Probabilistic characteristics of strip footing bearing capacity evaluated by

random finite element method

J. Pieczynska, W. Puta

Institute of Geotechnics and Hydrotechnics, Wroclaw University of Technology, Poland

D.V. Griffiths

Division of Engineering, Colorado School of Mines, Golden, Colorado, USA.

G. A. Fenton

Dalhousie University, Halifax, Nova Scotia, Canada

ABSTRACT: The Random Finite Element Method has been employed for calculating the random characteris-
tics of bearing capacity of a strip foundation. The study has been carried out for two different soils; a grey-
blue clay from Taranto in Italy, which is well defined from a stochastic point of view, and a cohesionless soil
with assumed stochastic characteristics. The authors have focused on developing a formulation, which in-
cludes anisotropic random fields of cohesion as well as the angle of internal friction. The effect of self weight
has been incorporated for the first time in studying the bearing capacity of spatially variable soil. Results
clearly show that the introduction of anisotropy into random fields is more realistic, and makes RFEM predic-

tions more effective for design purposes.

1 INTRODUCTION

The design of shallow footings is often based on the
evaluation of bearing capacity. The random character
of the physical and mechanical soil properties heavi-
ly influences the randomness of the bearing capacity
estimation, which is not usually taken into account
into practice. However, some new building codes,
such as Eurocodes, have suggested reliability-based
design as a one of the possible design approaches. In
this paper 2D numerical simulations are employed
for the estimation of shallow footing bearing capacity
in conjunction with the random finite element me-
thod (RFEM). The numerical methodology of RFEM
was first introduced by Griffiths and Fenton (1993)
for a seepage problem, and has since been employed
in many applications (e.g. Griffiths and Fenton 2001,
Fenton and Griffiths 2003, Griffiths et al. 2006, Fen-
ton and Griffiths 2008). RFEM connects random
field theory (Vanmarcke 1984) and deterministic fi-
nite element methods by taking into account the
mean value, standard deviation, and correlation
length of strength and other geotechnical parameters.

Usually bearing capacity design of shallow foun-
dation utilizes the formula proposed by Terzaghi
(1943).
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where ¢y is the ultimate bearing stress, ¢ is the co-
hesion, ¢ is the overburden load due to foundation
embedment, y is the soil unit weight, B is the footing

width, and N, N, and N, are the bearing capacity
factors.

In earlier work, numerical algorithms created for
RFEM by Fenton and Griffiths (2003) simplified
the analysis and focused on the random character
of soil parameters. The ultimate bearing stress
(neglecting the contributions of both the footing
embedment and the soil weight) was given by:

qf =cN. (2)

where the N, expression is given below (e.g.
Bowles 1996):
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Fenton and Griffiths (2003) have analyzed isotrop-
ic subsoil assuming that the spatial correlation is
the same in both the vertical and horizontal direc-
tions. They have pointed out the presence of the so
called “worst case”, which means that in every
single situation it is possible to assign the characte-
ristic value of correlation length corresponding to
the most conservative evaluation of the bearing ca-
pacity.

In the paper by Cherubini et al (2009) an aniso-
tropic random fields of soil properties has been in-
corporated. They considered an anisotropic random
field of soil properties by implementing different
values of correlation length in the vertical and
horizontal directions.

In the present study the authors demonstrate for
the first time, the effects of incorporating the self-
weight of the soil under the foundation base in an
RFEM analysis.



This corresponds to the extension of bearing stress
formula to the form:

Gy =cNo +3 BN, )
for cohesive soil and:
a5 =5 BN, )

for cohesionless soil.

Furthermore, the influence of the anisotropic charac-
ter of random fields has been examined. Finally some
analyses concerning the probability distributions of
bearing capacity are presented.

2 THE RANDOM FIELD MODEL FOR SOIL
PROPERTIES

The random soil model proposed by Fenton and Grif-
fiths (2003) describes soil strength parameters by
means of an isotropic two-dimensional random field
by the local averaging approach (Fenton and Van-
marcke, 1990).

In the present paper two random fields are taken
into account, one for ¢ (cohesion) and one for ¢ (fric-
tion angle). The cohesion random field is assumed to
be lognormally distributed with mean p,., standard
deviation ¢, and different spatial correlation lengths
0., and 0., in vertical and horizontal direction, re-
spectively.

Theoretical aspects of the anisotropic random field
assumption have been analyzed in earlier papers
(Puta and Shahrour 2003, Puta 2004).

The lognormal random field is derived from a
normally distributed random field Gy,(x), having ze-
ro mean, unit variance and spatial correlation length
Oy, transformed as follows:

c(x) = exp{ttin ¢ +01n ¢Gin e (%)} (6)

where x = the spatial position at which ¢ is calcu-
lated and py,. and oy, are mean and standard devia-
tion values of (log) cohesion function:
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Such a transformation is very useful because there
are many effective methods for generating normal
field and then using Monte Carlo simulation. Reali-
zations of cohesion field have been calculated after
having generated the realization of normal field using
the transformation in Eq. (6). Correlation structure of
cohesion lognormal field Gy, (x) is expressed by de-
termining the correlation function, whose parameters

are correlation lengths along the two directions
g(lnc)y and 0(1nc)x~

In this paper the following correlation function has
been assumed:
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where 7;= y, — y; and 2= x, — x; are the two com-
ponents of the absolute distance between the two
points in 2D space where the correlation function is
calculated by taking into account the anisotropic
character of the random field (6,suc)x and Oyyc)y). It is
worth mentioning that such a correlation function
works in a normal random field /n c. Ou,c)y and
Ofne)x values are derived from 6., and 0., values.
Correlation lengths 6., and 6., can be drawn from
in situ tests. One method for converting soil testing
results into correlation length is the moment me-
thod (Baecher and Christian 2003). Such metho-
dology has been used in this paper. The different
between isotropy and anisotropy random field are
illustrated in Figure 1.

3 4 5

(b) x

Figure 1. Analyzed mesh of (a) isotropic soil with 6,=0.5,
6,=0.5; (b) anisotropic case with §,=5.0, 0,=0.5. The darker
regions indicate weaker soil.

The larger value of horizontal correlation length
seems to imitate more realistic natural soil property
(Figure 1). In-situ tests have demonstrated that the
horizontal correlation length is significantly greater
than the vertical one (Cherubini 1997).

The second random field considered in this pa-
per is the friction angle. Since friction angle values
change within a bounded interval, neither normal
nor lognormal distributions are appropriate models
for random variable. Fenton and Griffiths (2003)
represented bounded of “tanh” distributed fields as
a bounded distribution, which arises as a simple
transformation of a Gy(x), according to:
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where @, and @, are the minimum and maximum
values of friction angle, respectively, and s is the
scale factor depending on standard deviation.
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Figure 2. Shapes of friction angle distribution of bounded type.
The curve corresponding to §=2,27 ($,in=5"; $naex=35" 04 =
4.8°) is the density of the distribution used in this paper for

computations (grey-blue clay from Taranto).

Shapes shown in Figure 2 represent probability
distribution functions of ¢ variable. In the graph, ¢
functions are reported for three different scale factor
values s. For s values greater than 5 frequency distri-
bution leads to a U-shaped function which is unrea-
listic in current situations. The mean distribution is in
the middle of the interval [@n; Pnax]. Relationship
between the standard deviation and the scale parame-
ter s has no analytic form. It can be obtained by nu-
merical integration or by Taylor’s expansion. The

first order approximation leads to:
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where ¢ is the mean value of the friction angle. Cor-
relation function and correlation length values have

been estimated as in the case of cohesion.

As first soil the blue-grey clay has been consi-
dered. This kind of clay appears near the Taranto in
South East of Italy. It has been widely described and
statistically tested by Cherubini et al (2007) and ap-
plied to RFEM computations reported in the paper by
Cherubini et al (2009). The random field characte-
ristics have been synthesized in Table 2 as a result of
investigation over Taranto blue-grey clay (Cherubini

et al. 2007, 2009).

Table 2. Random characteristics of grey-blue clay.

Variable Probability Mean Standard Scale of
distribution deviation fluctuation
W c 0y
c Lognormal 36kPa 20kPa 0.2;0.5;0.7; 1.0 m
(] Bounded 20° 4.8° 0.2;0.5;0.7; 1.0 m
(see Eq. (10))
Y Non-random 19 kN/m® -

"Horizontal fluctuation scale will be a subject of the parameter study.

The friction angle has been defined as being

symmetric bounded distributed with lower limit
Onin=5", upper limit @,,,=35" and scale parameter
§=2.217.
In the case of cohesionless soil a sand has been
considered with bounded distribution of friction
angle. The parameters of probability distribution
are given in Table 3. The minimal and maximal
values were equals to @,;,=14°, @n.=51" respec-
tively and the scale parameter equal to s=2.21. The
sand characteristics are synthetic input data and
they are not reflect any specified real situation.
They have been accepted on some literature ana-
lyses. In order to compare results the values of ver-
tical fluctuation scale has been assumed the same
as in the case of Taranto clay.

Table 3. Random characteristics of sand.

Variable Probability Mean Standard Scale of
distribution deviation fluctuation”
n c 0y
(] Bounded 32.5° 4.8° 0.2; 0.5;
0.7;1.0 m
(see Eq. (10))
Y Non-random 19 kKN/m® -

¥
Horizontal fluctuation scale will be a subject of the parame-
ter study.

3 RANDOM FINITE ELEMENT METHOD

The bearing capacity analysis carried out in this
paper uses an elastic perfectly plastic stress strain
law with a classical Mohr Coulomb failure crite-
rion according to Fenton and Griffiths (2003)
work. Plastic stress redistribution is accomplished
using a viscoplastic algorithm. The program uses 8
node quadrilateral elements and reduced integra-
tion in both the stiffness and stress redistribution
parts of the algorithm. The theoretical basis of the
method is described in detail in Chapter 6 of the
book by Smith and Griffiths (2004). The finite
element model incorporates five parameters:
Young’s modulus (E), Poisson’s ratio (V), dilation
angle (), shear strength (c), and friction angle (¢).
In the present study E, v and ¥ are held constant
(at 60 MPa for grey-blue clay and 100 MPa for
sand, v = 0.3, and ¥ =0 in both cases ) while ¢ and
¢ are randomized. Setting the dilation angle to zero
means there is no plastic dilation during yield of
the soil. This is the case in the following computa-
tions. The Young’s modulus governs the initial
elastic response of the soil, but does not affect the
bearing capacity. Thus such elastic soil parameter
has been used for pre-analyzing the system.



In order to check the correctness of the mesh model
an analysis of the mesh influence on the bearing ca-
pacity mean value has been carried out. Figure 3
presents the bearing capacity average computed for
finite element mesh consists of 20 and 30 elements in
y-direction direction versus variable numbers of ele-
ment in x-direction. It can

be observed that for a number of elements greater
than 50 (in x-direction) the average of the bearing
capacity becomes stable and at 50 reaches its minim-
al value.

Similar effects have been observed in the case in
which the number of elements in y-direction is
changing. The effects are illustrated in Figure 4. All
computations in this case have been carried out with
50 elements in x-direction. The stabilization begins at
15, but the minimal value is observed at 20.
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Figure 3. Bearing capacity average versus number of element in
x-direction.
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Figure 4. Bearing capacity average versus number of element in
y-direction.

According to results presented in Figure 3 and
Figure 4, the mesh of size 50 x 20, is accepted for
further investigations (Figure 5). Each element is a
square of side length 0.1 m and the strip footing oc-
cupies 10 elements, thus giving a width of B =1 m.

The random fields in this study are generated using
the Local Average Subdivision (LAS) method (Fen-
ton and Vanmarcke 1990, Fenton and Griffiths
2008). Numerical analyses of the bearing capacity
have been carried out according to numerical simula-
tions by first two moments (mean and variance). In
order to check the speed of convergence in simula-
tion process the computations were carried out for
different number of realizations (samples). Results
for sample size 300, 500 and 1000 are reported in
Figure 6. There, the confidence intervals considered

with selected exceeding probability a = 0.05 are as
follows: lower bound of mean value: 450.22 kPa,
upper bound of mean value: 481,00 kPa; lower
bound of standard deviation: 164,67 kPa, upper
bound of standard deviation: 186,46 kPa. Accor-
dingly the optimum number of realizations turned
out to be 300; whereas more than 1000 realizations
are needed to determine the approximate form of
the bearing capacity distribution. As a next step an
effect of cross-correlation of strength parameters
has been investigated. Since a negative cross-
correlation, has been experimentally established
for many soil types the computations have been re-
peated for three negative correlation coefficients: p
=-0.7,p=-0.5, p =-0.3. Examples of results are
presented in Figure 7 (mean values) and Figure 8
(standard deviations).
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Figure 5. Mesh model used in stochastic bearing capacity
predictions (After Griffiths and Fenton 2001)
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Figure 6 Testing of convergence rate for mean value of bear-
ing capacity. Runs have been started from three different
seeds.
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Figure 7. Average bearing capacity versus cross-correlation
coefficient of strength parameters ¢ and c.



It is easy to see that for lack of correlation the aver-
age bearing capacity is the lowest and the standard
deviation is the greatest. Therefore in the further
computations the zero-value cross-correlation case
has been selected. However, if the given negative
value of the correlation coefficient is confirmed then
including it in reliability computations would lead to
more optimal evaluations. As it has been already
mentioned computations within this study, has been
carried out for anisotropic random fields. It means
that the horizontal correlation length differs from the
vertical one. In vertical direction, four values of cor-
relation length 6, have been considered: 0.2; 0.5; 0.7
and 1.0 m.
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Figure 8. Bearing capacity standard deviation versus cross-
correlation coefficient of strength parameters ¢ and c.

As it is reported in the literature (e.g. Cherubini
1997) the horizontal correlation length is much
greater then vertical. Therefore the following values
of 6, were used in the computations: 1; 5; 10; 50 m.
It was assumed that the correlation lengths of cohe-
sion and friction angle are the same. Results for gray-
blue clay are shown in Table 4. These results are also
graphically presented in Figures 9 and 10. Addition-
ally figures contain results for cases where the self-
weight of the soil has been not included.

Table 4. Mean values and standard deviations of bearing capaci-
ty obtained in computations.

6x Oy pgfi  oqfi 0x Oy puqgfi  oqfi
[m] [m] ([kPa] [kPa] [m] [m] [kPa] [kPa]

1 0.2 40691 61.98 10 0.2 42434 96.98

0.5 399.79 83.79 0.5 423.94 133.46
0.7 401.67 92.47 0.7 427.83 149.95
1.0 406.67 102.48 1.0 435.13 171.05
5 0.2 416.22 89.61 50 0.2 43480 102.23
0.5 411.23 123.54 0.5 442.17 143.10
0.7 413.48 138.03 0.7 450.05 160.65
1.0 418.34 152.94 1.0 461.24 181.53

Figure 9 shows the obvious result that bearing ca-
pacity values increases if the self-weight of soil is in-
corporated. Standard deviation rises as the vertical
correlation length increases. One can observe that the
effect of horizontal fluctuation scale is important.
However, for larger values that are realistic in natural
soils, the bearing capacity coefficient of variations
seems to be not very sensitive to the increase in the

horizontal scale value (Figure 10). This result can
be valuable if we are not able to precisely deter-
mine the horizontal fluctuation scale. Very impor-
tant feature can be observed in Figure 10. Namely
the coefficients of variation for cases with and
without self-weight almost coincide, for the same
values of fluctuation scale. On the other hand bear-
ing capacity coefficient of variation stabilizes with
respect to horizontal fluctuation scale, when this
scale reaches high values.
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Figure 9. Mean value of bearing capacity versus ratio 0y/B
for different values of horizontal fluctuation scale. Curves
denoted by 0x weight result from computation where self-
weight is included. Curves denoted by 0x come from compu-
tation without including of self-weight.
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Figure 10. Coefficient of variation of bearing capacity versus
ratio Oy/B for different values of horizontal fluctuation scale.
Curves denoted by 0x weight result from computation where
self-weight is included. Points denoted by 0x come from
computation without self-weight.

Let us now turn to the computations carried out
for sand of characteristic presented in Table 3. In
this case the self-weight of the subsoil has been in-
corporated in FEM computations. The results of
computations are presented in the Table 5, Figure
11 and Figure 12. They show that changes in the
mean value due to variation of the horizontal fluc-
tuation scale are quite small. They appeared to be
far smaller than in the cohesive soil. This result
seems to be optimistic if we are not able to precise-
ly determine the horizontal fluctuation scale.



Quite unexpected behavior can be observed when
the coefficients of variations are analyzed. The Fig-
ure 12 shows that bearing capacity coefficients of
variation may decrease with increasing value of hori-
zontal fluctuation scale. This is in opposition to re-
sults for cohesive soil (see comparison given in Table
6) as well as results reported in earlier papers (Che-
rubini et al 2009, Pieczynska & Puta 2009).

Table 5. Mean values and standard deviations obtained in cohe-
sionless soil

6x Oy pgfi  oqfi  Ox Oy pugfi  oqfi
[m] [m] (kPa] [kPa] [m] [m] [kPa] [kPa]

1 02 6723 1855 10 0.2 6895 20.17

0.5 6594 19.28 0.5 69.46 23.02
0.7 6578 19.53 0.7 7030 24.45
1.0 6535 19.47 1.0 70.84 24.78
5 02 6879 2032 50 02 69.68 20.13
0.5 68.83 22.74 0.5 6933 21.24
0.7 69.25 23.51 0.7 69.80 22.06
1.0 7021 24.75 1.0 70.70 22.85
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Figure 11. Mean value of bearing capacity versus ratio 0y/B for
different values of horizontal fluctuation scale. Results for co-
hesionless soil include self-weight.

It is recognized that finite elements computation of
the bearing capacity of cohesionless soil is more
challenging than cohesive soil, so this contrasting
behavior needs further investigation and research.

4 PROBABILITY DISTRIBUTION OF BEARING
CAPACITY

Probability based design are far easier to perform if a
complete probability information of bearing capacity
is known. This means that that it is worth to estimate
the probability density function (or cumulative distri-
bution function) of bearing capacity. In order to ex-
amine probability distributions for both — the blue-
grey clay and sand Monte Carlo simulations have
been carried out with the sample size of 2000.

For both cases (the blue-grey clay and the sand)
vertical and horizontal fluctuation scales were
equaled to 6, = 0.7 m and 6, = 50 m, respectively.
The basic statistical parameters of samples are col-

lected in Table 7 and Table 8 for the case of blue
clay and the sand, respectively. Cumulative distri-
bution functions have been matched by means both
the method of moments and the least square me-
thod. It has appeared that estimation by lest
squares had given better matching.
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Figure 12. Coefficient of variation of bearing capacity versus
ratio Oy/B for different values of horizontal fluctuation scale.
Results for cohesionless soil include self-weight.

Table 6 Comparison coefficients of variation for soil with
and without cohesion.

0x 0y  CO.Vgfi CO.Vqfi

[m] [m] Cohesive Cohesionless
1 0.2 0.15 0.28
0.5 0.21 0.29
0.7 0.23 0.30
1.0 0.25 0.30
5 0.2 0.22 0.30
0.5 0.30 0.33
0.7 0.33 0.34
1.0 0.37 0.35
10 0.2 0.23 0.29
0.5 0.31 0.33
0.7 0.35 0.35
1.0 0.39 0.35
50 0.2 0.24 0.29
0.5 0.32 0.31
0.7 0.36 0.32
1.0 0.39 0.32

Table 7. Bearing capacity statistical parameters. The blue-
grey clay case (the self-weight of the soil is included).

Minimum 93.20 Maximum 1180
Range 1086.8 Median 414.00
Arithmetic mean 441.64 Geometric mean  414.05
Mean square 25661.0  Variance 25673.0

Stand. deviation ~ 160.23 Coef. of variation 0.36281
Third moment 3624300 Stand. Skewness 0.8817
Fourth moment 2.72E+09 Stand. kurtosis 4.1376
Variance of mean 12.83 Var. of variance ~ 3.71E+15
Var. of 3. moment 2.10E+11 Var. of 4. moment 1.19E+17




Figure 13 shows result obtained for the blue-grey
clay case in the form of histogram (simulation) and
the estimated lognormal probability density function
(the least square method).

Table 8. Bearing capacity main statistics for cohesionless soil
included soil weight term.

Minimum 15.90 Maximum 192.00
Range 176.10 Median 70.40
Arithmetic mean  69.051 Geometric mean  64.789
Mean square 537.53 Variance 537.79
Stand. deviation ~ 23.190 Coef. of variation 0.33584
Third moment 4343.0 Stand. skewness 0. 34849
Fourth moment 1.117E+06 Stand. kurtosis 3.8670
Variance of mean 0.26876  Var. of variance  0.623E+09

Var. of 3. moment 0.200E+07 Var. of 4. moment 0.303E+11

Relative Frequency
0.0030

0.0027
0.0024
0.0021
0.0018
0.0015
0.0012
0.0009
0.0006
0.0003

0.0000
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137 224 311 398 484 571 658 745 832 919 1006

Figure 13. Density function with matching a lognormal distribu-
tion. Data set in Tables 7 and 9.

In Figure 14 the “empirical” cumulative distribu-
tion function received in the simulation is compared
with the lognormal cumulative distribution function
estimated by the least square method. It can be ob-
served that both graphs almost coincide, which
means a very good fitness. Next distribution hypo-
theses have been examined by statistical goodness-
of-fit tests, namely the Kolmogorov-Smirnov test,
chi-square test and Anderson-Darling test. The test
results are demonstrated in the Table 9. All three
goodness-of-fit tests show that there is no reason to
reject the hypothesis that the bearing capacity for the
case considered is lognormally distributed with the
mean value equal to E[gs = 440.46 and the standard
deviation 6, = 159.8 (the least square fitness). It is
worth mentioning that distributions fitted by the me-
thod of moments and fitted by the least squares me-
thod only slightly differ.

Another shape of the distribution has been ob-
tained when the bearing capacity of the sand has
been considered. The lognormal density appeared to
be not well-fitted as shown in Figure 15. Several dis-
tributions have been tested for estimating simulated
distribution, but none of them has given good result.
Relatively well-fitness has been obtained by applying
a normal distribution. Estimated by the least square
normal p.d.f with the simulated histogram is pre-

sented in Figure 16 and the empirical and theoreti-
cal cumulative distributions functions are plotted in
Figure 17.
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Figure 14. Lognormal cumulative distribution function com-
pared with the empirical cumulative distribution function re-
sulting from simulation.

Table 9. Tests for the estimation of the bearing capacity
probability distribution for cohesive soil included soil weight
term.

Parameter estimation for the case of 50m horizontal and 0.7m
vertical scale of fluctuation

Selected Parameter 1 Parameter 2 Selected
estimation [xi] [delta] stochastic
method model

Method of moments 415.157
Least square 414.050

0.351652 Lognormal
0.364463 Lognormal

Testing

Selected testing method Kolmogorov-Smirnov test

Significance Critical

level significance level
Method of moments 0.34012 0.05
Least square 0.77108 0.05

The hypothesis should not be rejected.

Selected testing method Chi-square distribution test

Number of  Significance Critical
classes used level significance
in test level

0.16868 0.05
0.18426 0.05

The hypothesis should not be rejected.

Method of moments 44
Least square 44

Selected testing method Anderson-Darling test

Significance Critical

level significance level
Method of moments >0.15 0.05
Least square >0.15 0.05

The hypothesis should not be rejected.

Figures 16 and 17 suggest that the normal fitness
seems to be satisfactory for this case. As in the
previous case statistical goodness-of —fit testing
has been carried out. In the case, however, only
Darling-Anderson test suggested to not reject the
normality hypothesis.



Both the Kolmogorov-Smirnoff test ant the chi-
square test suggested that the hypothesis should be
rejected.
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Figure 15. Density function with matching a lognormal distribu-
tion. Data set in Table 8.
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