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ABSTRACT: This paper combines the random field methodology with the upper and lower bound finite element limit analysis
algorithms (Sloan 1988, 1989) to study the bearing capacity of undrained clays with spatially varying shear strength. The results of
the Random Field Limit Analysis (RFLA) analyses are compared with existing results obtained by elastic-plastic Random Finite
Element (RFEM) analyses (Griffiths and Fenton 2001). It is shown that RFEM results are bounded by RFLA ones. The difference
(Nd) between the upper (Nu) and lower (NI) bound bearing capacities in random soils is shown to be a lognormally distributed
random variable. The effects of spatial correlation length and coefficient of variation of undrained strength on Nu and NI are also
studied.

RESUME : Ce document combine la méthode des champs aléatoires avec les limites inférieure et supérieure des algorithmes
d’analyse par éléments finis limites (Sloan 1988, 1989) pour étudier la capacité portante des argiles non drainées variant dans I’espace
avec la résistance au cisaillement. Les résultats de I’analyse de limiter le champ aléatoire (RFLA) des analyses sont comparés avec les
résultats actuels obtenus par élasto-plasticité des éléments finis (Random RFEM) analyses (Griffiths et Fenton, 2001). 1l est montré
que les résultats RFEM sont délimités par les RFLA. La différence (Ny) entre la tige (N,) et inférieure (N)) lié capacités portantes dans
les sols aléatoires se révele étre une variable aléatoire une distribution lognormale. Les effets de la longueur de corrélation spatiale et

coefficient de variation de la résistance non drainée sur N, et N| sont également étudiés.
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1 INTRODUCTION

Limit analysis has been used in geotechnical practice for
decades as a means of estimating the ultimate strength of
structures. Starting from early 80s (e.g., Sloan 1988, 1989),
Sloan and his colleagues combined the bound theorems with
finite element method and mathematical programming
techniques. The resulting methods inherit all the benefits of the
finite element approach and are applicable to a wide range of
problems involving arbitrary domain geometries, complex
loadings and heterogenous material properties. The Random
Finite Element Method (RFEM) (Fenton and Griffiths 2008)
combines elastoplastic finite elements and random field theory
in a Monte-Carlo framework. It has been proved to be able to
assess the reliability of a wide range of geotechnical problems
including settlement, seepage, consolidation, bearing capacity,
earth pressure and slope stability.

In this paper, we combines the finite element limit analysis
method developed by Sloan and his colleagues with random
field theory. The framework is very similar to RFEM, but three
components are combined together, namely, bound theorems,
finite element method and random field theory. The finite
element limit analysis utilizes recent developments of convex
optimization algorithms. The random field is generated by the
Local Averaging Subdivision method developed by Fenton and
Vanmarcke (1990). The method is then used to investigate the
statistical bounds of the bearing capacity of a smooth rigid strip
footing (plane strain) at the surface of an undrained clay soil
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with a shear strength C, (¢, =0) defined by a spatially varying
random field.

The study starts with a deterministic analysis which shows
the bearing capacity obtained by finite element method is
bounded by the ones obtained by limit analysis. By introducing
spatial variability, the robustness of finite element limit analysis
involving heterogenous soil properties is tested. It is shown that
the limit analyses always bounds the finite element analysis no
matter how heterogenous the soils are. Although the RFEM
always gives estimations lie between the lower and upper
bounds, RFLA gives quantitative error estimation which RFEM
cannot offer. The probabilistic analysis is then carried out. It is
shown that even the mean upper bound bearing capacity factors
are lower than the Prandtl solution in all cases. This confirms
that using mean soil strength with deterministic analysis or first
order probabilistic estimate will be on the unconservative side.
In addition, a worst case spatial correlation length is observed
where mean bearing capacity is minimized. This suggests that
the spatial variability of soil strength has to be taken into
account properly.

2 REVIEW ON FINITE ELEMENT LIMIT ANALYSIS

The lower and upper bound theorems of classical plasticity
theory is a powerful tool for analysing the stability of problems
in soil mechanics. The theory assumes a perfectly plastic soil
model with an associated flow rule. The lower bound theorem
states that any statically admissible stress field will furnish a
lower bound (or ‘safe’) estimate of the true limit load.
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maximize o
Ao =ap+p, M
f(6)<0

subject to

where A is an equilibrium matrix, ¢ is a vector containing
stresses, and the external load consists of a constant part p, and
a part proportional to a scalar parameter « , f defines the yield
conditions.

A statically admissible stress field is one which satisfies (a)
the stress boundary conditions, (b) equilibrium, and (c) the yield
condition (the stresses must lie inside or on the yield surface in
stress space).

The upper bound theorem states that the load (or the load
multiplier), determined by equating the internal power
dissipation to the power expended by the external loads in a
kinematically admissible velocity field, is not less than the
actual collapse load. Based on the duality between the upper
and lower bound methods, Krabbenholf et. al (2005) derived a
upper bound formulation in terms of stresses rather than
velocities and plastic multipliers. This allows for a much
simpler implementation and general nonlinear yield conditions
can be easily dealt with.

maximize o
B'o =ap+p, %)
f(6)<0

subject to

where B =ALN and A is the area of elements, N contains
the interpolation functions and L is defined as (for linear
triangular elements)

LT_[@/@x 0

0 8/dy 0/éx

a/ay]

It should be mentioned that matrix B in Eq. (2) can be
amended to include kinematically admissible discontinuities,
which have previously been shown to be very efficient (e.g.,
Sloan and Kleeman 1995).

Although both upper and lower bound methods formulated
as Egs. (1) and (2) with a Tresca failure criterion are ready to be
solved by public available second order cone programming
packages (e.g., SeDumi, Mosek), our in-house limit analysis
program (Lyamin and Sloan 2002a and 2002b) is used in this
study.

3 DETERMINISTIC ANALYSES

The bearing capacity analyses use an elastic-perfectly plastic
stress-strain law with a Tresca failure criterion. Triangular
constant stress—linear velocity element is used for both upper
and lower bound analysis in this study. A mesh is shown in Fig.
1 consisting of 4000 triangular elements. The strip footing has a
width of 10 elements. The bottom of the mesh while the sides
are allowed to move only in the vertical direction. Plastic stress
redistribution in RFEM analysis is accomplished using a
viscoplastic algorithm. For RFEM analysis, 8-node quadrilateral
elements and reduced Gaussian integration in both the stiffness
and stress redistribution parts of the algorithm (Smith and
Griffiths 2004). The mesh for RFEM analysis is not shown but
one can easily figure it out by treating four triangular elements
as a square 8-node quadrilateral element.

Rather than deal with the actual bearing capacity, this study
focuses on the dimensionless bearing capacity factor W,
defined as
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N, =L 3)

where ¢, is the bearing capacity and ¢, is the undrained shear
strength of the soil beneath the footing. For a homogeneous soil
with a constant undrained shear strength, N, is given by the
Prandtl solution, and equals 2+ or 5.14.

The lower bound and upper bound bearing capacity factor
are found to be 5.02 and 5.19 respectively. The bearing capacity
factor obtained by FEM analy ~ "5 5.12. Although the FEM
result lies in between the¢to B amdll unner hound bearing
capacity factors, it lacks error s Q q-Q/B ad.

Figure 1. Finite element mesh for limit analysis

4 PROBABILISTIC DESCRIPTIONS OF STRENGTH
PARAMETERS

In this study, the dimensionless shear strength parameter ¢, is
assumed to be a random variable characterized statistically by a
lognormal distribution (i.e. the logarithm of the property is
normally distributed). The lognormally distributed shear
strength ¢, has three parameters; the mean, k. , the standard
deviation 0., and the spatial correlation length 6. . The
variability of ¢, can conveniently be expressed by the
dimensionless coefficient of variation defined as

Vo="" 4)

The parameters of the normal distribution (of the logarithm
of ¢,) can be obtained from the standard deviation and mean of
¢, as follows:

O, =4I {1 +V} } ®)

o, =g, =307, ©)

A third parameter, the spatial correlation length 6., , will
also be considered in this study. Since the actual undrained
shear strength field is assumed to be lognormally distributed, its
logarithm yields an “underlying” normal distribution (or
Gaussian) field. The spatial correlation length is measured with
respect to Inc,. In particular, the spatial correlation length
(e, describes the distance over which the spatially random
values will tend to be significantly correlated in the underlying
Gaussian field. Thus, a large value of 0., will imply a
smoothly varying field, while a small value will imply a ragged
field.

In the current study, the spatial correlation length has been
non-dimensionalized by dividing it by the width of the footing
B and will be expressed in the form,
®, =0, /B %)

nc,
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5 RANDOM FINITE ELEMENT LIMIT ANALYSIS

The RFLA involves the generation and mapping of a random
field of properties onto a finite element mesh. Full account is
taken of local averaging and variance reduction over elements,
and an exponentially decaying (Markov) spatial correlation
function is incorporated. To be consistent with local averaging
procedure, four linear triangluar elements within a square area
were assigned a constant property in both lower and upper
bound analysis. It should be mentioned that random properties
are also assigned to the kinematically admissible discontinuities
involved in upper bound analysis. The analysis is repeated
numerous times using Monte-Carlo simulations. Each
realization of the Monte-Carlo process involves the same
underlying mean, standard deviation and spatial correlation
length of soil properties, however the spatial distribution of
properties varies from one realization to the next. Following a
suite of Monte-carlo simulations, the mean and coefficient of
variation of the bearing capacity factor can be easily estimated.

Figure 2 shows a typical deformed mesh at failure by lower
bound limit analysis with a superimposed greyscale
corresponding to ©., =1, in which lighter regions indicated
weaker soil and darker regions indicated stronger soil. In this
case the dark zones and the light zones are roughly the width of
the footing itself, and it appears that the weak (light) region near
the ground surface to the left of the footing has triggered a quite
non-symmetric failure mechanism.

Figure 3 compares RFLA and RFEM for ten typical
simulations. It can be seen from Figure 2 that the RFEM is
always bounded by the RFLA results.

Figure 2. Typical deformed mesh and greyscale at failure with
©, =1. (the darker zones indicate stronger soil)

6.0

5.5

Realization
Figure 3. Comparison of lower and upper bounds with finite

element analysis for ten typical simulations.

6 PROBABILISTIC ANALYSES

Analyses were performed using the input parameters in the
range 0.125<0_ <4 and 0.125<V, <4 For each combination
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of ©. and V., , 1000 realizations of the Monte Carlo process
were performed, and the estimated mean and standard deviation
of the resulting 1000 bearing capacity factors were computed.
Figure 4 shows how the estimated mean bearing capacity factor,
My, and My, , varies with @, and V., (The RFEM results were
omitted due to length limit). The plot confirms that, for low
values of V., My and My, tend to the deterministic Prandtl
value of 5.14. For higher values of V. , however, the mean
bearing capacity factors fall steeply, especially for lower values
of ©, What this implies from a design standpoint is that the
bearing capacity of a heterogeneous soil will on average be less
than the Prandtl solution that would be predicted assuming the
soil is homogeneous with its strength given by the mean value.
The influence of ©,is also pronounced with the greatest
reduction from the Prandtl solution being observed with values
around @, =0.5_ Figure 6 shows the influence of ©., and 7.,
on the estimated coefficient of variation of the bearing capacity
factor . The plots indicate that Ay, and Hx, are positively
correlated with both @, and V., . It is also interesting to note
that there are essential no difference between ¥y, and ¥y, .
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Figure 4. Estimated mean bearing capacity factors 4y, and H,,
verse the coefficient of variation of undrained shear strength
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Figure 7. Histogram and log-normal fit for the computed lower bound
bearing capacity factors when ©, =2 and V, =1
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Figure 8. Histogram and log-normal fit for the computed upper bound
bearing capacity factors when ©, =2 and V, =1
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Figure 9. Histogram and log-normal fit for the difference
between the computed lower and upper bound bearing capacity
factors when O, =2 and V, =1

Figures 7 and 8 show histograms of lower and upper bounds
of bearing capacity factors with best-fit lognormal distributions
for the case where ©.,=2 and V., =!. The Pearson's
coefficient of correlation between the lower and upper bounds
was found to be 0.9995, which implies a strong correlation.
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This is expected since the same random field was used for both
lower and upper bound analyses. The histogram of the
difference between the lower and upper bounds is plotted in
Figure 9, which is also well fitted by a lognormal distribution.
Although nothing is known in elementary probability theory
about the distribution of the difference of two lognormals,
Figure 9 suggests the difference is a lognormally distributed
random variable, at least when the two lognormals are strong
correlated.

7 CONCLUDING REMARKS

The paper has investigated the bearing capacity factor using
both lower and upper bound limit anlysis combined with
random field theory. The mean upper bound bearing capacity
factors are always lower than the Prandtl solution using mean
soil strength. The main conclusion is that by implicitly
assuming an infinite spatial correlation in traditional first order
probabilistic analysis (e.g., First Order Second Moment and
First Order Reliability Method) may overestimate the mean
bearing capacity factor. When performing probabilistic analysis
of bearing capacity of strip footings, spatial variability must be
properly considered to avoid unconservative designs.
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