
1. INTRODUCTION 
 
The finite element method offers a powerful alternative to classical limit equilibrium methods of 
slope stability that have remained essentially unchanged for decades. The method offers the fol-
lowing main advantages: 

 
 No assumption needs to be made in advance about the shape or location of the failure 

surface. Failure occurs “naturally” through the zones within the soil mass in which 
the soil shear strength is unable to sustain the applied shear stresses. 

 
 Since there is no concept of slices in the finite element approach there is no need for 

assumptions about slice side forces. The finite element method preserves global equi-
librium until “failure” is reached. 

 
 If realistic soil compressibility data is available, the finite element solutions will give 

information about deformations at working stress levels. 
 
 The finite element method is able to monitor progressive failure up to and including 

overall shear failure. 
 
It is certainly not the case that the finite element method of slope stability analysis is a new 
technique. The first paper to tackle the subject by Smith & Hobbs (1974) is over 35 years old 
and this was followed by an important paper on the topic by Zienkiewicz et al. (1975). The 
Zienkiewicz paper had a very significant influence on the author’s finite element slope stability 
software developments over the years. Early publications date back to Griffiths (1980) and the 
first ever published source code for finite element slope stability appeared in the second edition 
of the text by Smith & Griffiths (1988, 2004). Readers are also referred to Griffiths & Lane 
(1999) for a thorough review of how the methodology works. 
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ABSTRACT: The paper will review the use of finite element (FE) methods as a powerful alter-
native to classical limit equilibrium method for tackling slope stability problems. The benefits of 
FE are particularly obvious when dealing with non-typical geometries such as 3-D and soils 
with variable properties. The paper will show several examples of finite element methods ap-
plied to slope stability including some recent work on 3-D random slopes 



2. 3-D SLOPES 
 

The vast majority of slope stability analyses are performed in 2-D under the assumption of 
plane strain conditions. Even when 2-D conditions are not appropriate, 3-D analysis is rarely 
performed. There are a number of reasons for this. The vast majority of work on this subject has 
shown that the 2-D factor of safety is conservative (e.g. lower than the “true” 3-D factor of safe-
ty), and existing methods of 3-D slope stability analysis are not well established in practice. A 
further disadvantage of some 3-D methods, is that being based on extrapolations of 2-D “me-
thods of slices” to 3-D “methods of columns”, they are complex, and not readily modified to ac-
count for realistic boundary conditions in the third dimension. The advantages of FE slope sta-
bility methods become even more attractive in 3-D. The paper demonstrates some 3-D slope 
stability analyses by finite elements and shows that great care must be taken in subscribing to 
the received wisdom that “2-D is always conservative”.  

 

2.1 When is plane strain a reasonable approximation? 

The first issue addressed here for a homogeneous slope, is to consider the question “how long 
does a slope need to be in the third dimension for a 2-D analysis to be justified?” 

Figure 1 shows a simple mesh that might be used for a 3-D analysis of an undrained slope. A 
“rough-smooth” boundary condition implies a symmetric analysis about the plane 2z L , thus 
only half of the actual depth L  of the slope is analyzed. The bottom ( )y D  and far-side 
( 0)z   of the slope are fully fixed, while the back ( 0)x   and front-side ( 2)z L  of the slope 
are constrained by vertical rollers.   

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 1.   3-D layout and typical mesh ( 2)L H  . FE analyses used 20-node hexahedral 
elements. 

 
 
The results from a series of FE analyses with different depth ratios  L H  while keeping all 

other parameters constant are shown in Figure 2. It can be seen that the factor of safety in 3-D 
was always higher than in 2-D but tended to the plane strain solution for depth ratios of the or-
der of 10L H  . It is shown that results of the same analysis with a coarser mesh gave slightly 
higher values of FS . 

 
 
 
 
 



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 2: Comparison of 3-D FE and 2-D limit analyses for a 0o

u   slope with 
/ ( H)=0.20uc  . 
 

2.2 Is plane strain always conservative? 

The assumption that 2-D analyses lead to conservative factors of safety needs some qualifica-
tion. Firstly, a conservative result will only be obtained if the most pessimistic section in the 3-D 
problem is selected for 2-D analysis (see e.g., Duncan 1996). In a slope that contains layering 
and strength variability in the third dimension, this “most pessimistic” 2-D section may not be 
intuitively obvious. Secondly, the corollary of a conservative 2-D slope stability analysis is that 
back analysis of a failed slope will lead to an unconservative overestimation of the soil shear 
strength (e.g. Arellano & Stark 2000). Although some investigators (e.g. Hutchinson et al. 1985, 
Hungr 1988) have asserted that the factor of safety in 3-D is always greater than in 2-D,  it can-
not be ruled out that an unusual combination of soil properties and  geometry could lead to a 3-
D mechanism that is more critical. Bromhead & Martin (2004) argued that some landslide con-
figurations with highly variable cross-sections could lead to failure modes in which the 3-D me-
chanism was the most critical.  Other investigators have indicated more critical 3-D factors of 
safety (e.g., Chen & Chameau 1982 and Seed et al. 1990) although this remains a controversial 
topic.  

 
 
 
a)                                                                                   b) 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Figure 3: a) Three-dimensional slope at failure including an oblique layer of weak soil and  

b) failure mechanism by 3-D finite elements  1.5FS   
 



 
Finite element slope stability analysis offers us the opportunity to perform objective compari-

sons in which 2-D and 3-D factors of safety are compared for variable soil conditions. This 
point is highlighted in the 3-D example shown in Figure 3a) which represents a 2v:1h slope of 
height10 m , foundation depth 5 m  and a length in the out-of-plane direction of 60 m  with 
smooth boundary conditions. An oblique zone of weak soil (shaded black) with undrained 
strength 220 kN/muc   has been introduced into the slope with the surrounding soil four times 
stronger at 280 kN/muc  . The 3-D factor of safety is found to be approximately 1.5  and the 
mechanism clearly follows the weak zone as also shown in Figure 3b).   

 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 4: Factors of safety from 3-D analysis and various 2-D sections. 
 
 
When 2-D stability analyses are then performed on successive slices in the x z  plane mov-

ing from 0 my   to 60 my  , the result shown in Figure 4 is obtained. As a check, the 2-D 
analyses were performed both by finite elements and by a standard limit equilibrium program. It 
can be seen that towards the boundaries of the 3-D slope ( 21 m and 34 my y  ) where the 
majority of soil in the sections is strong, the 2-D results led to higher and therefore unconserva-
tive estimates of the factor of safety. On the other hand, at sections towards the middle of the 
slope ( 21 m 34 my  ) where there is a greater volume of weak soil, the 2-D results led to 
lower, and therefore conservative estimates of the factors of safety. An even more critical 2-D 
plane however, is the one that runs right down the middle of the weak soil. This 2-D plane has a 
2.5v:1h slope which is flatter than the x z  planes considered previously, however it is homo-
geneous and consists entirely of the weaker soil. A 2-D slope stability analysis on this plane 
gives an even lower factor of safety of about 0.7  . This result, also shown on Figure 4, is less 
than half of the factor of safety given by the 3-D analysis and would be considered excessively 
conservative, even by geotechnical design standards. 

 
Even in the rather simple problem considered here, the results have shown a quite complex 

relationship between 2-D and 3-D factors of safety. The results confirm that 2-D analysis will 
deliver conservative results if a pessimistic plane in the 3-D problem is selected, however this 



may lie well below the “true” 3-D factor of safety.  It has also been shown however, that selec-
tion of the “wrong” 2-D plane could lead to an unconservative result. 

 
 

3. RISK ASSESSMENT OF SLOPES 
 
Risk assessment and probabilistic analysis in geotechnical engineering is a rapidly growing 

area of interest and activity for practitioners and academics. It fair to say that slope stability 
analysis has received greater attention from probabilistic tools than any other application of 
conventional geotechnical engineering (see e.g. Li and Lumb 1987, Mostyn and Lee 1993,  
Griffiths and Fenton 2000, Duncan 2000, El Ramly et al. 2002, Huang et al. 2010). 
 Soils and rocks are the most variable of all engineering materials, so when an engineer choos-
es “characteristic values” of the soil shear strength for a limit analysis (say), it is very likely that 
some parts of slope consist of soil that is stronger than the characteristic values, and other parts 
are weaker. How do the stronger and weaker soils interact and which of them have the greater 
influence in determining the factor of safety? 
 

3.1 Checkerboard slope stability analysis. 

In this section we take a simple 2-D slope and assign the slope two different properties arranged 
in a checkerboard pattern (Zhou & Griffiths 2009) as shown in Figure 5. 

 
 
 
 
 
 
 
 
 

Figure 5: Slope stability analysis with checkerboard strength pattern. The darker zones are 
stronger. 

 
The 1h:1v undrained clay slope has a height of 10 mH  and a foundation depth ratio of 

1.5D  . The mean strength of 50 kPauc   was held constant, while the stronger soil was made 
stronger and the weaker soil was made weaker. The results of the factor of safety analysis by 
strength reduction are shown in Table 1. Clearly the weaker soil “wins”! 

 
Table 1: Influence of variable soil in a checkerboard pattern 

 

(strong)uC  (kPa) (weak)uC (kPa) (strong) (weak)u uC C  FS

50 50 1.00 1.39
           60 40 1.50 1.30

70 30 2.33 1.17
80 20 4.00 1.03
90 10 9.00 0.88

 
Failure mechanisms in the homogeneous and the most variable cases are shown in Figure 6a) 

and b) respectively. In the most variable case, it can be seen that multiple mechanisms are at-
tracted to the “diagonals” of weak soil and show a more dramatic outcrop on the downhill side. 
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Figure 6: Failure mechanisms in “checkerboard” analysis. a) Homogeneous slope, b) Slope 

with strength ratio (strong) (weak) 9u uC C   
 

3.2 The Random Finite Element Method (RFEM). 

The goal of a probabilistic slope stability analysis is to estimate the probability of slope fail-
ure as opposed to the ubiquitous factor of safety used in conventional analysis. Several relative-
ly simple tools exist for performing this calculation that include the First Order Second Moment 
(FOSM) methods and the First Order Reliability Methods (FORM). 

A legitimate criticism of these first order methods is that they are unable to properly account 
for spatial correlation length in the random material. This parameter recognizes that two sites 
could have the same mean and standard deviation of strength parameters, but quite different spa-
tial correlation lengths. The spatial correlation length is the distance in length units, over which 
soil properties tends to be correlated. 
    To overcome these deficiencies, the author and Gordon A. Fenton of Dalhousie University, 
have developed an advanced probabilistic analysis tool called the Random Finite Element Me-
thod (RFEM) that combines random field theory with elasto-plastic finite element analysis. In-
put to RFEM is provided in the form of the mean, standard deviation and spatial correlation 
length of the soil strength parameters. Spatial correlation length may be expressed in dimension-
less form as   in which the spatial correlation length is normalized by diving by the slope 
height. Following generation of a locally averaged random field the properties are assigned to 
the mesh and gravity loads are applied. The slope either fails or not, and the process is repeated. 
Following a sufficient number of Monte-Carlo simulations, the probability of failure is simply 
the proportion of the total number of simulations that failed. The interested reader is directed to 
publications by Griffiths and Fenton (2000, 2004) and the textbook by Fenton and Griffiths 
(2008) for more detail. The method is becoming recognized as the state-of-the-art in probabilis-
tic geotechnical analysis and is being used by several research groups worldwide. The RFEM 
codes developed by Griffiths and Fenton have now been applied to numerous areas of geotech-
nical engineering and are freely available in source code from the authors’ web site at 
www.mines.edu/~vgriffit/rfem.  

 

3.3 Analysis of 3-D random slopes. 

With reference to the 2h:1v slope shown in Figure 7 with a height of 10m and no foundation 
layer, all the RFEM analyses that follow assume that  the bottom of the mesh  is fully fixed and 
the back of the mesh  is allowed to move only in a vertical plane. It is noted that unlike the de-
terministic study shown previously, there is no symmetry in the RFEM analyses due to the spa-
tial varying soil properties. In these analyses, both “rough” and “smooth” boundary conditions 
have been considered at the ends of the mesh in the out-of-plane direction  0 and z L .  In the 
rough cases the ends are fully fixed and in the smooth case, they are allowed to move only in a 
vertical plane. In this study, it was determined that 2000 simulations of the Monte-Carlo process 



for each parametric group, was sufficient to give reliable and reproducible estimates of the prob-
ability of failure  fp . It can be noted that neither the rough nor the smooth vertical boundary 
conditions are particularly realistic. Real 3-D slopes tend to have rough sloping sides as might 
be observed at the abutments of an earth dam. In this paper however, we have considered only 
simple boundary conditions in order to focus on the influence of 3-D failure mechanisms. 
    Figs. 7, 8 and 9 show typical failed slopes with different (isotropic) correlation lengths given 
by 0.2, 2.0 and 200.0  .  The grey scale depicts the undrained strength, although it should 
be emphasized that each figure represents just one simulation sampled from a suite of 2000 
Monte-Carlo repetitions. It can be seen that the failure zone, when it occurs, typically involves a 
greater volume of soil when the spatial correlation length is either much smaller or much larger 
than the slope height.  

 

 

 
Fig. 7.  Slope failure with 0.2  and smooth boundary condition (all dimensions in metres) 
 

 

Fig. 8.  Slope failure with 2.0  and smooth boundary condition (all dimensions in metres) 
 



 

Fig. 9.  Slope failure with 200.0  and smooth  boundary condition (all dimensions in me-
tres) 

 

Fig. 8 demonstrates an important characteristic in 3-D slope analysis called the “preferred” 
failure mechanism width W . This is the width of the failure mechanism in the 

directionz  that the finite element analysis “seeks out”. Over a suite of Monte-Carlo simula-
tions the average preferred failure mechanism width is called critW . It will be shown that this 
dimension has a significant influence on 3-D slope reliability depending on whether the length 
of the slope L  is greater than or less than critW . 

For given values of 
uCv (coefficient of variation) and  let us define the critical slope length 

critL  and the critical slope length ratio  
crit

L H  as being that value of L H for which the 
slope is safest and its probability of failure fp a minimum. It will be shown that this minimum 
probability of failure in the smooth case occurs when .crit critL W                                       

  

 

Fig. 10.  Probability of failure versus slope length ratio  0.5,  1.0
uCv     

 
As shown in Figure 10 for the smooth case, if we reduce the slope length ratio below this crit-

ical value  critL L , the slope finds it easier to form a global mechanism spanning the entire 
width of the mesh with smooth end conditions, so the value of fp increases, tending eventually 



to the plane strain value. However, if we increase the slope length ratio above this critical val-
ue  critL L , the slope finds it easier to form a local mechanism. Since critL W  the mechan-
ism has more opportunities to develop somewhere in the directionz   hence  fp  again increas-
es. 

 
 

4. CONCLUDING REMARKS 
 

The paper has focused onthe use of finite element methods for slope stability analysis in vari-
able soils. Observations were made on the depth of a 3-D slope in the out-of-plane direction 
needed to justify plane strain conditions respectively.  

An investigation of the popular assumption that 2-D slope analysis is conservative compared 
to 3-D was found to rest entirely on the suitable selection of a “pessimistic” 2-D slice. A poorly 
selected 2-D slice could lead to unconservative predictions of the 3-D factor of safety. 

Finally, the paper described some 3-D probabilistic slope stability methods using an impor-
tant new method developed by the author and co-workers called the Random Finite Element 
Method (RFEM). These approaches target the probability of failure of a slope as opposed to the 
classical slope factor of safety. The influence of spatial correlation length was highlighted and 
the concept of a “preferred failure width” in 3-D slope analysis highlighted for the first time. 
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