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ABSTRACT

This paper presents a novel approach, referred to as Limit State Sampling, for
estimating failure probabilities of engineering structures. The majority of methods used
to evaluate failure probabilities involve a large number of simulations of the structural
model. In situations with low failure probability and numerically complex structural
models this can become a computationally unpractical task. The Limit State Sampling
approach is developed here with the intention of reducing the number of simulations
of the structural model in the process of evaluation of the failure probability. This is
performed by introducing a pseudo probabilistic density function with the purpose of
sampling around the failure limit state. Samples from the pseudo probability density
function are then used to construct a surrogate model of the structural behavior at
the failure limit state. Finally, the failure probability is estimated by utilizing the
efficiency of the surrogate model, with reduced computational expense. The novelty
of the approach comes from the formulation of the pseudo probability density function
and the application to the probabilistic analysis of structures.

INTRODUCTION

Structural failure is commonly characterized as an event of an unsafe or undesired
state of the structure. In reliability analysis of structures, the state of the structure is
expressed by a performance function g(X, λ), where X = [X1, ..., Xn]T ∈ Ω ⊂ Rn is
an n-dimensional vector of random structural variables in the variable space Ω, and λ is
a parameter defining the failure criterion (e.g., displacement limit of the structure). The
random vector X is associated with the joint probability density function (pdf ) X ∼
fX(x), where x is a value of X. The performance function, g(X, λ), plays a central role
in the reliability analysis of structures, because it separates the n-dimensional variable
space Ω into a safe domain g(X, λ) > 0, and an unsafe domain g(X, λ) ≤ 0 by the
hypersurface denoted as the limit state g(X, λ) = 0 (e.g., Hurtado & Alvarez, 2003).
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One of primary interests in reliability analysis of structures is the estimation of failure
probability. The probability of failure PF , can mathematically be expressed as:

PF = P (X ∈ F ) =

∫
g(x,λ)≤0

fX(x)dx =

∫
Rn

IF (x)fX(x)dx (1)

where F is the failure domain, IF is an indicator function such that IF (X) = 1 if
X ∈ F and IF (X) = 0 otherwise. The problem of calculating the PF is n-dimensional
as a result of the n-dimensionality of the integral in Equation 1.
In many practical applications numerical models are used to simulate the behavior of
the structure, resulting in an implicit formulation of the performance function. As a
result of the implicit formulation of the performance function, only pointwise evalu-
ations of the performance function are obtainable, g(x(i), λ) for samples x(i) ∼ fX(x)
from the variable space Ω.
In the majority of applications, the integral in Equation 1 is evaluated numerically
using one of the optimization (e.g., First Order Reliability Method) or sampling
methods (e.g., Monte Carlo, Importance Sampling) (e.g. Schuller et al., 2004). Among
various numerical methods, the Monte Carlo (MC) method (Nicholas & Ulam, 1949) is
extensively used as a result of its robustness and straightforward implementation (e.g.
Schuller et al., 2004). The MC method is based on drawing N independent identically
distributed (i.i.d.) samples x(i) ∼ fX(x); i = 1, ..., N and evaluating the performance
function g(x(i), λ) at these samples. The unbiased estimate of the failure probability
is calculated as the ratio of the number of failed samples over the total number of
samples:

P̂F =
1

N

N∑
i=1

IF (x(i)) (2)

The MC method provides the estimate of the failure probability with high accuracy for
an extensive range of problems in both low and high dimensional problems, provided
that fX(x) can be sampled (e.g. Koutsourelakis et al., 2004; Schuller et al., 2004).
After observing that the failure event is a Bernoulli random variable: IF (x(i)) = 1
if g(x(i), λ) ≤ 0 and IF (x(i)) = 0 otherwise, the coefficient of variation P̂F can

be calculated as CoV (P̂F ) =

√
(1− P̂F )/(P̂F ·N). After analyzing the CoV (P̂F ),

one can detect that the accuracy of P̂F is independent of the dimensionality of the
problem (Schuller et al., 2004) and that the coefficient of variation reduces as the
number of samples N increases. If P̂F is small, a large number of samples N is
necessary for P̂F to converge. In computational terms that equates to N simulations
of the structural model, required to evaluate the performance function. It is often
unpractical to perform large number of simulations of the structural model, as the
models can be computationally intensive. This observation characterizes the MC
method as inefficient when applied in problems with small P̂F and/or when complex
structural models are used to evaluate the performance function. This is often the case
in probabilistic analysis of structures.
This paper presents a novel approach in evaluating the PF called Limit State
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Sampling (LSS). The LSS method is developed with a purpose of concentrating the
computational efforts on studying the behavior of the structure at and around the
failure limit state. This is achieved by introducing a pseudo pdf as a function of
the performance function with a mode at the failure limit state. The novelty of the
approach comes from the formulation and implementation of the pseudo pdf. Detailed
presentation of the LSS approach is presented in the following section.

LIMIT STATE SAMPLING

As discussed in the previous section, estimation of PF in engineering structures
is frequently conducted by sampling methods. Among a wide range of sampling
methods, the MC method is predominantly used and it will be compared to the
proposed LSS approach. One of the main disadvantages of the MC method in
evaluating PF is that the failure states are generally observed and sampled in small
numbers, proportionally to PF . In practical terms this translates to the requirement
of a large number of samples, x(i) ∼ fX(x); i = 1, ..., N , and consequently a large
number of simulations of the structural model for the evaluation of the performance
function g(x(i), λ). In contrast, the idea behind the LSS approach is to concentrate
the computational efforts on studying the performance of the structure at and around
the failure limit state. This is achieved by introducing a pseudo pdf, which is a pdf
formulated on, usually the only information related to the failure of the structure
known prior to the simulation, the value of the performance function at the failure limit
state g(x, λ) = 0. Based on this information a pseudo pdf ϕ(g(x, λ)) is formulated
with a mode located at the failure limit state, as presented in Figure 1.
After sampling the pseudo pdf, a ”cloud” of pointwise evaluations of the performance
function around the failure hypersurface is obtained, g(k) ∼ ϕ(g(x, λ)); k = 1, ..., S.
Each sample from the pseudo pdf, g(k), corresponds to a certain combination of random
parameters, x(k). A set of pointwise evaluations of the performance function surround-
ing the failure hypersurface,

{(
g(k), x(k)

)
: x(k) ∈ Ω, g(k) = g(x(k), λ), k = 1, ..., S

}
,

can be used to formulate an approximation of the functional relationship between the
random parameters and performance function, referred to as surrogate model.
The surrogate model is built for the purpose of accurate and efficient evaluation of the

Figure 1: Limit State Sampling - one dimensional representation.
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performance function for a large number of samples, providing significant reduction
in computational time when compared to the actual structural model. The PF is
then estimated by the MC method or some of its derivatives, by sampling the joint
pdf and evaluating the peformance function by the surrogate model. Details on the
implementation of the LSS approach are presented in the following sections.
The approach is named Limit State Sampling because the method is not exclusively
related to the failure limit state, any limit state can be investigated by the proposed
approach as long as the pseudo pdf can be formulated and efficiently sampled.

Implementation of the LSS method. The LSS method is developed around the idea
of studying the performance of structures at the failure limit state by sampling the
pseudo pdf. In many practical situations, the performance function and consequently
the pseudo pdf are implicit functions of the random model variables. As a result of
the implicit formulation of the performance function, geometrical properties of the
pseudo pdf in the variable space and the normalizing constant are unknown prior to
the probabilistic analysis. These complexities in the formulation of the pseudo pdf
are avoided by employing the Metropolis Hastings (MH) algorithm to sample the
pseudo pdf. MH is one of the algorithms of the Markov Chain Monte Carlo (MCMC)
method (Hastings, 1970; Metropolis et al.,1953), and it is selected for its flexibility
in sampling a wide range of distributions and simplicity of implementation. MCMC
is a group of methods used for sampling a distribution of interest by constructing a
Markov Chain that has the distribution of interest as its limiting distribution. Markov
Chain is a stochastic process which defines a sequence (chain) of states of the process,
where the transition to the next state of the process is dependent only on the current
state. The changes in the states of the process are controlled by the transition kernel,
defining the particular transition probabilities and an initial state of the process. The
transition kernel in the MH algorithm is defined by a proposal distribution, which is a
pdf centered at the current state of the chain. A new state of the Markov chain is drawn
from the proposal pdf and accepted with probability α. The acceptance probability
α is a function of the proposal pdf and the distribution of interest at the current and
proposed state of the Markov chain (e.g., Gamerman & Lopes, 2006).
In the LSS approach the distribution of interest is the pseudo pdf. Drawing samples
from the pseudo pdf, g(k) ∼ ϕ(g(x, λ)); k = 1, ..., S, will provide an insight into the
behavior of the structure at the failure limit state as each sample, g(k), is associated with
a certain combination of random variables, x(k), in the variable space Ω. Sampling is
performed by the MH algorithm where the transition kernel is defined by a proposal
pdf, q. Proposal pdf is usually a multivariate normal or an uniform pdf centered at
the current state of the chain g(j−1). The proposal state of the Markov Chain, ĝ, is
generated from the pdf centered at the corresponding current state of the Markov
Chain in the variable space x̂ ∼ q(·|x(j−1)). After a corresponding proposal state in the
variable space x̂ is sampled, the performance function is evaluated in order to generate
ĝ = g(x̂, λ). The move from the current state to the proposed state is accepted with the
probability α, as presented in the following algorithm.
The pseudo pdf is formulated as a function of the performance function and various
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formulations are feasible, as long as they are able to provide samples around the
limit state. Some of the possible formulations are presented in Figure 2. Geometrical
properties of the pseudo pdf are controlled by the shape parameter a as presented
in Figure 2. The shape parameter controls the ”width” of the pseudo pdf, which can
affect the performance of the method. The optimal value of the shape parameter can be
selected by conducting a few short trial simulations of the algorithm.
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Figure 2: Several formulations of the pseudo pdf ; a shape coefficient, c normaliz-
ing constant.

Implementation of the MH algorithm in the LSS method:
1) Initialize the counter j = 1 and set the initial value x(0) and g(0).
2) Obtain a proposal state of the Markov Chain by sampling x̂ ∼ q(·|x(j−1)), and
evaluating the performance function, ĝ = g(x̂, λ).
3) Evaluate the acceptance probability of the move

α = min

(
1,

ϕ(ĝ)q(x(j−1)|x̂)

ϕ(g(j−1))q(x̂|x(j−1))

)
= min

(
1,

ϕ(g(x̂, λ))q(x(j−1)|x̂)

ϕ(g(x(j−1), λ))q(x̂|x(j−1))

)
4) Generate an independent uniform u ∼ U(0, 1) and if u ≤ α accept the move
g(j) = ĝ ; x(j) = x̂, otherwise reject the move g(j) = g(j−1) ; x(j) = x(j−1).
5) Update the iterator j = j + 1 and return to step 2 until desired number of
samples is drawn, or convergence is reached.

Evaluation of failure probability. Sampling of the pseudo pdf results in a set of
pointwise evaluations of the performance function surrounding the failure hypersur-
face:

{(
g(k), x(k)

)
: x(k) ∈ Ω, g(k) = g(x(k), λ), k = 1, ..., S

}
. Samples from the pseudo

pdf are used to generate a surrogate model of the performance function, g̃(X, λ),
by implementing interpolation or some of the regression or classification approaches
from the group of statistical learning methods (e.g., Hastie et al., 2001; Hurtado
& Alvarez, 2003). The indicator function, based on the surrogate model, has the
following formulation, ĨF (X) = 1 if g̃(X, λ) ≤ 0 and ĨF (X) = 0 otherwise. Once
the approximation model is formulated, PF can be estimated by implementing crude
MC method or some of its derivaties (e.g, Latin Hypercube Sampling) to sample
x(j) ∼ fX(x); j = 1, ..., K, while the performance function is efficiently evaluated
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by g̃(x(j), λ). The failure probability is estimated by the following equation:

P̂F =
1

K

K∑
j=1

ĨF (x(j)) (3)

The accuracy of the LSS method is controlled by the quality of the representation of
the failure hypersurface, which is dependent on the number and position of the samples
from the pseudo pdf, and the accuracy of the method approximating the performance
function. In order to have a good representation of the failure hypersurface it is impor-
tant to sample the pseudo pdf in the region of the variable space populated by samples
x(j) ∼ fX(x); j = 1, ..., K. In low dimensional problems this can be ensured by
focusing the MH algorithm to the region of the variable space defined by the following
limits: xmin = min(x(j)), xmax = max(x(j)). The sampling limits should be deter-
mined prior to sampling the pseudo pdf for the proposal states in the MH algorithm to
be generated from a subset of the variable space, {x ∈ Ωlim ⊂ Ω : xmin ≤ x ≤ xmax}.

PROBABILISTIC ANALYSIS OF A LATERALLY LOADED PILE USING LSS

An investigation of a pile response to lateral loading is essential in the design of
certain engineering structures (e.g., oil platforms, offshore wind turbine foundations).
In the case of offshore wind turbines, a single large diameter pile (i.e., monopile), is
commonly chosen as a foundation option (e.g., LORC, 2013).

Numerical pile-soil model. A numerical model, known as the p-y model (Matlock,
1970), is extensively used for the analysis of the pile-soil system. The p-y model
was developed by backcalculating a series of field tests (Matlock, 1970; Reese et al.,
1974) and it is currently in the recommended practice of several offshore wind turbine
design codes (e.g., DNV, 2010). The model presents an extension of Winkler‘s beam
on an elastic foundation (Winkler, 1867), where mechanical properties of springs are
modeled by nonlinear p-y curves. Detailed presentation of the p-y formulation can be
found in Matlock, (1970).

Laterally loaded pile with two soil layers. The performance of the LSS method
is examined using an example of a monopile offshore wind turbine foundation. The
monopile is L=30 m long, with a diameter of D=3.86 m and a pile wall thickness of
t=0.04 m. Pile material is steel with yield strength fy = 235.0 MPa, Young’s modulus
of E=2.1 · 105 MPa, and a Poisson’s ratio of ν=0.3. Material behavior of the pile is
assumed to be linear elastic.
The soil domain is divided into two 15-m, medium stiff clay, layers and discretized by
30 springs as presented in Figure 3. The springs are simulating the soil response with
material behavior defined by the p-y curves. Shear strength of clay, su, in the two layers
is considered to be random and independent between the layers, but homogeneous
within a single layer. Variability of shear strength is expected to significantly influence
the pile-soil response due to the formulation of p-y curves for clay, where shear
strength is directly related to the peak value of soil resistance (e.g., Matlock, 1970).
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The statistical properties of su are described by a lognormal distributions with an
equivalent normal mean of µsu1 = 25.0 kPa in layer 1 and µsu2 = 50.0 kPa in layer 2.
The coefficients of variation are equal for both layers CoV (su1) = CoV (su2) = 0.25
(e.g., Nadim, 2007). Additional parameters of the p-y curves are equal for both layers;
unit weight γ=18.0 kN/m3, empirical model parameter J=0.25, and the strain corre-
sponding to one half of the maximum principal stress difference y50=0.005. The pile
is loaded with a deterministic horizontal force of H = 10.0 MN and a moment of
M = 300.0 MNm at the sea bed level.

Figure 3: Laterally loaded pile with two soil layers.

The performance of the pile is classified as failure or safe by assessing plastification
limit of the pile, defined by the moment Mlim = fy ·I/(D/2) = 397.176 MNm, where
I is a bending moment of a hollow circular cross section. The performance function
has the following form:

g(su,Mlim) = g(su1, su2,Mlim) = Mlim −Mmax (4)

where su = [su1, su2]
T is a vector defining shear strengths in layer 1 and 2 respectively,

and Mmax is a maximum bending moment along the pile for a given realization of the
shear strength profile. Following the LSS procedure, the pseudo pdf has the following
formulation:

ϕ(g(su,Mlim)) = exp(−a · |g(su,Mlim)|) = exp(−a · |Mlim −Mmax|) (5)

where a is a shape parameter controlling the ”width” of the pseudo pdf around
the failure limit state. The pseudo pdf, defined in Equation 5, is sampled g(k) ∼
ϕ(g(su,Mlim)); k = 1, ..., S by the MH algorithm with a uniform proposal distribution
centered at the current state of the Markov Chain in the variable space, s(k−1)

u , with the
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”width” defined by the parameter h = [h1, h2[
T :

q(·|s(k−1)
u ) = U(s(k−1)

u − h, s(k−1)
u + h) (6)

After the corresponding proposal state in the variable space is drawn ŝu ∼ q(·|s(k−1)
u ),

the proposal state ĝ is generated by evaluating the performance function ĝ =
g(ŝu,Mlim). The value of the shape parameter and the selection of the proposal
distribution can be optimized so that the MH algorithm has good mixing properties
as discussed in previous sections. Optimal selection of the shape parameter a in the
pseudo pdf and the parameter h in the proposal pdf can significantly reduce the number
of samples S necessary to adequately cover the failure limit state in the variable space.
In Figure 4, S = 103 samples g(k) ∼ ϕ(g(su,Mlim)); k = 1, ..., S with the correspond-
ing s(k)u are presented. In Figure 4 (a), a scatter plot of simulation samples is presented
where red color is associated with failed samples while blue color is associated with
samples in the safe domain. It can be observed that the samples are distributed around
the failure limit, following the formulation of the pseudo pdf. In Figure 4 (b), the
value of the performance function with the number of samples is presented. It can be
observed that the MH sampling procedure provides samples in a narrow band around
the failure limit g(su,Mlim) = 0 as expected from the formulation of the pseudo pdf.
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Figure 4: Simulation results for a = 0.4, h1 = 0.5 and h2 = 2.

After locating the failure limit state by a cloud of samples as presented in Figure
4 (a), a surrogate model of the performance function can be built. In this example
the performance function is approximated by employing a k-Nearest Neighbor Clas-
sification (kNN) method from the group of statistical learning methods (Hastie et al.,
2001). In general, the task of approximating the performance can be considered as a
classification problem, if the samples in the failure domain are considered as one group
or class, and the samples in the safe domain as the second group or class. In the problem
of evaluating the PF , the conversion to a classification problem is natural, as we are
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only interested in the ratio of the samples in the failure domain over the total number
of samples. The classification model (e.g., kNN) is predicting the class of a sample
s(j)u ∼ f(su); j = 1, ..., K by utilizing the information obtained by sampling the pseudo
pdf. The kNN method predicts the class of the sample of interest, s(j)u , by locating and
performing statistical analysis on k-nearest neighbors around the sample of interest.
In this example, a formulation of the kNN algorithm where a class is predicted by
a majority vote among 4 nearest neighbors with equal weights on all neighbors, is
selected. After drawing K = 106 samples from f(su) and performing classification by
the kNN, the failure probability is estimated to be P̂FLSS

= 8.29 · 10−4.
The LSS approach is validated by performing a crude MC sampling on N = 5 · 105

samples, s(i)u ∼ f(su); i = 1, ..., N , to obtain a reasonably low coefficient of variation
of P̂F . Failure probability is estimated by the MC method to be P̂FMC

= 7.47 · 10−4

and it agrees well with the estimated of PF by the LSS method.
If it is noticed that the computational efforts necessary to perform the kNN classifica-
tion on K = 106 samples are usually on a magnitude of one simulation of a structural
model, the reduction in computational time of the LSS method when compared to the
crude MC is approximately N/S = 500 times. Since the formulation of the pseudo
pdf is independent of the formulation of the joint pdf, the reductions in computational
efforts are expected to be higher in problems with lower P̂F (e.g., 10−7,10−8).

CONCLUSION

Estimation of the failure probability of structures by sampling methods can be a
computationally challenging task if the failure probability is low and/or if the structural
model is computationally complex. The Limit State Sampling approach has shown a
potential of reducing the computational efforts in these situations by introducing a
concept of the pseudo probability density function. Samples from the pseudo proba-
bility density function can be used to build an approximate model of the performance
function around the failure limit, referred to as surrogate model. The surrogate model
can be implemented by performing interpolation, regression or classification methods
on samples from the pseudo probability density function to predict the structural
performance at the failure limit. The surrogate model is selected in a such way that
it requires significantly lower computational expense when compared to the original
structural model.
Special attention has to be given to the formulation and sampling efficiency of the
pseudo probability density function, since the quality and the accuracy of the surrogate
models depends on the samples from the pseudo probability density function. The
Limit State Sampling approach has shown significant reduction in computational
efforts when applied in low-dimensional problems. Future research will be conducted
on the applicability of the approach in higher dimensional problems, formulation of
the pseudo probability density function, and selection of the methods for building the
surrogate model.
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