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Abstract. The purpose of the study is to investigate the influence of porosity and void size on the 

effective permeability of carbonate reservoirs. A random finite element method (RFEM) has been 

developed involving an ideal block of material leading to direct evaluation of the effective 

permeability. The approach involves a combination of finite element analysis and random field 

theory. Following Monte-Carlo simulations, the mean and standard deviation of the effective 

permeability can be estimated leading to probabilistic conclusions about flow characteristics. 

The influence of block size and representative volume elements (RVE) are also discussed and a 

comparison is made between the effective permeability of isotropic and anisotropic reservoirs. 

 

Keywords: Random finite element method (RFEM), Representative volume element (RVE), 

Effective permeability, Homogenization  

 

1. INTRODUCTION 

 

 Over millions of years, various kinds of microscopic creatures have died, piled up at the 

bottom of the sea and become part of the sediment that eventually turns into shale. The heat from 

deep inside the earth then turns their bodies into hydrocarbons, i.e. oil and natural gas. With the 

intense pressure of the earth, the oil and gas are squeezed out of the shale and gather together and 
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may literally drift. Finally, they may become trapped in rock such as sandstone or limestone. 

Limestone is a kind of sedimentary rock, derived from the composition of plants and animals that 

secrete calcium to form their skeletons; thus limestone is a type of rock made up mainly of 

calcium carbonate. Limestone is a rock that has a large economic value; for example, it is used as 

gravel for construction. More importantly, it is a reservoir of petroleum. One-third to half of the 

amount of oil comes from these limestone and dolomite. Despite the hard and solid macroscopic 

appearance of sandstone or limestone, it is in fact porous, hence, trapping fluids such as oil or 

natural gas.  

 Porosity and permeability are properties of any rock or loose sediment. Porosity is a 

normalized measure of the volume of void spaces where the oil or gas may be held; thus the 

rock’s ability to hold a fluid. Permeability is a characteristic that determines the ease with which 

oil and gas can flow through the rock. The permeability of a rock refers to the rock’s resistance to 

fluid flow. A rock is said to have “low permeability” when it is harder for fluid to pass through it. 

If fluid passes through the rock easily, it is said that the rock has “high permeability”. The 

movement of petroleum is similar to the movement of groundwater. In the form of crude oil 

and/or natural gas, petroleum moves through the spaces within the rock and gathers in region 

with higher porosity. Since natural gas and oil are lighter than water, they separate themselves 

from water, then rise and accumulate above the water. The movement of the gas and oil stops 

when the gas and oil reach a non-permeable layer. Thus, porosity and permeability are absolutely 

necessary for good-quality production of oil or gas. 

 Even if the expected porosity of the site can be conservatively estimated, void locations may 

be unknown. In addition, two sites with the same porosity may have quite different void sizes, 

where one has numerous small voids and the other fewer large voids. To facilitate the modeling 

of boundary value problems, the goal of this work is to determine the effective properties of such 

materials. In this paper the property of interest is the permeability and the effective properties are 

defined as those properties that would have led to the same response if the material had been 

homogeneous. The behavior of a heterogeneous material with a micro-structure, consisting of 

varying properties, has been studied by a number of investigators using experimental, analytical 

and numerical methods. The macro-scale of a homogeneous material, which has a heterogeneous 

micro-structure on the micro-scale level, is investigated in order to address the issue of how the 

microstructure affects the material on the macro-scale. The goal of homogenization is to obtain 

the overall (effective or equivalent) properties to represent the macro-scale properties. An 

important objective of micro-mechanics is to link mechanical relations going from finer to 

coarser length scales. A useful concept in this homogenization process is the representative 

volume element or RVE. An RVE is an element of the heterogeneous material that is large 

enough to capture the effective properties in a reproducible way. From an efficient modeling 

point of view, the smallest RVE that can achieve this is of particular interest (e.g. Liu 2005). 

 Homogenization approaches based on theoretical and numerical methods have been 

developed for assessing RVE size. Several reviews have been proposed for describing different 

homogenization approaches (e.g., Klusemann and Svendsen, 2009; Mercier et al., 2012). 

Bourgeat (1984) considered the behavior of two-phase flow in a periodically fractured porous 

medium. Saez el at. (1989) proposed macroscopic equations to the processes of one and two 

phase flow though heterogeneous porous media. The Self-Consistent approach (Pozdniakov and 

Tsang, 2004) involved estimating the effective hydraulic conductivity of a heterogeneous 

medium and was applied to a fractured porous material. Moreover, there have been several 

theoretical approaches developed to assess effective permeability (e.g., Hashin and Shtrikman, 

1963; Ostoja-Starzewski et al., 2007; Pouya and Vu, 2012). 
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 Numerical methods of homogenization have been used to validate some of the theoretical 

approaches. Holden and Lia (1992), for example, proposed an estimator for an effective 

permeability tensor based on a one-phase incompressible flow. The estimator worked for all 

kinds of heterogeneous reservoirs. Waki et al. (2005) considered the magnetic interaction 

between inclusions to estimate the effective permeability of magnetic composite materials. Held 

el at. (2005) presented numerical results of the effective flow and transport parameters in 

heterogeneous formations. Szymkiewicz (2005) presented an approach to calculate the effective 

conductivity of a heterogeneous soil for periodic media with inclusions of various shapes. Muc 

and Barski (2008) presented an introduction on the prediction of the effective permeability. 

Popov et al. (2008) applied the Stokes-Brinkman equation as a fine-scale model for flow in 

vuggy, fractured karst reservoirs. Barski and Muc (2011) considered the possibility of theoretical 

predictions of effective properties in 2D and 3D. Some of these numerical methods of 

homogenization were compared with the theoretical results. 

 Several different approaches have been used in the past for studying the porosity-

permeability relationships in various reservoir rocks. The porosity and pore size distribution are 

both important factors in determining fluid flow characteristics through porous media (Kate and 

Gokhale, 2006) and there are various approaches for estimating pore size distribution. For 

example, Jiru et al. (2010) considered the pore size distribution of rocks and soils with a scanning 

electron microscope and Abedini et al. (2011) proposed a statistical approach to the pore size 

distribution with reservoir rock. The Lattice Boltzmann method (LBM) is a versatile method for 

simulating flow in porous media. Direct LB simulation on micro scale 3D image data offers a 

potential for understanding fluid flow processes in a material with complex microstructure (e.g. 

White et al. 2006). Ramtad et al. (2011) recently proposed a study of relative permeability 

functions derived from two-phase Lattice Boltzmann simulations on X-ray microtomography 

pore space images of sandstone. Many theoretical and numerical studies of the LBM are 

becoming an accepted approach in the fluid flow of porous material. (e.g., Bosl et al., 1998; Guo 

and Zhao, 2002; Zhang, 2011 and Grucelski and Pozorsky, 2012). Nuclear Magnetic Resonance 

(NMR) imaging is an advanced approach to imaging pore space in a saturated rock with a nuclear 

magnetic moment. A limitation of the NMR is that if the porosity is not very large, the amount of 

water present in a saturated porous rock is small, which results in weak signal intensity. (Edie et 

al., 2000-11). Hidajat et al. (2001) considered the permeability of spatially correlated porous 

media computed by the LBM and the formation factors of  generated porous media is solved by 

Laplace’s equation. There are studies relating to the characterization of fluid flow in porous 

media by NMR approaches. (e.g., Liaw et al., 1996; Kimmich, 2001; Sørland et al. 2007; Jin et 

al. 2009). The X-ray computed tomography (Micro-CT) creates a representation of rock 

microstructure. The approach involves three main processes; 3D imaging at the required 

resolution, segmention of the 3D imaging and computer simulations of fluid flow for 

permeability (Sharp et al., 2009). The Micro-CT has become an important technique for 

characterizing porous materials. (See also Zhang et al. 2009; Kalem, 2012). 

 Although there have been many theoretical and numerical approaches, the results are rather 

unsatisfactory because of the uncertainties in the characterization of the geometry changing from 

place to place, horizontally and vertically. The RFEM is an alternative approach for modeling the 

influence of inclusions and voids in geomaterials. The method can be used to estimate the 

effective properties of materials with randomly distributed voids. The RFEM, first developed by 

Griffiths and Fenton (1993) and Fenton and Griffiths (1993), has been applied in numerous 

studies of geotechnical engineering (e.g. Griffiths and Fenton 2007, Fenton and Griffiths 2008). 

In this research, conventional finite element analysis (e.g. Smith et al. 2014) was combined with 
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random field generation (e.g. Fenton and Vanmarcke 1990, Fenton and Griffiths 2008) and 

Monte-Carlo simulations to develop output statistics of quantities such as effective permeability. 

Through control of the spatial correlation length, both the volume and size of voids could be 

considered by the RFEM. Paiboon et al. (2013) recently proposed the RFEM in the 

homogenization of geomaterials containing random voids. The first part of the work investigates 

the statistics of the effective permeability in 3D as a function of porosity and void size, and 

compares the results with other investigators. Effective permeability with an anisotropic void 

structure is also considered. The second part of the work investigates the size of the RVE for 

different input void properties. Of particular interest here is the number of Monte-Carlo 

simulations needed for stable results as a function of the size of the RVE under consideration. 

  

2. FINITE ELEMENT MODEL 

 

 The random finite element method (RFEM) combines finite element methods and random 

field theory. In this work, finite element analysis of a 3D cube of elastic material using 8 node 

hexahedron elements is combined with random field generation and Monte-Carlo simulations to 

model a porous material containing voids. The goal is to develop output statistics of the effective 

permeability for different void sizes and porosity. Examples of the model are shown in Figure 1. 

 

 
 

Figure 1 The 3D finite element model of ideal cubic blocks with mesh100×100×100 : (a) the 

material, (b) the voids, and (c) the combined model which show dark and light 

regions indicating voids and material respectively 

 

 The finite element mesh for this study consists of a cubic block of material of side length 

1L   modeled by 100×100×100  8-node cubic elements of side length 0.01x y z      . Any 

consistent system of units could be combined with the dimensions and properties described in 

this work. Each node has one degree of freedom (the fluid potential at that position). A constant 

fixed potential of one and zero are fixed on the back right and front left faces respectively. All 

other faces are considered impermeable. No internal sources or sinks are considered. Figure 2 

shows a cubic element test of the permeability block model with random voids. The finite 

element method can then solve the equation to obtain the fluid potentials across the ideal 

permeability block. Because a mesh such as this involves rather large global matrices, the 

equation solution in the runs described in this work will be performed using a preconditioned 

conjugate gradient (PCG) technique with element-by-element products as described by Smith et 

(b) (a) (c) 
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al. (2014) which avoids entirely the need to assemble the global permeability matrix. Once the 

flow rates Q  has been calculated, the effective permeability K , is given by 

 

 L

L L

Y Q
K

X Z H

  
   

  
    

 

(1) 

 

where H  is the head difference between the upstream and downstream faces (=1), and LX , LY  

and LZ  are the side lengths of the permeability block (all =1). 

 
Figure 2 A “cubic element test” of the permeability block model with random voids 

portrayed by the dark and grey elements represent, respectively, voids and intact 

permeability material. A constant head difference ( 1H  ) is applied to the back 

right and front left boundary. The top, bottom, front right and back left boundaries 

are impermeable. 

 

3 CONTROLLING THE VOID SIZE 

 

 The random field generator in the RFEM model known as the Local Average Subdivision 

method (LAS) (Fenton and Vanmarcke 1990) is used to model spatially varying void properties. 

The targeted mean of porosity n  is based on the standard normal distribution shown in Figure 3, 

and the spatial correlation length   is used to control the void size. A single value of the random 

variable Z  is initially assigned to each element of the finite element mesh. Once the standard 

normal random field values have been assigned to the mesh, cumulative distribution tables 

(suitably digitized in the software) are then used to estimate the value of the standard normal 

variable 2nz , for which 

 

  

   2 2n nz z n    (2) 

 

where   is the cumulative normal distribution function, and n  is the target porosity.  
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Figure 3 Target porosity area in 3D standard normal distribution of random field  

 

 Thereafter, any element assigned a random field value in the range 2nZ z  is treated as 

intact material with a permeability given by 0K , whereas any element where 2nZ z  (shaded 

area in Figure 3) is treated as a void element with an assigned permeability of '

0 100K   (100 

times larger than the surrounding intact material). The void size in this study is controlled by the 

random field spatial correlation length   which incorporates a “Markov” spatial correlation 

structure as follows  

 

 

 ( ) exp 2      (3) 

 

where   = the correlation coefficient;   = absolute distance between points in the field; and   

= scale of fluctuation or spatial correlation length.  Larger values of   will lead to larger voids 

and vice versa. 

 

 The Markov equation delivers a spatial correlation that reduces exponentially with distance. 

For example, according to Equation 3,   , the correlation coefficient 0.13  . In the current 

study,   varies from 0 to 1. Points close together are strongly correlated and therefore likely to 

belong to the same void. In the limiting case of 0  , the random field value changes rapidly 

from point to point, delivering numerous small voids. At the other extreme as   , the 

random field value on each simulation becomes increasingly uniform, with some simulations 

representing entirely intact material and other consisting entirely of voids. For example as shown 

in Figure 5, the models show typical simulations of different void clustering for two materials 

with the same mean porosity. In this study, the spatial correlation length is expressed in 

dimensionless form.  

 

 
L


   (4) 

 

where L  is the side length of the permeability block ( 1L  ) 
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Figure 5 Typical simulations showing generation of voids at low (a) and high (b) spatial 

correlation lengths   (mesh 100×100×100  and 0.2n   in both cases) 

 

4 MONTE-CARLO SIMULATIONS 
 

 A “Monte-Carlo” process is combined with the RFEM and repeated until stable output 

statistics are achieved. The primary outputs from each analysis is the total flow rate Q . Although 

each simulation uses the same   and n , the spatial location of the voids will be different in each 

simulation. Thus, in some cases, the voids may include few large volume voids, while the others 

could include many frequent smaller volume voids. Following each simulation, the computed 

flow rate Q  is converted into “effective” values of permeability as shown in Equation 1. Each 

effective permeability value is then normalized as 0/K K  by dividing by the permeability of 

material 0K . In the current study, following some numerical experiments, as shown in Figure 6, it 

was decided that 1000 simulations for each parametric combination would deliver reasonably 

repeatable results. 

  
 

Figure 6  Sensitivity of the mean effective permeability as a function of the number of 

simulations for 0.2n   and 1.0  
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5 RESULTS OF RFEM 
 

 Following each set of 1000 Monte-Carlo simulations, the mean and standard deviation of the 

normalized effective permeability were computed for a range of parametric variations of n  and 

 , with results shown in Figures 7 and 8, respectively. 

 

 
 

Figure 7 
0/K K  vs. n  for  = 0.1, 0.5 and 1.0 

 

  

Figure 8 
0/K K  vs. n  for  = 0.1, 0.5 and 1.0 

 

 It can be noted from Figure 7 that the mean normalized effective permeability increases 

towards one hundred with increasing porosity n  and that   does not have much influence. 

Figure 8 shows that   has more influence on the standard deviation of the effective permeability 

0K K . The standard deviation values as 0n  (intact permeability material) and 1n  (void 

material) show very low variance since almost all simulations are the same and model essentially 

uniform material. The standard deviation was observed to reach a maximum value at around 

0.7n  . 
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6 REPRESENTATIVE VOLUME ELEMENT (RVE) 
 

 An RVE is an element of the heterogenous material is large enough to represent the 

microstructure but small enough to achieve efficient computational modeling. The RVE study 

considered four cases as shown in the results of Figure 10. Figure 9 shows a sequence of five 

blocks contained within and including the largest block of dimensions 1.0 1.0 1.0  . The 

different block sizes will indicate the optimal RVE for the given input conditions. When the RVE 

is “big enough”, it was expected that the standard deviation of the effective permeability would 

be reduced and its mean essentially constant, as shown in Figures 10(a) and 10(b). The statistical 

results of each set of Monte-Carlo simulations are shown in Figure 9 

 
Figure 9  Different block sizes for computing the effective permeability of a material with 

random voids 
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Figure 10 Effective permeability (a) mean and (b) standard deviation following 1000 

simulations for different block sizes 

  

 The mean values plotted in Figure 10(a) are fairly constant for different block sizes, however 

the higher values of   seem to require a larger RVE before they become constant. The standard 

deviation shown in Figure 10(b) displays more variability with block size and tends to zero as the 

blocks get bigger, but at a slower rate for higher values of  . In both Figures 10, it is noted that 

the influence of   on block statistics is greater than that of n . The RVE depends more on spatial 

correlation length (void size) than porosity. 

 

7 COMPUTER RESOURCES AND TIMINGS 
 

 A desktop with an Inter Core i7-2600 CPU @ 3.4 Ghz Ram: 8 GB was used to obtain all of 

the results presented in this research. Figure 11 shows the CPU time used for different block 

sizes. The results show that the CPU time depends on porosity and spatial correlation length. At a 

100 100 100   mesh, the CPU time for the low porosity and high spatial correlation length case 

was about 480 hours, while for a high porosity and low spatial correlation length it was more like 

150 hours. The reason for this discrepancy is thought to be the slower convergence observed in 

the iterative solvers when there is more variability present in the permeability matrices with low 

void content.  

 
 

Figure 11 CPU timing for different block sizes with 1000 simulations 

0

10

20

30

40

50

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0


K

/K
o

 

Block dimension 

Θ = 0.1, n = 0.2 

Θ = 1.0, n = 0.2 

Θ = 0.1, n = 0.7 

Θ = 1.0, n = 0.7 

0

100

200

300

400

500

0 10 20 30 40 50 60 70 80 90 100

C
P

U
_
ti

m
e 

(h
o
u

rs
)  

Number of elements per side 

Θ = 0.1, n = 0.2 

Θ = 0.1, n = 0.7 

Θ = 1.0, n = 0.2 

Θ = 1.0, n = 0.7 

(b) 



11 

 

8 COMPARISON OF 3D ISOTROPIC AND ANISOTROPIC MODELS 
 

 In this section, 3D anisotropic models are considered for comparison with isotropic models. 

In the 3D isotropic case, the spatial correlation length of voids is set as 0.1x y z    . 

Figure 12 shows how voids are elongated in the anisotropic direction. From Figure 13, it is seen 

that the effective permeability is greatest when voids are elongated in the direction of flow. Thus 

the effective permeability is greatest when 
y x z    

 

 

 (a) (b) 

 (c)  (d)  

 

 

Figure 12 Typical simulations showing the generation of voids: (a) anisotropic model with 

1x  , (c) anisotropic model with 1y   (c) anisotropic model with 1z   and 

(d) isotropic model 
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Figure 13 Comparison of the effective permeability obtained from 3D RFEM models (flow 

in the y direction) 

 

 At the same porosity, the mean effective permeability of 3D anisotropic with high 
y  is 

higher than results obtained from 3D isotropic and 3D anisotropic with high x  and z . The 

results of 3D anisotropic with high x  and z  are the same but lower than 3D isotropic since the 

void shapes of 3D anisotropic with high x  and z  tend to be arranged perpendicularly to the 

flow direction. 

 

9 COMPARING WITH 3D RFEM AND OTHER RESULTS 
 

 The theoretical results based on the effective medium theory and the experimental 

measurements of Doyen (1988) are compared in Figure 14, with the results from the current 

study using 0.1 . The theory is consistent with Kozeny-Carman formulas to calculate the 

permeability of Fontainebleau sandstone. The experiment test of sandstone was prepared from 

cores with porosity ranging from 5 to 22%.  The definition of the effective permeability used in 

this study is defined in the classical geotechnical sense as the effective hydraulic conductivity 

with units of length/time. Therefore, in order to examine the influences of voids on an effective 

permeability analysis, the current results will be converted from the effective hydraulic 

conductivity to effective permeability, using a conversion formula based on the Carlile (Hively 

1986) as follows 

 

 

( )k K K
g






 

(5) 

 

where k  is permeability (md), K  is hydraulic conductivity (cm/s),   is the dynamic viscosity of 

the fluid (0.0032 g/cm/s),   is the density of the fluid (1 g/cm
3
), g  is the acceleration due to 

gravity (980 cm/s
2
) and the conversion unit from permeability (cm

2
) to the millidarcy (md) 

120.1013x10 . The hydraulic conductivity ( K ) value of sandstone found in nature is given by 
610
 cm/s (Bear 1972). 
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 In general, the permeability of sandstone ranges from 1 to 10000 md; therefore, any element 

assigned a random field value in the range 
2nZ z  is treated as intact material a permeability 

with 0 1K  , while any element where 
2nZ z  is treated as a void element with an assigned 

permeability of '

0 10,000K   (10000 times larger than the surrounding intact material) instead of 

'

0 100K  . Following 1000 simulations, the normalized 3D RFEM results with the void element 

assigned '

0 10,000K   were computed for a range of variations of n  = 0 to 0.3 and 0.1 . 

Thereafter, the results are converted to effective permeability (md) using Equation 5 for 

comparison with theoretical and experimental measurements as shown in Figure 14. From Figure 

14, it can be observed that the current method gives similar values of the effective permeability to 

those given by the theoretical and experimental methods for all values of n . 

 
 

Figure 14  Comparison of the effective permeability obtained from 3D RFEM and the 

permeability of Fontainebleau Sandstone as a function of porosity. The solid 

circles represent the experimental measurements. The open circles represent the 

predicted values, based on the effective medium approximation (Doyen 1988). 

The open squares are from RFEM 

 

 The current results from Figure 14 are also compared with the site data of limestone and 

dolostone reservoirs from the Madison Formation (Ehrenberg el at., 2006). Follow Equation 5 

based on the hydraulic conductivity ( K ) value of limestone and dolostone found in nature = 
810
 

cm/s (Bear 1972), it can be observed that the current method gives similar values of the effective 

permeability to those given by the site data for all values of n , as shown in Figure 15. 
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Figure 15 Comparison of the effective permeability obtained from 3D RFEM and the 

permeability from the Madison Formation as a function of porosity: (A) 

Limestones and (B) Dolostones. (Ehrenberg el at., 2006). The open squares are 

from RFEM 

  

10 INFLUENCE OF VOID ELEMENT ON EFFECTIVE PERMEABILITY 

 

 There are only two different materials modeled in the finite element analysis. Each void is 

modeled explicitly as a material with significant higher permeability than the intact material 

0 1K  . As can be seen in Figure 16, for the case when 0.2n  , the results show a small influence 

due to the selected permeability of void elements. In the current work, a void permeability which 

is one hundred times larger than the intact material gives reasonable (and stable) results. It can be 

noted that a limiting value of permeability of void elements for numerical stability is equal to 

about 191 10  for the software presented in this research.  

 
 

Figure 16 Influence of void element permeability on the normalized mean effective 

permeability. ( void element* /K K K ) 
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 Following each set of 1000 Monte-Carlo simulations, the mean of the normalized effective 

permeability were computed for a range of parametric variations of n  and void elementK  , with 

results shown in Figures 17. It can be noted that the mean normalized effective permeability 

increases towards one with increasing porosity n  and that 
void elementK  has little influence. 

 

 
 

Figure 17 *K  vs. n  for 
void element100 1 19K E    

11 CONCLUDING REMARKS 

 

 The random finite element method (RFEM) shows promise as a powerful alternative 

approach for modeling the mechanical influence of inclusions and voids in geomaterials. The 

RFEM together with Monte-Carlo simulations has been used in this study to investigate the 

influence of porosity and void size on the effective permeability of geomaterials containing 

random voids. The voids were not restricted to being simple shapes as in some of the theoretical 

methods, and the user could control the volume and size of inclusions through changes to the 

spatial correlation length. It was observed that while porosity had a significant effect on the 

effective permeability, the void size was less important. Anisotropic void structure was also 

investigated. It found that the effective permeability depended more on the direction of elongated 

voids than porosity. When the flow moved from the front left to the back right of the block test, 

the mean effective permeability had higher than the other directions of elongated voids. The 

study also investigated the RVE needed to capture the essential properties of a heterogeneous 

material containing voids. It was found that for the same porosity, the larger the size of the voids, 

the greater the size of the RVE. Finally, the paper presented favorable comparisons of the 

effective permeability in 3D with theoretical result and experimental measurements obtained by 

other investigators. 
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