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ABSTRACT: The homogenized stiffness of geomaterials that are highly variable at the micro-scale has 
long been of interest to geotechnical engineers. The purpose of this study is to investigate the influence 
of porosity and void size on the homogenized or effective properties of geomaterials. A Random Finite 
Element Method (RFEM) has been developed enabling the generation of spatially random voids of given 
porosity and size within a block of geomaterial. Following Monte-Carlo simulations, the mean and stand-
ard deviation of the effective property can be estimated leading to a probabilistic interpretation involving 
deformations. The probabilistic approach represents a rational methodology for guiding engineers in the 
risk management process. The influence of block size and the Representative Volume Elements (RVE) are 
discussed, in addition to the influence of anisotropy on the effective Young’s modulus.

Representative Volume Element (RVE). An RVE 
is an element of the heterogenous material that is 
large enough to represent the microstructure but 
small enough to achieve computational efficiency 
(e.g. Liu, 2005; Zeleniakiene et al. 2005).

Since the concept of the RVE was first introduced 
by Hill (1963), several theoretical models have been 
proposed for dealing with scale effects. Hazanov & 
Huet (1994) derived results involving mixed bound-
ary conditions, which locate between the static and 
kinematic uniform boundary conditions for speci-
mens smaller than the size of the RVE. Orthogonal 
mixed boundary conditions have also been proposed 
(e.g. Hazanov & Amieur, 1995; Havanov, 1998; 
Khisaeva &  Ostoja-Starzewski, 2006).  Numerical 
methods such as the Finite Element Method (FEM) 
have also been used to validate the RVE size of ran-
dom heterogeneous materials. Kanit et al. (2003) 
used Monte-Carlo simulations to investigate RVE 
and effective properties, while Zohdi & Wriggers 
(2001) and Ostoja-Starzewski (2006) investigated the 
RVE size using a statistical computational approach. 
Although there are many models developed to inves-
tigate the effective properties of a material containing 
voids, there is no model that works for all problems 

1 INTRODUCTION

The motivation of this work is to investigate the 
influence of porosity and void size on the stiffness 
of 3D geomaterials using a statistical approach. 
Even if  the expected porosity of a site can be con-
servatively estimated, the location of the voids may 
be largely unknown such as in geological regions 
dominated by karstic deposits. This makes a sta-
tistical approach appealing. The work presented in 
this paper is developed from a study of 2D model 
homogenization of geomaterials containing voids 
by random fields and finite elements (Griffiths 
et al. 2012) and 3D random finite element methods 
(Fenton & Griffiths, 2005). The classic problem of 
homogenization of heterogeneous materials with 
variable micro-structure has long been of practi-
cal interest to engineers. In the current study, the 
influence of voids on effective elastic properties 
is investigated. The goal of homogenization is to 
predict the effective property of a heterogeneous 
material, where the effective value is defined as the 
property that would have led to the same response 
if  the geomaterial had been  homogeneous. A use-
ful concept in this homogenization process is the 
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(e.g. Böhm, 1998, 2013). See also the reviews pub-
lished by Torquato (2002), Kachanov (2005) and 
Klusemann & Svendsen (2009).

In this paper, the Random Finite Element Method 
(RFEM) (e.g. Griffiths & Fenton 2007), which com-
bines finite element analysis with random field the-
ory, will be used in conjunction with Monte-Carlo 
simulations, to examine the effective elastic proper-
ties of materials with randomly distributed voids. 
A 3D cube of material, discretized into a relatively 
fine mesh of 8-node hexahedral elements, forms the 
basis of the model. Random field theory will be used 
to generate a material containing intact material and 
voids with controlled porosity and size. The RFEM 
can vary the size of the voids through control of 
the spatial correlation length and excursion theory 
(see e.g. p.141 in Fenton & Griffiths 2008). For each 
simulation of the Monte-Carlo process, elements in 
the mesh are assigned either an intact stiffness value 
or a much lower stiffness value corresponding to a 
void. A deterministic analysis follows leading to 
effective values of the elastic parameters E and υ. 
Monte-Carlo analyses are typically repeated numer-
ous times until the output statistics of the effective 
elastic properties (mean and SD) stabilize.

The first part of the paper investigates the size 
of the RVE for different input void properties. The 
second part of the paper investigates the statistics 
of the effective Young’s modulus and Poisson’s 
ratio in 3D as a function of porosity and void size, 
and compares results with numerical and analytical 
studies by other investigators. Effective properties 
in 3D are also compared with anisotropic results.

2 FINITE ELEMENT MODEL

Examples of the model which combines elastic 
material and voids are shown in Figure 1.

The finite element mesh for this study consists of 
a cubic block of material of side length L = 50 mod-
eled by 50 × 50 × 50 8-node cubic elements of side 
length ∆x = ∆y = ∆z = 1.0. Any consistent system of 
units could be combined with the dimensions and 
properties described in this paper. Since a mesh such 
as this involves rather large global matrices, equa-
tion solution in the runs described in this paper will 
be performed using a Preconditioned Conjugate 
Gradient (PCG) technique with element-by-element 
products as described by Smith and Griffiths (2004) 
which avoids entirely the need to assemble the global 
stiffness matrix. The model in Figure 2 is subjected 
to a vertical force Q = L × L on the top face lead-
ing to an average unit pressure on the top face of 
1.0. The boundary conditions of the block involve 
the use of “tied freedoms” that allow  analysis of an 
“ideal” block and direct evaluation of the effective 
Young’s modulus and Poisson’s ratio. Tied freedoms 

Figure 1. The 3D finite element model of ideal cubic 
blocks: (a) the solid material, (b) the voids, and (c) the 
combined model which show dark and light regions indi-
cating voids and solid material respectively.

Figure 2. Analysis of tied freedom in a “cubic element 
test” model with voids. A vertical force is applied on the 
top side. Rollers are fixed at the bottom and two back 
sides. The top and the two front sides are tied. The dark 
and grey elements represent, respectively, void and intact 
solid elastic material.

are forced to move by the same amount in the 
 analysis. The boundary conditions are such that 
the cubic block remains a regular hexahedron after 
 deformation. Other methods may give similar out-
comes (see e.g. the effects of tied freedom boundary 
condition from Huang et al. 2013). From this idea, 
the effective Young’s modulus and Poisson’s ratio 
easily be back-figured as will be described.

In particular, the boundary conditions are such 
that nodes on the base of the block can move only 
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in the x − y plane. The back left and back right faces 
are constrained to move only in the y − z and z − x 
planes respectively. All z-freedoms on the top plane 
are tied, as are the y-freedoms on the front left 
plane and the x-freedoms on the front right plane. 
A consequence of these constraints is that the top 
surface remaining horizontal and the two front 
sides remaining vertical following deformation.

These specific boundary conditions enable more 
direct comparison to be made with experimental 
results, where displacements may be applied with-
out friction on all sides of the specimen.  Periodic 
boundary conditions have also been used in 
homogenization studies of heterogeneous media, 
(e.g. Garboczi & Day, 2005).

3 CONTROLLING POROSITY

The random field generator in the RFEM model 
known as the Local Average Subdivision method 
(LAS) (Fenton & Vanmarcke 1990) is used in this 
paper to model spatially varying voids  properties. 
The target mean porosity n is obtained by using the 
standard normal distribution shown in  Figure 3. 
A single value of the random variable Z is initially 
assigned to each element of the finite element 
mesh. Once the standard normal random field 
values have been assigned, cumulative distribution 
tables Φ (suitably digitized in the software) are then 
used to estimate the value of the standard normal 
variable zn/2 for which

Φ ΦΦn 2 2n( ) ( )0  (1)

where Φ is the cumulative normal distribution 
function, and n is the target porosity as shown in 
Figure 3.

Figure 3. Target porosity area in standard normal dis-
tribution of random field. Any element assigned a ran-
dom field value in the range |Z| > zn/2 is treated as intact 
material a Young’s modulus and Poisson’s ratio given by 
E0 = 1 and υ0 = 0.3, respectively.

Figure 4. Influence of void element stiffness on the 
mean effective Young’s modulus (intact material, E0 = 1).

Thereafter, any element assigned a random field 
value in the range |Z| > zn/2 is treated as intact material 
with a Young’s modulus and Poisson’s ratio given by 
E0 = 1 and υ0 = 0.3, while any element where |Z| ≤ zn/2 
is treated as a void element with Young’s modulus 
and Poisson’s ratio given by E0 = 0.01 and υ0 = 0.3 
(100 times smaller than the surrounding intact 
 material). As can be seen in Figure 4, for the case 
when n = 0.2, the results show a small influence of 
the arbitrarily selected Young’s modulus of the void 
elements. In the current work, a void stiffness one 
hundred times less than the surrounding intact mate-
rial gave reasonable (and stable) results. The nature 
of random fields is that the mean porosity is under 
the user’s control, but the porosity of each individual 
simulation processed by the Monte-Carlo method 
will vary from one simulation to the next.

4 CONTROLLING OF VOID SIZE

As mentioned previously, two materials with the same 
average porosity could have quite different void sizes. 
One model could have frequent small voids, while 
the other could have less frequent larger voids. The 
void size in this study is controlled by the random 
field spatial correlation length θ which incorporates 
a “Markov” spatial correlation structure as follows

ρ ττ θ(( )θ2(  (2)

where ρ = the correlation coefficient; |τ| = absolute 
distance between points in the field; and θ = scale 
of fluctuation or spatial correlation length. Larger 
values of θ will lead to larger voids and vice versa.

The Markov equation delivers a spatial cor-
relation that reduces exponentially with distance. 
For example, from Eq. (3), τ < θ, the correlation 
coefficient ρ > 0.13. In the current study, the range 
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of ρ varies from 0 to 1. Points close together are 
strongly correlated and therefore likely to belong 
to the same void. In the limiting case of θ → 0, the 
random field value changes rapidly from point to 
point delivering numerous small voids. At the other 
extreme as θ → ∞, the random on each simulation 
becomes increasingly uniform with some simula-
tions representing entirely intact material and 
other consisting entirely of voids. For example as 
shown in Figure 5, the models show typical simula-
tions of different void clustering for two materials 
with the same mean porosity.

5 MONTE-CARLO SIMULATIONS

A “Monte-Carlo” process is combined with the 
RFEM and repeated until stable output statistics 
are achieved. The primary outputs from each elas-
tic analysis are the vertical and horizontal defor-
mations of the block δz, δx and δy. Although all 
simulation use the same θ and n, the spatial loca-
tion of the voids will different each time. In some 
cases, the voids may be located just below the top 
of the block leading to a relatively high δz. While 
in others, the voids may be buried in the middle of 
the block leading to a relatively low δz. Following 
each simulation, the computed displacements δz, δx 
and δy are converted into the “effective” values of 
Young’s modulus and Poisson’s ratio as follows

Based on Hooke’s law,
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Given that L is the side length of cubic block, 
and assume stress boundary conditions.
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hence after substitution into equation (3), the effec-
tive elastic properties can be written as
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where E = the effective elastic Young’s modulus, 
Q = stress loading at the top side, υx and υx = the 
effective Poisson’s ratios based on the displacement 
in the x- and y-directions respectively.

In each simulation, the effective Young’s modu-
lus is normalized as E/E0 by dividing by the intact 
Young’s modulus E0. In the current study, fol-
lowing some numerical experiments as shown in 
 Figure 6, it was decided that 1000 simulations for 
each parametric combination would deliver rea-
sonably repeatable results. In this study, we have 
expressed the spatial correlation length in dimen-
sionless form

Θ =
θ

L
 (9)

where L is the width of the loaded element 
(L = 50).

Figure 5. Typical simulations showing generation of 
voids at (a) low and (b) high spatial correlation lengths 
θ (n = 0.2 in both cases).

Figure 6. Sensitivity of the mean effective Young’s 
modulus as a function of the number of simulations for 
n = 0.2 and Θ = 0.4. It was decided that 1000 simulations 
would deliver reasonably repeatability.
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6 REPRESENTATIVE VOLUME ELEMENT

An RVE is an element of the heterogeneous mate-
rial that is large enough to represent the microstruc-
ture, but small enough to achieve computational 
efficiency. The RVE of four cases using the random 
field 3D finite element model have been considered 
as shown in Table 1.

Figure 7 shows a sequence of five blocks con-
tained within and including the largest block of 
50 × 50 × 50 cubic elements. The different block 
sizes will indicate the optimal RVE for the given 
input conditions. When the RVE is “big enough”, 
we expect the standard deviation of the effec-
tive Young’s modulus to be reduced and its mean 
essentially constant as shown in Figures 8(a) and 
8(b). While the mean values plotted in Figure 8(a) 
are fairly constant for different block sizes, it could 
be argued that the block size of 20 × 20 × 20 led 
to essentially constant values for the low Θ cases 
(1 and 3), while a larger block, say 30 × 30 × 30 
would be needed for stable mean values with the 
larger Θ cases (2 and 4). The standard deviation 
shown in Figure 8(b) displays more variability 
with block size and tends to zero as the blocks get 

 bigger, but at a slower rate for higher values of Θ. 
In both Figures 8, it is noted that the influence of 
Θ on block statistics is greater than that of n. The 
RVE depends more on spatial correlation length 
than porosity.

7 RESULTS OF RFEM

Following each set of 1000 Monte-Carlo simula-
tions, the mean and standard deviation of the 
normalized effective Young’s modulus were com-
puted for a range of parametric variations of n 
and Θ, with results shown in Figures 9 and 10, 
respectively.

It can be noted from Figure 9 that the mean nor-
malized effective Young’s modulus drops towards 
zero with increasing porosity n and that Θ does 
not have much influence. Figure 10 shows that Θ 
has more influence on the standard deviation of 
the effective Young’s modulus σE Eσ

0EE . The standard 
deviation values as n → 0 (intact stiffness material) 
and n → 1 (very low stiffness material) show low 
variance since almost all simulations are the same 
and model essentially uniform material. The stand-
ard deviation was observed to reach a maximum 
value at around n ≈ 0.4.

Table 1. Different input void properties.

Case Target porosity (n) Θ

1 0.2 0.2

2 0.2 0.7

3 0.7 0.2

4 0.7 0.7

Figure 7. Different block sizes for computing the effec-
tive elastic properties of a material with random voids.

Figure 8. Effective Young’s modulus (a) mean and (b) 
standard deviation following 1000 simulations for differ-
ent block sizes.
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The result obtained from Equations 7 and 8 for 
the effective Poisson’s ratio were in good agreement 
as expected for the range of n and Θ considered. 
In the isotropic material model, the two Poisson’s 
ratios are essentially identical after Monte-Carlo 
simulation; however the results are based on an 
average to account for any small differences. The 
plots shown in Figures 11 and 12 give the mean 

and standard deviation of the effective Poisson’s 
ratio. Figure 11 shows that the mean effective 
Poisson’s ratio µυ displays a minimum at around 
n = 0.5. On the other hand, as shown in Figure 12, 
the standard deviation of Poisson’s ratio displays a 
maximum at n = 0.7 which is a similar trend to that 
observed for Young’s modulus in Figure 10. For 
all values of Θ considered however, the standard 
deviations were quite small.

Although this paper has focused on Young’s 
modulus and Poisson’s ratio, other stiffness mod-
uli may be of interest depending on the context. 
Figure 13 combines results from Figures 9 and 11 
to show the variation of the mean effective shear 
modulus and bulk modulus using Eqns. (10 and 11). 
They display a similar trend to that observed for 
Young’s modulus.

µ
µ

µυ
Kµ Eµ

=
3( )µυ−1 2

 (10)

µ
µ

µυ
Sµ Eµ

=
2( )µυ+1

 (11)

where µK = the mean effective bulk modulus, 
µS = the mean effective shear modulus.

Figure 9.  µE/E0
 vs. n for 0.2 ≤ Θ ≤ 1.0.

Figure 10.  σE/E0 
vs. n for 0.2 ≤ Θ ≤ 1.0.

Figure 11. µυ vs. n for 0.2 ≤ Θ ≤ 1.0.

Figure 12. συ vs. n for 0.2 ≤ Θ ≤ 1.0.

Figure 13. Mean effective values vs. n using Θ = 0.2.
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8 COMPARISON OF RFEM AND OTHER 
RESULTS

The theoretical results based on the  Generalized 
Self  Consistent Method of Christensen & Lo 
(1979) and the numerical results based on the 
single-cut GRF model of Roberts & Garboczi 
(2002) are compared in Figure 14, with results 
from the current study using Θ = 0.6 from Figure 9. 
The Generalized Self  Consistent Method involved 
embedding an inclusion phase directly into an infi-
nite medium. It was demonstrated that the method 
could also solve the spherical inclusion problem. 
The single-cut GRF model assigns a random 
number to each point in space. From Figure 14, it 
can be observed that the current method gives sim-
ilar values of the mean effective Young’s  modulus 

Figure 14. Comparison of the effective Young’s modu-
lus obtained from RFEM and other approaches.

Figure 15. Analysis of tied freedom in four “cubic element test” models with voids: (a) isotropic model, (b) aniso-
tropic model along x-axis, (c) anisotropic model along y-axis and (d) anisotropic model along z-axis.
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to those given by the theoretical and numerical 
methods for all values of n.

9 COMPARISON OF ISOTROPIC 
AND ANISOTROPIC MODELS

Anisotropic models are performed with differ-
ent spatial correlation lengths in different direc-
tions. Figure 15(a) shows a model of  isotropic 
spatial correlation length at Θx = Θy = Θz = 0.6. 
The voids tend to disperse in all directions within 
the material. In Figure 15(b), where Θx = 6 and 
Θy = Θz = 0.6, and Figure 15(c) where Θy = 6 and 
Θx = Θz = 0.6, voids are in horizontally elongated 
in the x- and y-directions, respectively. On the 
other hand, in Figure15(d) where where Θz = 6 
and Θx = Θy = 0.6, voids are in vertically elongated 
in the z-direction. The tied freedom approach 
described previously continued to be used in all 
3D anisotropic models.

Following the Monte-Carlo simulations of the 
anisotropic models shown in Figure 15, the mean 
of the effective normalized Young’s modulus was 
compared with isotropic results for a range of n, 
as shown in Figure 16. It was noted that similar 
results were obtained when the elongated direc-
tion of the anisotropic models was in the x- and 
y-directions, but the effective Young’s modulus was 
noticeably higher when the elongations were in the 
z-direction (the direction of loading).

The isotropic 3D results from the current study 
using Θ = 0.6 are also compared in Figure 16 with 
2D (plane strain) for the same spatial correlation 
length as published previously by Griffiths et al. 
2012. The mean normalized effective Young’s 
modulus in 3D is obviously higher than in 2D for 
the same porosity. A direct comparison between 
2D and 3D may not be justified, however, because 

voids in 2D (plane strain) are like “tunnels” that 
continue indefinitely into the 3rd dimension, while 
voids in 3D are isotropic, finite in size, and fully 
contained within the surrounding material. Thus, 
it might be explained that the 2D model is actu-
ally a 3D model with an infinite spatial correlation 
length in the 3rd direction.

10 CONCLUSIONS

A 3D RFEM with “tied freedoms” has been used 
in this study to investigate the influence of poros-
ity and void size on homogenized elastic properties 
E and υ. It was observed that while porosity had 
a significant effect on both the mean and stand-
ard deviation of E and υ, the void size had little 
influence on the mean but more influence on the 
standard deviation. The study also investigated 
the RVE needed to capture the essential properties 
of a heterogeneous material containing voids. It 
was found that for the same porosity, the larger the 
size of the voids, the greater the size of the RVE. 
Finally, the paper presented favorable comparisons 
of the effective elastic properties in 3D with those 
obtained analytically and numerically by other 
investigators. In addition, the effective Young’s 
modulus of the anisotropic system depends on 
the direction of voids elongation. The stiffest case 
was observed when the direction of void elonga-
tion was in the same direction as the loading. The 
RFEM approach to homogenization described 
in this paper shows much promise, and opens 
the possibility of making probabilistic statements 
about engineering performance of heterogeneous 
geomaterials. The probabilistic aspect has not been 
discussed in the current paper, but remains an area 
of continued research.
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