing settlemeqt— P / B?is the characteristic stress applied
tothe 30|I by the characteristic loafl, acting over footing are& x B, E is the estimate
of elastic modulus underlying the footing, is an influence factor which includes the
effect of Poisson’s ratio{ = 0.3 in this study). The characteristic loaf, is often a
nominal load computed from the supported live and dead |omldite the characteristic
elastic modulusf, is usually a cautious estimate of the mean elastic moduidsiu
the footing obtained by taking laboratory samples or byitn-sts, such as CPT. In
terms of the footing load?, the settlement predictor thus becomes

~

P
o, = 12
ulBE (12)
The relationship above is somewhat modified from that givelddnbu et al.
(1956) and Christian and Carrier (1978) in that the influefactor, u,, is calibrated
specifically for a square rough rigid footing founded on theace of an elastic soll
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using the same finite element model which is later used in tbet®Carlo simulations.
This is done to remove bias (model) errors and concentra@fgglly on the effect of
spatial soil variability on required resistance factors.practice, this means that the
resistance factors suggested herewgmger boundsappropriate for use when bias and
measurement errors are known to be minimal. A very closecequpation to the finite
element results is given by the fitted relationship

uy = 0.61 (1 . e—1-18H/B) (13)
Using Eqg. 13 in Eqg. 12 gives the following settlement pradict
P
— ~_—118H/B L
5, =061 (1 e ) (BE) (14)

The reliability-based design goal is to determine the fogptidth, B, such that
the probability of exceeding a specified tolerable settlende,,.., is acceptably small.
That is, to findB such that

P[(s > 5maz] = Py = DPm (15)

whered is the actual settlement of the footing ‘as placed’ (whicli is considered
here to be the same as ‘as designed’). Design failure is asbstonhave occurred if
the actual footing settlement, exceeds the maximum tolerable settlemeént,.. The
probability of design failure i®; andp,, is the maximum acceptable probability of
design failure.

A realization of the footing settlement, is determined here using a finite
element analysis of a realization of the random soil. #prcalibrated to the finite
element resultsj can also be computed from

P
BEsf

0=y (16)
whereP is the actual footing load andl. s is the effective elastic modulus as seen by
the footing (ie, the uniform value of elastic modulus whichuld produce a settlement
identical to the actual footing settlement). Bathand £, ;; are random variables.

One way of achieving the desired design reliability is tooduce a load factor,
a > 1, and aresistance facter, < 1, and then finding3, o and¢, which satisfy both
Eq. 15 and Eq. 12 with = 6,,,,.. In other words, find3 anda/¢, such that

P
G =y | — (17)
Bo,E

P - aP
u =
BE.;; ~ '\ Bg,E
In the above, we are assuming that the soil’s elastic modéluss the ‘resistance’ to
the load and that it is to be factored due to its significaneutainty.

and

Pul

15



Givena/¢,, P, E, andH, Eq. 17 is relatively efficiently solved faB using a

1-ptiteration;
P
By =061 (1 — e*“f‘H/Bz‘) e (19)
OmazbgE

fori =0,1,... until successive estimates 6f are sufficiently similar. A reasonable
starting guess i8 = 0.4(aP)/(6maz 9y E)-

Collecting all remaining random quantities leads to thepdiiled design prob-
ability

P

E
PEff > %e“'“’] = Dm (20)
e 9

Simulation Results

The Random Finite Element Method (RFEM) will be employedmnita design
context to estimate settlement failure probabilities asrection of the resistance used
in the design. The approach is described as follows;

1) decide on a maximum tolerable settleménpt,.. To illustrate the approach we will
select),,,, = 0.025 m. A

2) estimate the characteristic footing lodd, to be the median load applied to the
footing by the supported structure (it is assumed that the tbstribution is known
well enough to know its mediaf, = e/ 7).

3) simulate an elastic modulus fiel#(zx), for the soil from a lognormal distribution
with specified mearny ,, coefficient of variationy, and correlation structure (e.g.
Eq. 1) with correlation lengthy, .. A

4) ‘virtually’ sample the soil to obtain an estimaté, of its elastic modulus. In a real
site investigation, the geotechnical engineer may eséith&t soil’s elastic modulus
and depth to firm stratum by performing one or more CPT or SRihdings. In
this simulation, one or more vertical columns of the soil eiate selected to yield
the elastic modulus samples afAds set equal to their geometric average.

5) lettingd, = d,,...., and for given factors andg, solve Eq. 19 foi3. This constitutes
the footing design. Note that design widths are normallyndmd up to the next
most easily measured dimension (eg 1684 mm would probabipireded up to
1700 mm). In the same way, in this analysis the design valugisefrounded up to
the next larger element boundary, since the finite elementehassumes footings
are a whole number of elements wide. (The finite element mosie$ elements
which are 0.15 m wide, sB is rounded up here to the next larger multiple of 0.15
m.)

6) sizmulate a lognormally distributed footing loa, having median® and variance
Op.

7) compute the ‘actual’ settlement, of a footing of width B under loadP on a
random elastic modulus field using the finite element modaeal.this step, the
virtually sampled random field generated in step (3) aboveapped to the finite
element mesh, the footing of widtB (suitably rounded up to a whole number
of elements wide) is placed on the surface and the settlecoenputed by finite
element analysis.
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8) if 0 > 0,,.., the footing design is assumed to have failed.
9) repeat from step (3) a large number of times=(1000, in this study), counting the
number of footingsi , which experienced a design failure. The failure probapili
is then estimated g8 = n;/n.
By repeating the entire process over a range of possiblesalfip, the resistance
factor which leads to an acceptable probability of failyre,= p,,, can be selected.
This ‘optimal’ resistance factor will also depend on;
1) the number and locations of sampled columns (analogotletoumber and loca-
tions of CPT/SPT soundings),
2) the coefficient of variation of the soil’s elastic modulus,
3) the correlation lengtl®), ..,
The simulation will be repeated over a range of values ofdlpegsameters to see how
they affecto,.

Five different sampling schemes will be considered in thislg as illustrated
in Figure 6 (see Jaksa et al., 2005, for a detailed study okffeetiveness of site
investigations). The outer solid line denotes the edge@§&thl model, and the interior
dashed line the location of the footing. The small black sesiahow the plan locations
where the site is virtually sampled. Itis expected that tinity of the estimate of’,
will improve for higher numbered sampling schemes. Thahisprobability of design
failure will decrease for higher numbered sampling scheme=ything else being held
constant.

Figure 6. Sampling schemes considered in this study.

Figure 7 shows the effect of the correlation length on thébabdity of failure for
sampling scheme #1 (a single sampled column at the cornétedasid forv, = 0.5.
The other sampling schemes and values,otlisplayed similarly shaped curves. Of
particular note in Figure 7 is the fact that the probabilityaslure reaches a maximum
for an intermediate correlation length, in this case whgp ~ 10 m. This is as
expected, since for stationary random fields the value® aind E. ;; will coincide
for both vanishingly small correlation lengths (where loggeraging results in both
becoming equal to the median) and for very large correlagogths (where@ and
E.;; become perfectly correlated) and so the largest diffesebetween? and . sy
will occur at intermediate correlation lengths. The trueximaum could lie somewhere
betweerd,, , = 1 m andé,, , = 100 m in this particular study. This is a ‘worst case’
correlation length.
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Figure 7. Effect of correlation lengthd,, ., on probability of settlement
failure,py = P[0 > 0,,0,]-

Where the worst case correlation length occurs for arlyittampling patterns is still
unknown. However, the authors expect that it is probablg f¢afsay that taking
On » approximately equal to the average distance between sdogatons and the
footing center (but not less than the footing size) will gislitably conservative failure
probabilities. In the remainder of this study, the, = 10 m results will be concentrated
on since these yielded the most conservative designs.

Figure 8 shows how the estimated probability of failure @anvith resistance
factor for the five sampling schemes considered with= 0.5 and,, = 10 m.
This Figure can be used for design by drawing a horizontal dioross at the target
probability, p,, — to illustrate this, a light line has been drawn acrosg,at= 0.05 —
and then reading off the required resistance factor for arggampling scheme. For
example, ifp,, = 0.05, thenp, ~ 0.46 for the worst case sampling scheme #1.

As expected, improved sampling (i.e. improved site undeding) makes
a significant difference to the required valuegf which ranges fronp, ~ 0.46 for
sampling scheme #1 tq, ~ 0.65 for sampling scheme #5, assuming a target probability
of p,, = 0.05. The implications of Figure 8 are that when soil variapils significant,
considerable design/construction savings can be achislied the sampling scheme
and site understanding are improved.
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SHALLOW FOUNDATION BEARING CAPACITY

The design of a shallow footing typically begins with a sitedstigation aimed
at determining the strength of the founding soil or rock. ©tigs information has been
gathered, the geotechnical engineer is in a position tométe the footing dimensions
required to avoid entering various limit states. In so doihgill be assumed here that
the geotechnical engineer is in close communication wighsthuctural engineer(s) and
is aware of the loads that the footings are being designedgpast. The limit states
that are usually considered in the footing design are seabidity limit states (typically
deformation — see previous section) and ultimate limitestafThe latter is concerned
with safety and includes the load-carrying capacityy@aring capacityof the footing.

This section investigates an LRFD approach for shallow flagions designed
against bearing capacity failure. Only a few results aregmted — the interested reader
is directed to Fenton et al. (2008) or Fenton and Griffith®©@ador more details.

The design goal is to determine the footing dimensions shahtheultimate
geotechnical resistandeased on characteristic soil propertiég, satisfies

¢g]%u > [Zaiii (21)

where ¢, is the geotechnical resistance factof is animportance factor o; is the
ith load factor and L; is theith characteristic load effect The relationship between
¢, and the probability that the designed footing will expecera bearing capacity
failure will be summarized below (from Fenton et al., 20031)dwed by some results
on resistance factors required to achieve certain targeinmugn acceptable failure
probabilities for the particular case of a strip footingo(fr Fenton et al., 2008). The
symbol ¢ is commonly used to denoted the resistance factor — seex&on@e, the
National Building Code of Canada (NBCC) [National Resedohincil (NRC), 2005]
and in Commentary K “Foundations” of the User's Guide — NBM2®tructural
Commentaries, NRC, 2006). The authors are also adoptirgpthenon notation where
the subscript denotes the material that the resistanae fgaverns. For example, where
¢. and¢, are resistance factors governing concrete and steel,tteeden ¢, will be
taken to denote “geotechnical” or “ground.”

The importance factor in Eq. 21, reflects the severity of the failure conse-
quences and may be larger than 1.0 for important structaues, as hospitals, whose
failure consequences are severe and whose target proiealoli failure are much less
than for typical structures. Typical structures usually designed using = 1, which
will be assumed in this section. Structures with low failooesequences (minimal risk
of loss of life, injury, and/or economic impact) may have: 1.

Only one load combination will be considered in this se(;ti@piL + aDiD,
whereiL is the characteristic live IoadiD is the characteristic dead load, andand
«,, are the live and dead load factors, respectively. The loatdfawill be as specified
by the National Building Code of Canada (NBCC, 2006); = 1.5 anda,, = 1.25.
The theory presented here, however, is easily extendedhéo lmtad combinations and
factors, so long as their (possibly time-dependent) distions are known.
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The characteristic loads will be assumed to be defined indefrthe means of
the load components in the following fashion,

~»

L=k, (22q)
b = kphip (22b)

~

wherey,, andy, are the means of the live and dead loads, respectivelykanand

k, are live and dead loabias factors, respectively. The bias factors provide some
degree of ‘comfort’ by increasing the loads from the meamedb a value having a
lesser chance of being exceeded. Since live loads are tirgengathe value ofu,,

is more specifically defined as the mean of the maximum live @erienced over a
structure’s lifetime (the subscriptdenoteextremg.

For typical multistory office buildings, Allen (1975) estates;:, to be 1.7
kN/m?, based on a 30 year lifetime. The corresponding charatiteliige load given
by the National Building Code of Canada (NBCC, 2006Y.is = 2.4 kN/m?, which
implies thatk,, = 2.4/1.7 = 141. Dead load, on the other hand, is largely static, and
the time span considered (e.g. lifetime) has little effectits distribution. Becker
(1996) estimates,, to be 1.18. A

The characteristic ultimate geotechnical resistaRges determined using char-
acteristic soil properties, in this case characteristicies of the soil's cohesion;,
and friction angley (note that although the primes are omitted from these giiesti
it should be recognized that the theoretical developmesssribed in this study are
applicable to either total or effective strength parangtefo obtain the characteristic
soil properties, the soil is assumed to be sampled over d&esoojumn somewhere in
the vicinity of the footing, for example, a single CPT or SPUiding near the footing.
It is assumed here that the observations are error-freehwhianunconservatives-
sumption. If the actual observations have considerabte,ghen the resistance factor
used in the design should be reduced.

The characteristic value of the cohesien,is defined here as the median of
the sampled observations;,, which, assuming: is lognormally distributed, can be
computed as a geometric average. The characteristic véaltlee driction angle is
computed as an arithmetic average. A

To determine the characteristic ultimate geotechnicastasceRr,,, it will first
be assumed that the solil is weightless. This simplifies thaulzion of the ultimate
bearing stresg, to

¢u = N, (23)

The assumption of weightlessness is conservative sincediheeight contributes to
the overall bearing capacity. This assumption also alldvesanalysis to explicitly
concentrate on the role ofV, on ultimate bearing capacity, since this is the only term
that includes the effects of spatial variability relatimgbthshear strength parameters
cande.

Bearing capacity predictions, involving specification bé tV, factor in this
case, are generally based on plasticity theories (seePeamdtl, 1921; Terzaghi, 1943,
and Sokolovski, 1965) in which a rigid base is punched intoftes material. These
theories assume that the soil underlying the footing hapepties which are spatially
constant (everywhere the same). This type of ideal soillvalteferred to as aniform
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soil henceforth. Under this assumption, most bearing capdo#gries (e.g., Prandtl,

1921; Meyerhof, 1951, 1963) assume that the failure slifasartakes on a logarithmic

spiral shape to give

" tarf (3 +3) —1
tang

The theory is derived for the general case of-a¢ soil. One can always sét=0 to
obtain results for an undrained clayey soil.

Consistent with the theoretical results presented by Featal. (2008), this
section will concentrate on the design of a strip footingthlis case, the characteristic
ultimate geotechnical resistan& becomes

N, =

(24)

R, = Ba, (25)

where B is the footing width and?, has units of load per unit length out-of-plane,
that is, in the direction of the strip foot. The charactécisitimate bearing stresg, is
defined by A
Gu = CN, (26)

where the characteristit¥, factor is determined using the characteristic frictionlang
in Eq. 24.

For the strip footing and just the dead and live load comimnatthe LRFD
equation becomes

1 [aLiL + anJD}

ngBéu =1 [aLf/L + an/D] = B= =
DgQu

(27)

To determine the resistance factgy required to achieve a certain acceptable
reliability of the constructed footing, itis necessarystimate the probability of bearing
capacity failure of a footing designed using Eq. 27. Onceptiobability of failurep;
for a certain design using a specific value fgris known, this probability can be
compared to the maximum acceptable failure probability If p, exceeds,,, then
the resistance factor must be reduced and the footing gaukstsi Similarly, ifp is less
thanp,,, then the design is overconservative and the valug,afan be increased. A
specific relationship between, and¢, will be given below. Design curves will also be
presented from which the value ¢f required to achieve a maximum acceptable failure
probability can be determined.

As suggested, the determination of the required resistéauter ¢, involves
deciding on a maximum acceptable failure probability The choice of,, derives
from a consideration of acceptable risk and directly infagsnthe size of,. Different
levels ofp,, may be considered to reflect the “importance” of the supplasteicture —
pn May be much smaller for a hospital than for a storage wareholise choice of a
maximum failure probability,,, should consider the margin of safety implicit in current
foundation designs and the levels of reliability for gebtsical design as reported in the
literature. The values gf,, for foundation designs are nearly the same or somewhat less
than those for concrete and steel structures because offibeltles and high expense
of foundation repairs. Typical maximum acceptable failpn@babilities of foundations
range from 102 to 10~* (Meyerhof, 1970). In general, these probabilities are dakm
by the authors to be appropriate for designs involving lowigh failure consequence
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structures, with medium, or typical, failure consequerngctures falling in the middle
at about 10°.

We also note that the effect of structural importance is gipecally reflected
in the importance factor], of Eq. 21 and not in the resistance factor. The resistance
factor should be aimed at a medium, or common, structurabrtapce level and the
importance factor should be varied above and below 1.0 toustdor more and less
important structures, respectively. However, since aedae failure probabilities may
not be simply connected to structural importance, we wilase/ = 1 in the following.
For code provisions, the factors recommended here showdrisedered to be the ratio

Gg/1
Random Soil Model

The soil cohesion: is assumed to be lognormally distributed with mean
standard deviation,, and spatial correlation length,.. A lognormally distributed
random field is obtained from a normally distributed randcetdfz), .(x) having zero
mean, unit variance, and spatial correlation lertgththrough the transformation

C(g) = exp{:uln c + Oln cGln c@)} (28)

wherey is the spatial position at whichis desiredgf,, = In (1 +v2), pune = In (1) —
o2 ./2, andv, = 0./ 11, is the coefficient of variation.

The correlation coefficient between the log-cohesion atiatpg and a second
point z, is specified by a correlation functigw, .(r) wherer = z, — x, is the vector
between the two points. In this section, a simple exponintiacaying (Markovian)
correlation function will be assumed (see Eq. 1).

The friction anglep is assumed to be bounded both above and below, so that
neither normal nor lognormal distributions are approgria# beta distribution is often
used for bounded random variables. Unfortunately, a bistaulited random field
has a very complex joint distribution and simulation is cemgome and numerically
difficult. To keep things simple, a bounded distribution édested which resembles
a beta distribution but which arises as a simple transfaonaif a standard normal
random fieldG,(z) according to

) } (29)

where ¢,,,;, and ¢,,,, are the minimum and maximum friction angles in radians, re-
spectively, and is a scale factor which governs the friction angle varigpiietween
its two bounds. See Fenton and Griffiths (2008) more dethsiethis distribution.

It seems reasonable to assume that if the spatial cornelstiiocture of a soil is
caused by changes in the constitutive nature of the soilpaare, then both cohesion and
friction angle would have similar correlation lengths. §hboth cohesion and friction
angle are assumed to have the same correlation structuegwdhrandom fields; and
¢, are assumed to be independent which is deemed to be slagintbervative.

Nonzero correlations betweeand¢ were found by Fenton and Griffiths (2003)
to have only a minor influence on the estimated probabildfdsaring capacity failure.
Since the general consensus is thahd¢ are negatively correlated (Cherubini, 2000;

925(%) = ¢mzn + %(¢ma$ - ¢mzn) {1 + tanh(sG¢(g‘)
2m
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Wolff, 1985) and the mean bearing capacity for independeand ¢ was slightly
lower than for the negatively correlated case (see Sectioh)1the assumption of
independence betweerand¢ is slightly conservative.

Failure Probability

When soil properties are spatially variable, as they areeality, then the
hypothesis made in this study is that Eq. 23 can be replaced by

¢, = cN, (30)

wherec and N, are theequivalentcohesion aneéquivalentVV, factor, defined as those
uniformsoil parameters which lead to the same bearing capacityses\ed in the real,

spatially varying, soil. In other words, it is proposed tbguivalent soil properties,
and¢, exist such that a uniform soil having these propertieshlle the same bearing
capacity as the actual spatially variable soil. The valu&/ofs obtained by using the
equivalent friction angle in Eq. 24.

B
| | ground level
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! .
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Figure 9. Averaging regions and distances used to predict probgaloit
bearing capacity failure.

The design footing widtl® is obtained using Eq. 27, which, in terms of the characierist
design values, becomes A A
1 [aLLL + aDLD}
BgeN.
The design philosophy proceeds as follows: Find the reddoeting width B
such that the probability that the actual loa@xceeds the actual resistanges is less

than some small acceptable failure probabjity If p; is the actual failure probability,
then

B= (31)

ps = P[L > ¢,B] = P[L > ¢N,B] (32)
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and a successful design methodology will haye< p,,,. Substituting Eq. 31 into Eq. 32
and collecting random terms to the left of the inequalitydeto

éNG 1 [aLIA/L +0zD[A/D]
=P|L— >
Py cN, bq

The footing shown in Figure 9 is just one possible realizaimce the footing
width, B, is actually a random variable which depends on the restitteecite investi-
gation. In order to estimate failure probability analyligghe randont ande fields are
averaged over the domain under the footing, wher® is selected to approximately
represent the volume of soil which deforms during a bearagncity failure.

Figure 10 illustrates the best and worst agreement betvagkeind probabilities
estimated via simulation and those computed theoreti¢giyton et al., 2008). The
failure probabilities are slightly underestimated at tharst-case correlation lengths
when the sample location is not directly below the footingue@ all the approximations
made in the theory, the agreement is very good (within a 10&tive error), allowing
the resistance factors to be computed with confidence evarobability levels which
the simulation cannot estimate — the simulation involvelg @000 realizations and so
cannot properly resolve probabilities much less th&®0.

(33)
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Figure 10. Comparison of simulation and theoretical (using Eq. 33) est
mates of failure probabilities at two sampling distances.

Required Resistance Factor

Equation 33 can be inverted to find a relationship betweeadtheptable prob-
ability of failure p; = p,,, and the resistance factgy, required to achieve an acceptable
failure probability,

I [ozLIA/L +0zDIA/D]
G =
exp{,ulny +0Inyﬁ}

whereY = LéNC/(c_]\_fC) andg is the desired reliability index correspondingutg.
Figure 11 shows the resistance factors required for thescabere the soil
is sampled at a distance of 4.5 m from the footing centerloreaftarget maximum

(34)
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acceptable failure probability of,, = 10°3. The worst-case correlation length is
clearly between about 1 and 5 m, which is of the same magnésdiee mean footing
width.
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Figure 11. Resistance factors required to achieve acceptable falotza-
bility p,, = 10~ when soil is sampled at= 4.5 m from footing
centerline.

As expected the smallest resistance factors corresportetwvorst case correlation
lengths and the highest soil variability. In other wordseréhwill be a significant
construction cost penalty if a high reliability footing isslgned using a site investigation
which is insufficient to reduce the residual variability és$ than,. = 0.5.

One of the main impediments to the practical use of thesdtsasithat they
depend on a-priori knowledge of the variance, and, to a tesdent since worst-case
results are presented above, the correlation structureeo$ail properties. However,
assuming that at least one CPT sounding (or equivalentkénten the vicinity of the
footing, it is probably reasonable to assume that the residariability is reduced to
a coefficient of variation of no more than about 0.3, and oftensiderably less (the
results collected by other investigators, e.g. Phoon 1909, suggest that this may be
the case for “typical” site investigations). If this is shetresistance factors suggested
for v, = 0.3 are probably reasonable for the load and bias factors assumthis study.

A significant advantage to formally relating the resistafa@or to site under-
standing, such as shown in Figure 11, is that this provideseglnical engineers with
evidence that increased site investigation will lead taoed construction costs and/or
increased reliability. In other words, Figure 11 is furtleerdence that you pay for a
site investigation whether you have one or not (Institutdgivil Engineers, 1991).
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DEEP FOUNDATIONS

The resistance, or bearing capacity, of a pile arises as &ioation of side
friction, where load is transmitted to the soil throughtina along the sides of the pile,
and end bearing, where load is transmitted to the soil (dg)rdwough the tip of the
pile. As load is applied to the pile, the pile settles — thalteettlement of the pile is
due to both deformation of the pile itself and deformatiorhe#f surrounding soil and
supporting stratum. The surrounding soil is, at leastatitj assumed to be perfectly
bonded to the pile shaft through friction and/or adhesiathabany displacement of the
pile corresponds to an equivalent local displacement oktike(the soil deformation
reduces further away from the pile). In turn, the elasticreof the soil means that this
displacement is resisted by a force which is proportiondgh&osoil’s elastic modulus
and the magnitude of the displacement. Thus, at leastllgjtthe support imparted
by the soil to the pile depends on the elastic properties ®fstirrounding soil. For
example, Vesic (1977) states that the fraction of pile setént due to deformation of
the soil,d,, is a constant (dependent on Poisson’s ratio and pile geghtiehesq/ £,
where( is the applied load and is the (effective) soil elastic modulus.

Asthe load onthe pileisincreased, the bond between tharsdthe pile surface
will at some point break down and the pile will both slip thgbuthe surrounding soil
and plastically fail the soil under the pile tip. At this pgithe ultimate bearing capacity
of the pile has been reached. The force required to reactothegi which the pile slips
through a sandy soil is conveniently captured using a stalipterface friction angle,
0. The frictional resistance per unit area of the pile surfd@g¢cean then be expressed as

f =0 tand (35)

whereo’, is the effective stress exerted by the soil normal to thequiléace. In many
cases,o, = Ko., where K is the earth pressure coefficient angdis the effective
vertical stress at the depth under consideration. The titiedate resistance supplied
by the soil to an applied pile load is the sum of the end bearagacity (which can
be estimated using the usual bearing capacity equationjrenishtegral off over the
embedded surface of the pile. For clays with zero frictiogien\Vijayvergiya and Focht
(1972) suggest that the averagefoidenoted with an overbar, can be expressed in the
form .

f=X(0,+2,) (36)

whereco! is the average effective vertical stress over the entireegiment lengthg,,
is the undrained cohesion, ands a correction factor dependent on pile embedment
length.

The limit state design of a pile involves checking the desiginoth the service-
ability limit state (SLS) and the ultimate limit state (UL3he serviceability limit state
is a limitation on pile settlement, which in effect involvesmputing the load beyond
which settlements become intolerable. Pile settlemerdlwes consideration of the
elastic behaviour of the pile and the elastic (é/g). and consolidation behaviour of the
surrounding soil.

The ultimate limit state involves computing the ultimatadahat the pile can
carry just prior to failure. Failure is assumed to occur wtienpile slips through the
soil (we are not considering structural failure of the pitelf) which can be estimated
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with the aid of Eq’s 35 or 36, along with the end bearing cagajuation. The ultimate
pile capacity is a function of the soil's cohesion and foctangle parameters.

In this section, the soil’'s influence on the pile will be reggpted by bi-linear
springs (see, e.g., Program 12 of Smith and Griffiths, 1982)lustrated in Figure
12. The initial sloped portion of the load-displacementvewrorresponds to the elastic
(E,) soil behaviour, while the plateau corresponds to the altershear strength of the
pile-soil interface which is a function of the soil’s frion angle and cohesion. The
next section discusses the finite element and random fielcelmaded to represent
the pile and supporting soil in more detail. In the followisection an analysis of the
random behaviour of a pile is described and presented. @glgffects of the spatial
variability of the soil are investigated, and not, for imsta, those due to construction
and placement variability. Finally, the results are eveddaand recommendations are
made.

ultimate strength

stiffness

o)
Figure 12. Bi-linear load (') vs. displacement] curve for soil springs.

The Random Finite Element Model

The pile itself is divided into a series of elements, as itated in Figure 13.
Each element has cross-sectional arggassumed constant) and elastic modulisg,
which can vary randomly along the pile. The stiffness asaigo thei™ element is the
geometric average of the produ¢t, over the element domain.

As indicated in Figure 12, th& soil spring is characterized by two parameters;
its initial stiffness,S;, and its ultimate strength/;. The determination of these two
parameters from the soil’s elastic modulus, friction angled cohesion properties is
discussed conceptually as follows;

1) The initial spring stiffnesss;, is a function of the soil’s spatially variable elastic
modulus,FE,. Since the strain induced in the surrounding soil due toldcgment
of the pile is complex, not least because the strain decsease-linearly with
distance from the pile, the effective elastic modulus ofdbi¢ as seen by the pile
at any point along the pile is currently unknown. The naturéhe relationship
betweenFE, andS; remains a topic for further research. In this chapter, tmagp
stiffness contribution per unit length of the pile(z), will be simulated directly as
a lognormally distributed one-dimensional random process

2) The ultimate strength of each spring is somewhat mordyegsecified, so long
as the pile-solil interface adhesion, friction angle, andwad stress are known.
Assuming that soil properties vary only with depththe ultimate strength per unit
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pile length at depth, will have the general form (in the event that both adhesion
and friction act simultaneously)

U(2) = plac,(2) + 0, (2) tand(2) (37)

whereac,(z) is the adhesion at depth(see, e.g., Das, 2000, pg. 519, for estimates
of the adhesion factory), p is the pile perimeter lengthy)(z) is the normal
effective soil stress at depth andJ(z) is the interface friction angle at depth
The normal stress is often taken B¢/, whereK is an earth pressure coefficient.
Rather than simulate, and tanj and introduce the empirical and uncertain factors
a and K, both of which could also be spatially variable, the ultienatrength
per unit length[J(z), will be simulated directly as a lognormally distributedes
dimensional random process.
The random finite element model (RFEM) thus consists of aesscpiof pile
elements joined by nodes, a sequence of spring elementheadtdo the nodes (see

Figure 13), and thremdependeni-D random processes described as follows;
e S(z) andU(z) are the spring stiffness and strength contributions froengoil per

unit length along the pile, and _
o F,(2) is the elastic modulus of the pile.

Itis assumed that the elastic modulus of the pile is a 1-Dostaty lognormally
distributed random process characterized by the mean {gffleess, /., ,,, standard
deviation,o, ,, and correlation length, ., whereA is the pile cross-sectional area.
Note that for simplicity, it is assumed that all three randprocesses have the same
correlation lengths and all have the same correlation fongMarkovian). While it
may make sense for the correlation lengths associatedS{ajrandU (z) to be similar,
there is no reason that the correlation lengthifz) should be the same as that in
the soil. Keeping them the same merely simplifies the studijlevstill allowing the
study to assess whether a “worst case” correlation lengsiisehor the deep foundation
problem.

To assess the probabilistic behaviour of deep foundatiarsgries of Monte
Carlo simulations, with 2000 realizations each, were peréd and the distribution
of the serviceability limit state loads were estimated. Bleviceability limit state
was defined as being a settlemenbgf, = 25 mm. Because the maximum tolerable
settlement cannot easily be expressed in dimensionlass fbe entire analysis will be
performed for a particular case study; namely a pile of ledgtm is divided inta» = 30
elements withu .z, = 1000 kN,o,;, = 100 kN, 125 = 100 kN/m/m, andi,; = 10 kN/m.
The base of the pile is assumed to rest on a slightly firmetustraso the base spring
has mean stiffness 200 KN/m and mean strength 20 kN (notehtisas in addition to
the soil contribution arising from the lowermost half-ekesmt). Coefficients of variation
of spring stiffness and strength, andv,,, taken to be equal and collectively referred
to asv, ranged from 0.1 to 0.5. Correlation lengthgs, 6in »,, andé, ,, all taken to
be equal and referred to collectively simply@gganged from 0.1 m to 100.0 m. The
spring stiffness and strength parameters were assumednatoally independent, as
well as being independent of the pile elastic modulus.
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Figure 13. Finite element representation of the pile-soil system.

Figure 14 shows one of the best (on the left) and worst (onigin)rfits of a lognormal
distribution to the serviceability pile load histogram lvithi-square goodness-of-fit p-
values of 0.84 and 0.0006, respectively (the null hypothiesing that the serviceability
load follows alognormal distribution). The right-handphould resultin the lognormal
hypothesis being rejected for any significance level in ssc# 0.06%. Nevertheless, a
visual inspection of the plot suggests that the lognornsdfidution is quitaeasonable
—infactitis hard to see why one fit is so much ‘better’ thandtteer. It is well known,
however, that when the number of simulations is large, gesshof-fit tests tend to be
very sensitive to small discrepancies in the fit, partidylar the tails.

In the case of the ultimate limit state, the pile capacityopem becomes much
simpler — the ultimate capacity is just the sum of the ultensppring strengths along
the pile. What this means in practice is that the ultimate pépacity is just the sum
of ultimate shear forces provided by the supporting soih pile perimeter. In the
case of an undrained soil, the ultimate resistance of a piength H (ignoring end-
bearing) due to cohesion, between the pile surface and and its surrounding soil can
be computed according to,

R, = /o ! pac(z) dz (38)
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wherep is the effective perimeter length of the pile sectiefz) is the soil cohesion at
depthz (locally averaged around the pile perimeter), anid the ratio of the ultimate
cohesion acting on the pile surface and the soil cohesioithwtypically somewhere
between 0.5 and 1.0 (CFEM, 2006).

n
—

0.6

——— normalized frequency ——— normalized frequency
---------------------- Hin @ = 2.06,0y, o = 0.054 s Uy g = 2.04,0)0 g = 0.12

fo(x)

10 15

Figure 14. Estimated and fitted lognormal distributions of servicégbi
limit state loads() for a)v = 0.2 andd = 1 m (p-value = (B4)
and b)y = 0.5 andd = 1.0 m (p-value = 00065).

A pile design involves finding the effective pile perimetgr,and the pile length{,
required to resist the applied load at an acceptable rétialdf it can be assumed that
the pile type is already known, then the problem reduces thrfgnthe required pile
length, which involves findind? so that the LRFD equation,

Cbgﬁtu > ]Z%fzz‘ (39)

is satisfied. Naghibi and Fenton (2009) developed an awalytiodel which predicts
the probability of ultimate limit state failure of a pile,

A
A

c I [aL[A/L +ozDLD]
=P|L=>
by B %

(40)

and this analytical model is compared in Figure 15 to sinnutatesults. The agreement
between the two models is excellent.

The analytical failure probability model can be invertediedermine resistance
factors required for the ULS design of piles in an LRFD frarmogwv The resistance
factors,¢,, required in Eq. 39 to achieve four maximum acceptable faiprobability
levels (102, 1073, 10~% and 10°°) at moderate level of site understandimg=(4.5 m)
are shown in Figure 16. Again, a worst case correlation lemgytlearly evident at
about the distance between the pile and the sample location.
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Figure 15. Comparison of analytical and simulation based ultimatetlim
state pile failure probability.
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SLOPE STABILITY

Slope stability analysis is a branch of geotechnical eraging that is highly
amenable to probabilistic treatment, and has receivediderable attention in the
literature. The earliest papers appeared in the 1970s fgagsuo and Kuroda 1974,
Alonso 1976, Tanget al. 1976, Vanmarcke 1977) and have continued steadily (e.g.
D’Andrea and Sangrey 1982, Li and Lumb 1987, Mostyn and Li3l€howdhury and
Tang 1987, Whitman 2000, Wolff 1996, Lacasse 1994, Chntal. 1994, Christian
1996, Lacasse and Nadim 1996, Hassan and Wolff 2000, Dur@@® Szynakiewicz
et al. 2002, EI-Ramlyet al. 2002, and Griffiths and Fenton 2004, Griffitesal. 2006
and 2007).

Two main observations can be made in relation to the exigtwuay of work on
this subject. First, the vast majority of probabilisticigtostability analyses, while using
novel and sometimes quite sophisticated probabilistidwdtlogies, continue to use
classical slope stability analysis techniques (e.g. Bist@b5) that have changed little
in decades, and were never intended for use with highly birisoil shear strength
distributions. An obvious deficiency of the traditionalsbostability approaches, is that
the shape of the failure surface (e.g. circular) is oftendfikg the method, thus the
failure mechanism is not allowed to “seek out” the most caitipath through the soil.
Second, while the importance of spatial correlation an@dlleweraging of statistical
geotechnical properties has long been recognized by maegtigators (e.g. Mostyn
and Soo 1992), it is still regularly omitted from many proliabc slope stability
analyses.

In recent years, the authors have been pursuing a more ugonethod of
probabilistic geotechnical analysis (e.g. Fenton andfi@rsf 1993, Griffiths and Fen-
ton 1993, Paice 1997, Griffiths and Fenton 2000), in whichlinear finite element
methods (Program 6.3 from Smith and Griffiths, 2004) are doetbwith random field
generation techniques. The resulting RFEM is a powerfyesktability analysis tool
that does not requira priori assumptions relating to the shape or location of the failure
mechanism. This section applies the Random Finite Elemeihddl to slope stability
risk assessment.

| nput Paraneters
®=0, VYsat

Moy Oy Oiney

Figure 17. Cohesive slope test problem.

The slope under consideration in this study is shown in Eiduf, and consists of
undrained clay, with shear strength parameters 0 andc,. In this study, the slope
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inclination and dimensions, given 3y H and D, and the saturated unit weight of the
soil, v, are held constant, while the undrained shear streagth assumed to be a
random variable. In the interests of generality, the umdr@dishear strength will be
expressed in dimensionless forgrwherec = ¢, / (Vsa: H)-

The shear strengthis assumed to be characterized statistically by a lognormal
distribution defined by a meap,.,, and a standard deviatien. A third parameter, the
spatial correlation length,, . will also be considered here in a non-dimensional form
obtained by dividing it by the height of the embankméht

©=0h./H (41)

In the elasto-plastic RFEM approach, the failure mechanginee to “seek
out” the weakest path through the soil. Figure 18 shows tvpica) random field
realizations and the associated failure mechanisms fpeslwith© = 0.5 ando = 2.
The convoluted nature of the failure mechanisms, espgaidien© = 0.5, would defy
analysis by conventional slope stability analysis toolilthe mechanism is attracted
to the weaker zones within the slope, it will inevitably pda®ugh elements assigned
many different strength values. This weakest path detetion, and the strength
averaging that goes with it, occurs quite naturally in thé@dielement slope stability
method, and represents a very significant improvement maditional limit equilibrium
approaches to probabilistic slope stability, in which lamzeraging, if included at all,
has to be computed over a failure mechanism that is pre-settebparticular analysis
method (e.g. a circular failure mechanism when using Bishidgthod).

[T T

Figure 18. Typical random field realizations and deformed mesh at slope
failure for two different spatial correlation lengths. bigzones
are weaker.

Fixing the point mean strength at = 0.25, Figure 19 shows the effect of the coefficient
of variation of cohesiony,, on the probability of failure for the test problem. Figure
19 also demonstrates that whénbecomes large, corresponding approximately to a
single random variable approach with no local averaging,ptobability of failure is
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overestimated (conservative) when the coefficient of vamnais relatively small and
underestimated (unconservative) when the coefficient aditran is relatively high.
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Figure 19. Probability of failure versus coefficient of variation frothe
random finite element method; the mean is fixed at 0.25.

SUMMARY

Uncertainty is a fact of life in all walks of engineering, lparticularly so in
geotechnical engineering. There is increasing pressutieeogeotechnical community
to provide risk assessments in conjunction with their desidrhis is particularly true
in the face of increasing urban and population pressuriesats change uncertainties,
and society’s decreasing risk tolerance. Thus, while exgging judgement remains
essential in any design process, it is becoming increasingbortant to make use of
probabilistic tools to aid in the decision making process.

The Random Finite Element Method discussed above providdsatool. Al-
though many other probabilistic methods exist, the inteégmnaf random field modeling
and the finite element method provides for reduced modet &yanore realistically
modeling the spatial variability of the ground and by allog/failure to occur naturally
where it ‘wants to’. In addition, the method is easily exteddo the study of how
site sampling schemes affect as-built reliability, whiehds to an improved ability to
develop reliability-based geotechnical design codes.

35



The results presented above cover a variety of common deuted problems.
Common amongst the results presented is the following gagen: In order to rea-
sonably accurately estimate the reliability of a geotechinsystem, at least the mean
and variance must be known at a site. At most sites, only thenrtend perhaps mean
trend) will be known due to limited site investigation butigyer he residual variance (re-
maining after the mean trend has been determined) is ggnebddined by judgement
and/or from the literature. In the authors’ opinions, thie snvestigation intensities
suggested by codes worldwide are probably sufficient toaedasidual coefficient
of variation levels to less than about 30%, excepting, gesh@ermeability, so that
reasonable resistance factors can be used in the desigesproc

One of the main problems in determining the reliability oemtechnical system
has to do with how to characterize the spatial variabilityhef ground. To properly
estimate the parameters of spatial variability (e.g. threetation length) requires very
extensive site sampling. Fortunately, it appears thaetisarsually a ‘worst case’ spatial
variability level which can be used to provide conservatiesigns. It remains to be
seen if the economic losses in the construction of geoteahsystems based on this
‘worst case’ correlation length are greater or less tharldbges due to the increased
investigation required to properly estimate the correlakength. Much work is required
to decide upon this issue. However, it appears to the authatghe reliability levels
based on the worst case correlation length agree with thigated by most modern
geotechnical design codes, and so at this point, adoptegetbonservative estimates
appears reasonable.

Finally, the results presented above are still very genertbat they describe the
‘average site’. Their value is in providing the geotechhamanmunity with knowledge
about the basic probabilistic behaviour of geotechnicsiesys — in particular how spa-
tial variability affects failure probability. In the futar we need to focus on site specific
behaviour: Individual sites will generally not have isqiocorrelation structures, will
often be layered, and may not be well represented by a sipgtedly variable random
field. While the methodology presented above is reasonasijyeextended in concept
to the modeling of a specific site, the computer models to dwase not yet been fully
developed for all problems. Such advancements are in netdtbér work, but are
coming.
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