
1 INTRODUCTION  

The design of shallow footings is often based on the 
evaluation of bearing capacity. The random character 
of the physical and mechanical soil properties heavi-
ly influences the randomness of the bearing capacity 
estimation, which is not usually taken into account 
into practice. However, some new building codes, 
such as Eurocodes, have suggested reliability-based 
design as a one of the possible design approaches. In 
this paper 2D numerical simulations are employed 
for the estimation of shallow footing bearing capacity 
in conjunction with the random finite element me-
thod (RFEM). The numerical methodology of RFEM 
was first introduced by Griffiths and Fenton (1993) 
for a seepage problem, and has since been employed 
in many applications (e.g. Griffiths and Fenton 2001, 
Fenton and Griffiths 2003, Griffiths et al. 2006, Fen-
ton and Griffiths 2008). RFEM connects random 
field theory (Vanmarcke 1984) and deterministic fi-
nite element methods by taking into account the 
mean value, standard deviation, and correlation 
length of strength and other geotechnical parameters.  
 Usually bearing capacity design of shallow foun-
dation utilizes the formula proposed by Terzaghi 
(1943).  
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where qf  is the ultimate bearing stress, c  is the co-
hesion, q is the overburden load due to foundation 
embedment, γ is the soil unit weight, B is the footing 

width, and Nc, Nq and Nγ are the bearing capacity 
factors. 
 In earlier work, numerical algorithms created for 
RFEM by Fenton and Griffiths (2003) simplified 
the analysis and focused on the random character 
of soil parameters. The ultimate bearing stress 
(neglecting the contributions of both the footing 
embedment and the soil weight) was given by: 

ccNfq =  (2) 

where the Nc expression is given below (e.g. 
Bowles 1996): 
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Fenton and Griffiths (2003) have analyzed isotrop-
ic subsoil assuming that the spatial correlation is 
the same in both the vertical and horizontal direc-
tions. They have pointed out the presence of the so 
called “worst case”, which means that in every 
single situation it is possible to assign the characte-
ristic value of correlation length corresponding to 
the most conservative evaluation of the bearing ca-
pacity.  

In the paper by Cherubini et al (2009) an aniso-
tropic random fields of soil properties has been in-
corporated. They considered an anisotropic random 
field of soil properties by implementing different 
values of correlation length in the vertical and 
horizontal directions.  

In the present study the authors demonstrate for 
the first time, the effects of incorporating the self-
weight of the soil under the foundation base in an 
RFEM analysis. 
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This corresponds to the extension of bearing stress 
formula to the form: 
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for cohesive soil and: 
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for cohesionless soil. 
Furthermore, the influence of the anisotropic charac-
ter of random fields has been examined. Finally some 
analyses concerning the probability distributions of 
bearing capacity are presented. 

2 THE RANDOM FIELD MODEL FOR SOIL 
PROPERTIES  

The random soil model proposed by Fenton and Grif-
fiths (2003) describes soil strength parameters by 
means of an isotropic two-dimensional random field 
by the local averaging approach (Fenton and Van-
marcke, 1990).  
    In the present paper two random fields are taken 
into account, one for c (cohesion) and one for φ (fric-
tion angle). The cohesion random field is assumed to 
be lognormally distributed with mean µc, standard 
deviation σc and different spatial correlation lengths 
θcy and θcx in vertical and horizontal direction, re-
spectively.  

Theoretical aspects of the anisotropic random field 
assumption have been analyzed in earlier papers 
(Puła and Shahrour 2003, Puła 2004).  

The lognormal random field is derived from a 
normally distributed random field Glnc(x), having ze-
ro mean, unit variance and spatial correlation length 
θlnc transformed as follows: 

( ) ( ){ }exp ln ln lnc Gc c cµ σ= +x x  (6) 

where x = the spatial position at which c is calcu-
lated and µlnc and σlnc are mean and standard devia-
tion values of (log) cohesion function: 
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Such a transformation is very useful because there 
are many effective methods for generating normal 
field and then using Monte Carlo simulation. Reali-
zations of cohesion field have been calculated after 
having generated the realization of normal field using 
the transformation in Eq. (6). Correlation structure of 
cohesion lognormal field Glnc(x) is expressed by de-
termining the correlation function, whose parameters 

are correlation lengths along the two directions 
θ(lnc)y and θ(lnc)x.   
In this paper the following correlation function has 
been assumed: 
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where τ1= y2 – y1 and τ2= x2 – x1 are the two com-
ponents of the absolute distance between the two 
points in 2D space where the correlation function is 
calculated by taking into account the anisotropic 
character of the random field (θ(lnc)x and θ(lnc)y). It is 
worth mentioning that such a correlation function 
works in a normal random field ln c. θ(lnc)y and 
θ(lnc)x values are derived from  θcy and θcx values. 
Correlation lengths θcy and θcx can be drawn from 
in situ tests. One method for converting soil testing 
results into correlation length is the moment me-
thod (Baecher and Christian 2003). Such metho-
dology has been used in this paper. The different 
between isotropy and anisotropy random field are 
illustrated in Figure 1.  

(a)  

(b)  
Figure 1. Analyzed mesh of (a) isotropic soil with θx=0.5, 
θy=0.5; (b) anisotropic case with θx=5.0, θy=0.5. The darker 
regions indicate weaker soil. 

  
The larger value of horizontal correlation length 

seems to imitate more realistic natural soil property 
(Figure 1). In-situ tests have demonstrated that the 
horizontal correlation length is significantly greater 
than the vertical one (Cherubini 1997). 

The second random field considered in this pa-
per is the friction angle. Since friction angle values 
change within a bounded interval, neither normal 
nor lognormal distributions are appropriate models 
for random variable. Fenton and Griffiths (2003) 
represented bounded of “tanh” distributed fields as 
a bounded distribution, which arises as a simple 
transformation of a Gφ(x), according to: 
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where φmin and φmax are the minimum and maximum 
values of friction angle, respectively, and s is the 
scale factor depending on standard deviation. 
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Figure 2. Shapes of friction angle distribution of bounded type. 
The curve corresponding to s=2,27 (φmin=5˚; φmax=35˚; σφ = 
4.8°) is the density of the distribution used in this paper for 
computations (grey-blue clay from Taranto). 

 
Shapes shown in Figure 2 represent probability 

distribution functions of φ variable.  In the graph, φ 
functions are reported for three different scale factor 
values s. For s values greater than 5 frequency distri-
bution leads to a U-shaped function which is unrea-
listic in current situations. The mean distribution is in 
the middle of the interval [φmin; φmax]. Relationship 
between the standard deviation and the scale parame-
ter s has no analytic form. It can be obtained by nu-
merical integration or by Taylor’s expansion. The 
first order approximation leads to: 
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where φ0 is the mean value of the friction angle. Cor-
relation function and correlation length values have 
been estimated as in the case of cohesion. 

As first soil the blue-grey clay has been consi-
dered. This kind of clay appears near the Taranto in 
South East of Italy. It has been widely described and 
statistically tested by Cherubini et al (2007) and ap-
plied to RFEM computations reported in the paper by 
Cherubini et al (2009).  The random field characte-
ristics have been synthesized in Table 2 as a result of 
investigation over Taranto blue-grey clay (Cherubini 
et al. 2007, 2009). 
Table 2. Random characteristics of grey-blue clay. _________________________________________________ 

Variable Probability  Mean Standard   Scale of 

distribution    deviation   fluctuation _____ ________  _________ 
         µ   σ     θy _________________________________________________ 
c   Lognormal   36kPa 20kPa 0.2; 0.5; 0.7; 1.0 m 

φ   Bounded    20°  4.8°       0.2; 0.5; 0.7; 1.0 m 
(see Eq. (10))       

γ   Non-random  19 kN/m3 -    - 
*Horizontal fluctuation scale will be a subject of the parameter study. 

 The friction angle has been defined as being 
symmetric bounded distributed with lower limit 
φmin=5˚, upper limit φmax=35˚ and scale parameter 
s=2.27. 
In the case of cohesionless soil a sand has been 
considered with bounded distribution of friction 
angle. The parameters of probability distribution 
are given in Table 3. The minimal and maximal 
values were equals to φmin=14˚, φmax=51˚ respec-
tively and the scale parameter equal to s=2.21. The 
sand characteristics are synthetic input data and 
they are not reflect any specified real situation. 
They have been accepted on some literature ana-
lyses. In order to compare results the values of ver-
tical fluctuation scale has been assumed the same 
as in the case of Taranto clay. 
 
Table 3. Random characteristics of  sand. _________________________________________________ 

Variable Probability  Mean Standard   Scale of 

distribution    deviation   fluctuation* 

_____ ________  _________ 
         µ   σ     θy _________________________________________________ 

φ   Bounded    32.5°  4.8°         0.2; 0.5; 

0.7;1.0 m 
(see Eq. (10))       

γ   Non-random  19 kN/m3 -     - _________________________________________________ 
*
Horizontal fluctuation scale will be a subject of the parame-

ter study. 
 

3 RANDOM FINITE ELEMENT METHOD  

The bearing capacity analysis carried out in this 
paper uses an elastic perfectly plastic stress strain 
law with a classical Mohr Coulomb failure crite-
rion according to Fenton and Griffiths (2003) 
work. Plastic stress redistribution is accomplished 
using a viscoplastic algorithm. The program uses 8 
node quadrilateral elements and reduced integra-
tion in both the stiffness and stress redistribution 
parts of the algorithm. The theoretical basis of the 
method is described in detail in Chapter 6 of the 
book by Smith and Griffiths (2004). The finite 
element model incorporates five parameters: 
Young’s modulus (E), Poisson’s ratio (ν), dilation 
angle (ψ), shear strength (c), and friction angle (φ). 
In the present study E, ν and ψ are held constant 
(at 60 MPa for grey-blue clay and 100 MPa for 
sand, ν = 0.3, and ψ = 0 in both cases ) while c and 
φ are randomized. Setting the dilation angle to zero 
means there is no plastic dilation during yield of 
the soil. This is the case in the following computa-
tions. The Young’s modulus governs the initial 
elastic response of the soil, but does not affect the 
bearing capacity. Thus such elastic soil parameter 
has been used for pre-analyzing the system. 



In order to check the correctness of the mesh model 
an analysis of the mesh influence on the bearing ca-
pacity mean value has been carried out. Figure 3 
presents the bearing capacity average computed for 
finite element mesh consists of 20 and 30 elements in 
y-direction direction versus variable numbers of ele-
ment in x-direction. It can  
be observed that for a number of elements greater 
than 50 (in x-direction) the average of the bearing 
capacity becomes stable and at 50 reaches its minim-
al value.  

Similar effects have been observed in the case in 
which the number of elements in y-direction is 
changing. The effects are illustrated in Figure 4. All 
computations in this case have been carried out with 
50 elements in x-direction. The stabilization begins at 
15, but the minimal value is observed at 20.  
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Figure 3. Bearing capacity average versus number of element in 
x-direction. 
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Figure 4. Bearing capacity average versus number of element in 
y-direction. 

 
According to results presented in Figure 3 and 

Figure 4, the mesh of size 50 x 20, is accepted for 
further investigations (Figure 5). Each element is a 
square of side length 0.1 m and the strip footing oc-
cupies 10 elements, thus giving a width of B = 1 m.  

The random fields in this study are generated using 
the Local Average Subdivision (LAS) method (Fen-
ton and Vanmarcke 1990, Fenton and Griffiths 
2008). Numerical analyses of the bearing capacity 
have been carried out according to numerical simula-
tions by first two moments (mean and variance). In 
order to check the speed of convergence in simula-
tion process the computations were carried out for 
different number of realizations (samples). Results 
for sample size 300, 500 and 1000 are reported in 
Figure 6. There, the confidence intervals considered 

with selected exceeding probability α = 0.05 are as 
follows: lower bound of mean value: 450.22 kPa, 
upper bound of mean value: 481,00 kPa; lower 
bound of standard deviation: 164,67 kPa, upper 
bound of standard deviation: 186,46 kPa. Accor-
dingly the optimum number of realizations turned 
out to be 300; whereas more than 1000 realizations 
are needed to determine the approximate form of 
the bearing capacity distribution. As a next step an 
effect of cross-correlation of strength parameters 
has been investigated. Since a negative cross-
correlation, has been experimentally established 
for many soil types the computations have been re-
peated for three negative correlation coefficients: ρ 
= - 0.7, ρ = - 0.5, ρ = - 0.3. Examples of results are 
presented in Figure 7 (mean values) and Figure 8 
(standard deviations).  

 

 
Figure 5. Mesh model used in stochastic bearing capacity 
predictions (After Griffiths and Fenton 2001)  
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Figure 6 Testing of convergence rate for mean value of bear-
ing capacity. Runs have been started from three different 
seeds.   
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Figure 7. Average bearing capacity versus cross-correlation 
coefficient of strength parameters φ and c. 



It is easy to see that for lack of correlation the aver-
age bearing capacity is the lowest and the standard 
deviation is the greatest. Therefore in the further 
computations the zero-value cross-correlation case 
has been selected. However, if the given negative 
value of the correlation coefficient is confirmed then 
including it in reliability computations would lead to 
more optimal evaluations. As it has been already 
mentioned computations within this study, has been 
carried out for anisotropic random fields. It means 
that the horizontal correlation length differs from the 
vertical one. In vertical direction, four values of cor-
relation length θy have been considered: 0.2; 0.5; 0.7 
and 1.0 m.  
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Figure 8. Bearing capacity standard deviation versus cross-
correlation coefficient of strength parameters φ and c. 

 
    As it is reported in the literature (e.g. Cherubini 
1997) the horizontal correlation length is much 
greater then vertical. Therefore the following values 
of θx were used in the computations: 1; 5; 10; 50 m. 
It was assumed that the correlation lengths of cohe-
sion and friction angle are the same. Results for gray-
blue clay are shown in Table 4. These results are also 
graphically presented in Figures 9 and 10. Addition-
ally figures contain results for cases where the self-
weight of the soil has been not included. 
  
Table 4. Mean values and standard deviations of bearing capaci-
ty obtained in computations.  _________________________________________________ 

θx  θy  µqfi   σqfi    θx  θy  µqfi   σqfi   

[m]  [m] [kPa]  [kPa]   [m]  [m] [kPa]  [kPa]  _________________________________________________ 

1  0.2 406.91 61.98   10  0.2 424.34 96.98 

  0.5 399.79 83.79     0.5 423.94 133.46 

  0.7 401.67 92.47     0.7 427.83 149.95 

  1.0 406.67 102.48     1.0 435.13 171.05 _________________________________________________ 

5  0.2 416.22 89.61   50  0.2 434.80 102.23 
  0.5 411.23 123.54    0.5 442.17 143.10 
  0.7 413.48 138.03    0.7 450.05 160.65 
  1.0 418.34 152.94    1.0 461.24 181.53 _________________________________________________ 

 
Figure 9 shows the obvious result that bearing ca-

pacity values increases if the self-weight of soil is in-
corporated. Standard deviation rises as the vertical 
correlation length increases. One can observe that the 
effect of horizontal fluctuation scale is important. 
However, for larger values that are realistic in natural 
soils, the bearing capacity coefficient of variations 
seems to be not very sensitive to the increase in the 

horizontal scale value (Figure 10). This result can 
be valuable if we are not able to precisely deter-
mine the horizontal fluctuation scale. Very impor-
tant feature can be observed in Figure 10. Namely 
the coefficients of variation for cases with and 
without self-weight almost coincide, for the same 
values of fluctuation scale. On the other hand bear-
ing capacity coefficient of variation stabilizes with 
respect to horizontal fluctuation scale, when this 
scale reaches high values.  
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Figure 9. Mean value of bearing capacity versus ratio θy/B 
for different values of horizontal fluctuation scale. Curves 
denoted by θx weight result from computation where self-
weight is included. Curves denoted by θx come from compu-
tation without including of self-weight. 
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Figure 10. Coefficient of variation of bearing capacity versus 
ratio θy/B for different values of horizontal fluctuation scale. 
Curves denoted by θx weight result from computation where 
self-weight is included. Points denoted by θx come from 
computation without self-weight. 

 
Let us now turn to the computations carried out 

for sand of characteristic presented in Table 3. In 
this case the self-weight of the subsoil has been in-
corporated in FEM computations. The results of 
computations are presented in the Table 5, Figure 
11 and Figure 12. They show that changes in the 
mean value due to variation of the horizontal fluc-
tuation scale are quite small. They appeared to be 
far smaller than in the cohesive soil. This result 
seems to be optimistic if we are not able to precise-
ly determine the horizontal fluctuation scale. 



Quite unexpected behavior can be observed when 
the coefficients of variations are analyzed. The Fig-
ure 12 shows that bearing capacity coefficients of 
variation may decrease with increasing value of hori-
zontal fluctuation scale. This is in opposition to re-
sults for cohesive soil (see comparison given in Table 
6) as well as results reported in earlier papers (Che-
rubini et al 2009, Pieczyńska & Puła 2009).  

 
Table 5. Mean values and standard deviations obtained in cohe-
sionless soil ________________________________________________ 

θx  θy  µqfi   σqfi   θx  θy  µqfi   σqfi   

[m]  [m] [kPa]  [kPa]  [m]  [m] [kPa]  [kPa]  ________________________________________________ 

1  0.2 67.23  18.55  10  0.2 68.95  20.17 

  0.5 65.94  19.28    0.5 69.46  23.02 

  0.7 65.78  19.53    0.7 70.30  24.45  

  1.0 65.35  19.47    1.0 70.84  24.78 ________________________________________________ 

5  0.2 68.79  20.32  50  0.2 69.68  20.13  

  0.5 68.83  22.74    0.5 69.33  21.24  

  0.7 69.25  23.51    0.7 69.80  22.06  

  1.0 70.21  24.75    1.0 70.70  22.85  ________________________________________________ 
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Figure 11. Mean value of bearing capacity versus ratio θy/B for 
different values of horizontal fluctuation scale. Results for co-
hesionless soil include self-weight.  

 It is recognized that finite elements computation of 
the bearing capacity of cohesionless soil is more 
challenging than cohesive soil, so this contrasting 
behavior needs further investigation and research. 

4 PROBABILITY DISTRIBUTION OF BEARING 
CAPACITY  

Probability based design are far easier to perform if a 
complete probability information of bearing capacity 
is known. This means that that it is worth to estimate 
the probability density function (or cumulative distri-
bution function) of bearing capacity. In order to ex-
amine probability distributions for both – the blue-
grey clay and sand Monte Carlo simulations have 
been carried out with the sample size of 2000. 

For both cases (the blue-grey clay and the sand) 
vertical and horizontal fluctuation scales were 
equaled to θy = 0.7 m and θx = 50 m, respectively. 
The basic statistical parameters of samples are col-

lected in Table 7 and Table 8 for the case of blue 
clay and the sand, respectively. Cumulative distri-
bution functions have been matched by means both 
the method of moments and the least square me-
thod. It has appeared that estimation by lest 
squares had given better matching. 
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Figure 12. Coefficient of variation of bearing capacity versus 
ratio θy/B for different values of horizontal fluctuation scale. 
Results for cohesionless soil include self-weight.  

 
Table 6 Comparison coefficients of variation for soil with 
and without cohesion.  ____________________________________ 

θx  θy   C.O.V.qfi   C.O.V.qfi 

[m]  [m]  Cohesive  Cohesionless ____________________________________ 

1  0.2  0.15    0.28 

  0.5  0.21    0.29 

  0.7  0.23    0.30 

  1.0  0.25     0.30 ____________________________________ 
5  0.2  0.22    0.30 
  0.5  0.30    0.33 

  0.7  0.33    0.34 
  1.0  0.37    0.35 ____________________________________ 

10  0.2  0.23    0.29 

  0.5  0.31    0.33 

  0.7  0.35    0.35 

  1.0  0.39    0.35 ____________________________________ 

50  0.2  0.24    0.29 

  0.5  0.32    0.31 

  0.7  0.36    0.32 

  1.0  0.39    0.32 ____________________________________ 

 
Table 7. Bearing capacity statistical parameters. The blue-
grey clay case (the self-weight of the soil is included). _________________________________________________ 

Minimum    93.20   Maximum    1180 

Range     1086.8  Median     414.00 

Arithmetic mean  441.64  Geometric mean  414.05 

Mean square   25661.0  Variance    25673.0 

Stand. deviation  160.23  Coef. of variation 0.36281 

Third moment  3624300 Stand. Skewness  0.8817 

Fourth moment  2.72E+09 Stand. kurtosis  4.1376 

Variance of mean 12.83   Var. of variance  3.71E+15 

Var. of 3. moment 2.10E+11 Var. of 4. moment  1.19E+17 _________________________________________________ 



Figure 13 shows result obtained for the blue-grey 
clay case in the form of histogram (simulation) and 
the estimated lognormal probability density function 
(the least square method). 
 
Table 8. Bearing capacity main statistics for cohesionless soil 
included soil weight term. _________________________________________________ 

Minimum    15.90   Maximum    192.00 

Range     176.10  Median     70.40 

Arithmetic mean  69.051  Geometric mean  64.789 

Mean square   537.53  Variance    537.79 

Stand. deviation  23.190  Coef. of variation  0.33584 

Third moment  4343.0  Stand. skewness  0. 34849 

Fourth moment  1.117E+06 Stand. kurtosis  3.8670 

Variance of mean 0.26876  Var. of variance  0.623E+09 

Var. of 3. moment 0.200E+07 Var. of 4. moment  0.303E+11 _________________________________________________ 

 

 
Figure 13. Density function with matching a lognormal distribu-
tion. Data set in Tables 7 and 9. 
 

In Figure 14 the “empirical" cumulative distribu-
tion function received in the simulation is compared 
with the lognormal cumulative distribution function 
estimated by the least square method. It can be ob-
served that both graphs almost coincide, which 
means a very good fitness. Next distribution hypo-
theses have been examined by statistical goodness-
of-fit tests, namely the Kolmogorov-Smirnov test, 
chi-square test and Anderson-Darling test. The test 
results are demonstrated in the Table 9. All three 
goodness-of-fit tests show that there is no reason to 
reject the hypothesis that the bearing capacity for the 
case considered is lognormally distributed with the 
mean value equal to E[qf] = 440.46 and the standard 
deviation σq = 159.8 (the least square fitness). It is 
worth mentioning that distributions fitted by the me-
thod of moments and fitted by the least squares me-
thod only slightly differ.  

Another shape of the distribution has been ob-
tained when the bearing capacity of the sand has 
been considered. The lognormal density appeared to 
be not well-fitted as shown in Figure 15. Several dis-
tributions have been tested for estimating simulated 
distribution, but none of them has given good result. 
Relatively well-fitness has been obtained by applying 
a normal distribution. Estimated by the least square 
normal p.d.f with the simulated histogram is pre-

sented in Figure 16 and the empirical and theoreti-
cal cumulative distributions functions are plotted in 
Figure 17.   

Figure 14. Lognormal cumulative distribution function com-
pared with the empirical cumulative distribution function re-

sulting from simulation. 
  
Table 9. Tests for the estimation of the bearing capacity 
probability distribution for cohesive soil included soil weight 
term. _________________________________________________ 

Parameter estimation for the case of 50m horizontal and 0.7m 

vertical scale of fluctuation _________________________________________________ 

Selected      Parameter 1 Parameter 2  Selected  

estimation     [xi]    [delta]    stochastic 

method                model _________________________________________________ 

Method of moments 415.157   0.351652 Lognormal 

Least square    414.050   0.364463 Lognormal _________________________________________________ 

Testing    _________________________________________________ 

Selected testing method    Kolmogorov-Smirnov test _________________________________________________ 

Significance   Critical 

         level     significance level _________________________________________________ 

Method of moments  0.34012    0.05 

Least square     0.77108    0.05 _________________________________________________ 

The hypothesis should not be rejected. _________________________________________________ 

Selected testing method    Chi-square distribution test _________________________________________________ 

Number of  Significance Critical 

classes used level    significance  

in test         level  _________________________________________________ 

Method of moments 44    0.16868   0.05 

Least square    44    0.18426   0.05 _________________________________________________ 

The hypothesis should not be rejected. _________________________________________________ 

Selected testing method     Anderson-Darling test  _________________________________________________ 

Significance Critical  

level      significance level _________________________________________________ 

Method of moments >0.15     0.05   

Least square    >0.15     0.05   _________________________________________________ 

The hypothesis should not be rejected. _________________________________________________ 

 
Figures 16 and 17 suggest that the normal fitness 

seems to be satisfactory for this case. As in the 
previous case statistical goodness-of –fit testing 
has been carried out. In the case, however, only 
Darling-Anderson test suggested to not reject the 
normality hypothesis.  



 
Both the Kolmogorov-Smirnoff test ant the chi-

square test suggested that the hypothesis should be 
rejected. 

 
Figure 15. Density function with matching a lognormal distribu-
tion. Data set in Table 8. 
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