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 ABSTRACT: Geotechnical design is plagued by the uncertainty associated with site characterization. Common questions are “How 
many samples should be taken?” and “How do these samples reduce my uncertainty?” Of considerable interest is the question “What 
site sampling plan will give the best cost to effectiveness ratio?” This papers looks specifically at the effect of the number of samples 
on residual uncertainty. The results can be used to quantitatively select the required number of samples needed to achieve a target 
maximum residual uncertainty level. To study this problem, a square domain is selected (the site) and a stationary Gaussian random 
field is simulated within the domain (the random soil properties). The random field is sampled at a series of locations and a trend is 
estimated from the samples. The trend is then removed from the random field and the residual random field is statistically analyzed to 
determine various measures of the effectiveness of the sampling scheme. These measures include: 1) the variance of the residual field 
average (i.e. does the estimate represent the average?), 2) the residual standard deviation (i.e. how much residual uncertainty 
remains?), and 3) the residual correlation length (i.e. how does trend removal affect the perceived correlation lengths?). 

RÉSUMÉ : Le design géotechnique est traditionnellement tourmenté par des incertitudes associée à la caractérisation du site. Des 
questions plus concerné sont: combien des échantillons devraient être prises? Comment ces échantillons peuvent réduire mon 
incertitude?? un des intérêts plus considérable vient de cette question? Quel plan d'échantillonnage du site vous donnera le meilleur 
coefficient d'efficacité? Cet article examine spécifiquement l'effet du nombre d'échantillons sur des incertitudes résiduelles. Les 
résultats peuvent être utilisés pour quantifier et sélectionner le nombre demande des échantillons qui sont nécessaires pour atteindre 
un objectif incertitude maximal avec le niveau résiduel. Pour étudier ce problème, un domaine carré est sélectionné (le site) et un 
champ gaussien aléatoire stationnaire est simulé dans le domaine (les propriétés du sol aléatoires). Le champ aléatoire est 
échantillonné à une série d'emplacements et une tendance a été estimée à partir de l'échantillon. La tendance est retiré du champ 
aléatoire et le champ résiduel aléatoire est statistiquement analysées afin de déterminer les mesures diverses de l'efficacité du plan 
d'échantillonnage. Ces mesures comprennent: 1) la variance de la moyenne de champ résiduel (c'est à dire ?comment la tendance 
estimée représentent la moyenne réelle sur le terrain?. 2) l'écart type résiduel (c à quel degré d'incertitude résiduelle demeure), et 3) la 
valeur longueur résiduelle de corrélation (c. comment la suppression tendance à affecter les longueurs de corrélation?). 
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1 INTRODUCTION 

Site characterization is clearly an essential component of any 
geotechnical design and a great deal of effort has been devoted 
over recent decades on how to best perform such a 
characterization. How many samples should be taken? How 
should these samples be used in the design process? 

The ground is one of the most complex of engineering 
materials, and yet is the most fundamental, in all senses of the 
word. While steel, concrete, and wood, for example, have fairly 
well established and relatively small uncertainties, the ground 
can vary by orders of magnitude from site to site, and even 
within a site. 

As a result of the large uncertainty in the ground, all 
geotechnical designs must start with a geotechnical 
investigation so that the best “nominal” or “characteristic” 
ground parameters can be used in the design process. 
Traditionally, the intensity of the site investigation has not been 
particularly important, so long as a reasonable estimate of the 
characteristic design values can be estimated. However, recent 
impetus has been towards providing reasonable estimates of the 
reliability of designed geotechnical systems. In order to do so 
the ground used to provide the geotechnical resistance needs to 
be properly evaluated, in both the mean and the covariance. 

In this paper, the ability of a soil sampling scheme to predict 
the actual mean, variance, and correlation length of the soil at a 
site is investigated. A key question is how does the number of 
samples affect the accuracy of the estimate? Or, put another 
way, how many samples are required to achieve a certain 
desired accuracy? The answer is found by considering a square 
site and using random field simulation to generate realizations 
of the soil properties over the site, sampling each realization, 
and then comparing the estimated mean, variance, and 
correlation length to the ‘true’ values. The goal here is to 
investigate the discrepancies between the estimated statistics 
and the true ‘local’ statistics, the latter obtained by sampling the 
field at all locations.  Note that the ‘local’ statistics will differ 
from the population parameters, µ (mean), σ (standard 
deviation), and θ  (correlation length), which are used by the 
random field generator, due to the fact that the local statistics 
are derived from a single realization. In detail, the soil is 
represented by a stationary Gaussian random field, ( )X x , at 
spatial position x , which is simulated within the domain and 
sampled at sn locations. The samples are then used to estimate a 
mean trend, ( )µ̂ x , which can then be compared to the field 
realization to assess its ability to represent the actual mean 
trend. Defining the residual to be 
 ˆ( ) ( ) ( )rX X µ= −x x x   (1) 
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then ( )µ̂ x  is a good estimate of the mean trend if rX  is 
generally small. If the site is sampled at all locations, then ( )µ̂ x  
can be taken to be equal to ( )X x , in the event that a pointwise 
trend is assumed (as in Kriging), in which case ( ) 0rX =x  
everywhere. Sampling at all locations is the best case since 
there is then minimum residual uncertainty (zero in the case of 
Kriging).  

Sampling at all locations is, of course, prohibitively 
expensive and would also change the resulting field properties 
while measuring them (see, e.g., Heisenberg, 1927). In practice, 
soil properties are estimated from a relatively small number of 
samples so that ( )µ̂ x will only ever approximate ( )X x  in some 
way (i.e., via a trend). 

In assessing the ability of ( )µ̂ x  to represent ( )X x , it will 
also be useful to consider the average residual over the domain, 

 ( ) ( ) ( )
1

1 1 ˆr r i i

n

iD D

X d X
D D n

µ µ
=×

= =  −  × ∑∫ x x x x   (2) 

where D is the edge dimension of the D D×   square domain. 
The domain is broken up into n cells in the simulation, 
resulting in the summation form on the right, in which ix  is the 
location of the center of the i ’th cell. 

The agreement between ( )µ̂ x and ( )X x  will be determined 
here by considering three measures; 1) the standard deviation of 
the residual field average, rµ  (i.e., how well does the estimated 
trend represent the actual field average?), 2) the standard 
deviation of the residual, rX  (i.e. how much residual 
uncertainty remains?), and 3) the residual correlation length (i.e. 
how does the trend removal affect the perceived correlation 
lengths?). 

Five sampling schemes are considered in the paper, ranging 
from a single sample taken at the field midpoint to nine samples 
taken over a 3 x 3 array at the quarter points of the field. In 
some cases a further ‘maximum' sampling scheme is performed, 
where every point in the field is sampled, to see what the 
maximum attainable uncertainty reduction is. 

For each sampling scheme, three types of trend removal are 
performed; a) removing the constant sample mean, b) removing 
a bilinear trend surface which is fit to the sample, and c) 
removing a Kriged surface fit to the sample. The residual 
statistics are determined by Monte Carlo simulation, with 2000 
realizations for each case, where the field is discretized into 128 
x 128 cells and the random fields generated using the Local 
Average Subdivision method (Fenton and Vanmarcke, 1990). 

 
2 RESULTS 

Consider first the average of the residual, rµ , given by Eq. 2. It 
can be shown that the mean of rµ is zero, so that a measure of 
how accurately ( )µ̂ x  represents ( )X x can be obtained by 
looking at the standard deviation of rµ – small values of this 
standard deviation imply that ( )µ̂ x  remains close to the field 
average. Figure 1 illustrates how the standard deviation of rµ , 
normalized by dividing by the standard deviation of the random 
field value, ( )iX x , in the i ’th cell (referred to as cellσ ), varies 
as a function of the number of samples taken from the domain, 

sn , and the normalized correlation length, / Dθ . Note that if 
only one sample is taken at the midpoint of the domain, 1sn = , 
then a bilinear trend cannot be fit to the sample, nor is a Kriged 
surface removal attempted. Thus, parts b and c in Figure 1 do 
not have a curve corresponding to 1sn = . In all plots it is 
apparent that as the number of samples increases, the accuracy 
improves (in agreement with the findings of Lloret-Cabot, et al., 
2012). It can be seen, however, that for 3sn =  to 9, there is 
very little difference between the detrending methods, so far as 
the field average is concerned. It is to be noted that the field 
average is a constant, not a trend, so it is not expected that the 
bilinear and Kriged surface trends will do any better than the 
sample mean, when compared to the field average. 

 

 

Figure 1. Standard deviation of the field average residual (eq. 2), 
normalized by the standard deviation of X, versus normalized 
correlation length. 

In all cases in Figure 1, the agreement between ( )µ̂ x  and 
( )X x  improves as the correlation length increases. This is 

because the field becomes increasingly smooth, or flat, as the 
correlation length increases, so that all trends considered 
become closer to the flatter ( )X x . 
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Figure 2. Standard deviation of the residual (eq. 1), normalized by the 
standard deviation of X, versus normalized correlation length. 

A possibly better measure of how well ( )µ̂ x represents the 
field is obtained by considering the standard deviation of the 
residual, ( )rX x  (see eq. 1), directly. This measure will include 
the effects of trend removal and is illustrated in Figure 2, again 
with the standard deviation of the residual, rσ , divided by the 
standard deviation of X , cellσ . In detail, the standard deviation 
of the residual is estimated as the square root of the variance, 

 ( ) ( )
1

2
2 1 ˆ

1

n

i
i

r iX
n

µσ
=

 −  − ∑ x x   (3) 

for each realization. The value of rσ  used in Figure 2 is 
averaged over all realizations. As in Figure 1, the 1sn =  case 
only appears in Figure 2a, since bilinear trend and Kriging 
surfaces are not well defined for only one sample point. 
However, Figures 2a and b now include a limiting case where 
the entire simulation has been sampled ( sn =  all), representing 
the best site knowledge possible. This case was not included in 
Figure 1 since, when all values are sampled, 0rµ = , that is, the 
average residual is zero. In Figure 1, this would have 
corresponded to a horizontal line at zero standard deviation. In 
Figure 2, the ‘ sn =  all’ case corresponds to the classical case 
where both the estimated mean (trend) and the variance are 
computed from the same set of observations. As the correlation 
length decreases, these observations become increasingly 
independent, and the estimated standard deviation approaches 
the true standard deviation, so that 1./ 0r cellσ σ →  as seen in 
Figures 2 a and b when sn =  all. In Figure 2 c, the case ‘ sn =  
all’ is not included in the Kriging surface case since, when the 
entire field is sampled, the residual is zero with zero variability, 
and so the curve corresponding to this case lies at zero. 

As in Figure 1, Figure 2 also shows that the ability of ( )µ̂ x
to represent ( )X x improves as the correlation length increases, 
for all of the trends considered. In the limit, as / Dθ →∞ , all 
random fields become uniform (under the assumed finite 
variance correlation structure), random from realization to 
realization, but constant within each realization. In this limiting 
case, the sample perfectly predicts the uniform field, and the 
residual becomes zero everywhere so that 0rσ = . It is apparent 
in Figure 2 that all curves are heading towards 0, as / Dθ →∞ . 

One of the perhaps surprising results of Figure 2 is that the 
removal of a bilinear trend is not generally as good as the 
removal of the constant sample mean at smaller correlation 
lengths, and especially at a lower number of samples. The 
reason for this becomes apparent when, for example, the case 
where 3sn =  is considered. If the correlation length is small, 
then the three samples will be largely independent, and the 
resulting fitted bilinear plane could (and often does) end up with 
quite an unrepresentative slope, leading to a high variability in 
the residual. Even when 9sn =  the residual variability is higher 
at low correlation lengths than seen using the constant sample 
mean. At low correlation lengths,  the Kriging surface performs 
about the same as the constant sample mean. 

At large correlation lengths, e.g. / 10Dθ = , the bilinear 
trend performs better than the constant sample mean for all sn  
except 3sn = , where the relative standard deviation is 0.35 
versus 0.32 for the constant sample mean. For higher number of 
samples, the relative standard deviation using the bilinear trend 
is 0.25, versus 0.31 for the constant sample mean. The Kriged 
surface performs the best out of the three methods (relative 
standard deviation of 0.30) when the number of samples is 3, 
and about the same as the bilinear trend for higher numbers of 
samples. 

The last measure of the quality of the trend type used 
considered in this paper is how well the estimated correlation 
length agrees with the actual correlation length, Figure 3. Once 
( )µ̂ x  has been established from the soil samples, the 

correlation length is estimated here using the following steps; 
1. for each direction through the soil domain, 1, 2i = , 
2. estimate the semi-variogram along all lines through the 

domain in direction i  using the entire ( )rX x  field, 
3. average the semi-variograms obtained in step 2 to obtain 

the final semi-variogram estimate in direction i , 
4. fit a theoretical semi-variogram, having parameter θ  

(correlation length), to the semi-variogram estimated in 
step 3 by minimizing the sum of squared errors (i.e. 
regression).  
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Figure 3. Estimated correlation length of the residual, normalized by the 
point correlation length, versus normalized actual correlation length. 

The correlation length estimated from the residual, rθ , will 
agree with the actual correlation length used in the simulation, 
θ ,  when the ratio 1/rθ θ = . It can be immediately seen in 
Figure 3 that this only occurs in general when the entire field is 
sampled and the correlation length is relatively small (i.e. 
significantly less than D ). That is, when the entire field is 
sampled ( sn =  all), so that the sample average is equal to the 

actual field average, the estimated correlation length becomes 
equal to the actual correlation length when the samples are 
relatively independent (small θ ). 

In general, when Dθ <  the estimated correlation length is 
overestimated, and often considerably overestimated, especially 
when the actual correlation length is small. This occurs because 
errors between the estimated trend (of any of the three types) 
and actual bilinear field trend (bilinear because correlation is a 
measure of the degree of linear dependence between random 
variables) are perceived in the estimation process to be caused 
by a strong lingering correlation (and not by an error in the 
original trend estimate) – hence a longer correlation length is 
estimated to account for the evident residual trend. 

Of the three trend types considered, the best is the constant 
sample mean and the worst is the bilinear trend (except when 

sn =  all). The Kriged surface is slightly worse than the constant 
sample mean. For example, when 9sn = and / 0.05Dθ = , then 

5 6/ .rθ θ = , 10.0, and 6.3 for the constant sample mean, 
bilinear trend, and Kriging surface, respectively. It should be 
noted that the best performer, the constant sample mean, may be 
so only because the simulated field is assumed stationary (i.e. 
constant mean). 

At the other end of the plot, where Dθ > , the correlation 
length is underestimated ( 1/rθ θ < ). In general, this is because 
the removal of a trend in a strongly correlated field is also 
removing the evidence of the strong correlation (strong 
correlation is evidenced by a trend having little variation off the 
trend) resulting in a residual field without strong correlation – 
hence a small correlation length. Of the three trend types 
considered the best performer at the large correlation length end 
is again the constant sample mean. For example, when 9sn =
and / 10Dθ = , then / 0.08rθ θ = , 0.05, and 0.06 for the 
constant sample mean, bilinear trend, and Kriging surface, 
respectively. 
 
3 CONCLUSIONS 

There is no difference between the accuracies of the trend type 
selected when matching the trend to the field average, rµ . As 
expected, the accuracy improves as the number of samples and 
the correlation length increase. If a target standard deviation,

rµ
σ , equal to 20% of the random field standard deviation, cellσ , 
is desired, then only one sample is required if / 10Dθ ≥ , while 
9 or more samples are required if / 1Dθ ≤ . 

In general, if the correlation length is small, the most 
accurate approach is to use a constant sample mean, which 
shows the best general results for all three measures of accuracy 
considered in this paper. Kriging is almost identical, only losing 
out slightly when considering the residual estimated correlation 
length. At the other end of the scale, when the correlation length 
is large, the bilinear trend is more accurate with respect to the 
residual standard deviation than is the constant sample mean, as 
expected. 

In the absence of knowledge about the actual correlation 
length, it appears that the Kriging surface removal, although not 
generally the best in any one measure, is very competitive and is 
certainly a good overall choice. 
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