
1 INTRODUCTION 

Landslide risk assessment involves the probability of 
failure and the consequences of failure (e.g. Chris-
tian 2004; Ang & Tang 2007; Fenton & Griffiths 
2008). The probability of failure (pf) can be estimat-
ed from engineering analysis but the consequences 
of failure are site-specific (e.g. loss of life, econom-
ics etc.). As shown by the two slopes in Figure 1, 
both cases have failed, but the consequences are 
clearly different. The deeper failure mechanism can 
be assumed to be more serious, because a greater 
volume of soil is involved. 

Soil shear strength properties can vary significant-
ly from point to point (e.g. Lacasse et al. 2013) and 
the Random Finite Element Method (RFEM) offers a 
systematic way of accounting for this kind of spatial 
variability. The RFEM, which combines finite ele-
ments with random fields generated to account for 
spatial variation, has been applied successfully to 
slope reliability analysis (Griffiths & Fenton 2000, 
2004) and is now widely used by several groups. 
RFEM not only estimates the value of   but also 
delivers useful visualisations of the failure mecha-
nism and displacement vectors. A significant ad-
vantage of RFEM is that it allows failure mecha-

nisms to develop naturally through soil masses by 
following the path of least resistance.   

Following the work of Fenton et al. (2013) in 
which the focus was on the probability of failure, 
this paper investigated the influence of the slope an-
gle on the location of the critical failure mechanism 
and further on the probability of failure of the un-
drained slopes at different correlation length and co-
efficient of variation of undrained shear strength. 

 The geometry and input parameters of a test 

slope of undrained clay are shown in Figure 2. The 

boundary conditions are given as rollers on the left 

and right vertical boundaries and full fixity at the 

base. The undrained shear strength, cu, has been non-

dimensionalised as C = cu /(sat H) and is assumed to 

be a spatial random variable characterized by a 

lognormal distribution defined by a mean (C), a 

standard deviation (C) and a spatial correlation 

length lnC. 
 

 
 

Figure 1. Shallow and deep failure mechanisms in a stratified 
soil. Both cases have failed, but the consequences are clearly 
different.  
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ABSTRACT: Since the charts of Taylor, it has been well known that the location of the critical failure mech-
anism in a homogeneous undrained clay slope goes either deep (tangent to a firm base) or shallow (through 
the toe) depending on whether the slope angle is, respectively, less than or greater than about 53

o
. When 

slopes are made up of variable soils however, these expectations no longer hold true for all cases. In this pa-
per, the influence of random soil strength and slope angle on the location of the critical failure mechanism and 
probability of failure is examined using the random finite element method (RFEM). It is found following 
Monte-Carlo simulation, that there exists a critical value of slope angle above which it would be 
unconservative to assume high spatial correlation length and below which it would be conservative to assume 
high spatial correlation length. For  > 48

o
, both correlation length and slope angle have no influence on the 

proportion of toe failures. For slope angle lying between 20
o
 and 40

o
, slopes that have higher correlation 

length give lower proportion of toe failures. Research into the critical mechanism location forms part of a 
broader study of slope failure risk, in which the consequences of failure are assumed to be more serious in a 
deep failure, because a greater volume of soil is affected. 



H

DH

Input parameters

fu = 0, sat , 

Cu , Cu , lnCu

2.5 H

 1.5 H

D = 1.5

H = 10 m

 
 

Figure 2. Geometry and input parameters for the test slope. 

2 BRIEF INTRODUCTION TO THE RFEM 

The lognormal distribution guarantees that all the 
random variables are positive and benefits from a 
simple transformation to the classical normal 
(Gaussian) distribution. It has been used and advo-
cated by many researchers as a reasonable model for 
soil properties (e.g. Lacasse et al. 2013). The dimen-
sionless coefficient of variation VC, given by 

C

C
CV




                                 (1) 

is a useful guide to the dispersion of the distribution 
about the mean.                                                               

In addition to C, C (and VC), the spatial correla-
tion length can be included to describe the correla-
tion between random variables at two spatial loca-
tions. The correlation length denotes the distance 
over which random values tend to be correlated. In 
the interests of generality, the correlation length has 
been non-dimensionlised by dividing it by the slope 
height (see Figure 1) as follows: 

HC /ln                             (2) 

It has been suggested that the typical range of VC for 
undrained shear strength lies between 0.05 and 0.5 
(e.g. Lacasse et al. 2013). The spatial correlation 
length is assumed isotropic throughout this paper 
and soil anisotropy is not considered (e.g. Zhu and 
Zhang, 2013). An exponential decaying autocorrela-
tion function of the following form is used: 

)/2exp( lnC                         (3) 

where  is correlation coefficient;  is absolute dis-
tance between two points in a random field. The cor-
relation function is merely a way of representing 
field observations where soil samples taken close to-
gether are more likely to have similar properties than 
if they are far apart. 

Parameters such as the mean, variance and coeffi-
cient of variation at the point level are hard if not 
impossible to measure in practice. They represent the 
inherent variability of soil properties which can be 
corrected through local averaging to take account of 
sample size. In the context of RFEM, each finite el-
ement within each simulation of the Monte-Carlo 
process is assigned a constant soil property. The 
sample is represented by the size of finite element. If 
the distribution is normal, local averaging reduces 

the variance but the mean is unaffected. If a lognor-
mal distribution is assumed, both the mean and the 
variance are reduced by local averaging. Adjustment 
to the statistics by local averaging should be imple-
mented before each finite element analysis takes 
place. 

The slope stability analyses use an elastic-
perfectly plastic stress-strain law with a Mohr-
Coulomb failure criterion. It involves applying gravi-
ty loading and monitoring the stresses at all the 
Gauss points. If the Mohr-Coulomb criterion at a 
Gauss point is violated, the algorithm will try to re-
distribute the stress to neighboring elements that still 
have reserves of shear strength. This is an iterative 
process that continues until both the Mohr-Coulomb 
criterion and the global equilibrium are satisfied at 
all Gauss points. In this study, failure is said to have 
occurred if the algorithm is unable to satisfy these 
criteria within an iteration ceiling (typically set to 
500). Following a sufficient number of Monte-Carlo 
simulations, the pf is obtained as the proportion of 
the total number of simulations that required 500 it-
erations or more. 

In this paper, results of RFEM analyses are pre-
sented, demonstrating the influence of slope angle on 
the pf and failure mechanisms of slopes in random 
undrained clay. A range of non-dimensionlised spa-
tial correlation lengths and different VC values are al-
so considered. 2000 simulations are determined to be 
sufficient to give reliable and reproducible estimates 
of probability of failure in each analysis case. 

3 RESULTS AND DISCUSSIONS 

3.1 Probabilistic stability analysis of the test slope 
(D = 1.5) 

Figure 3 demonstrates that a  = 30
o
 slope (based on 

the mean) can result in a pf as high as 0.38. It should 
be emphasized that a factor of safety based on the 
mean strength of a variable soil will generally lead to 
optimistic estimates of the factor of safety. A lower 
value of the characteristic strength would typically 
be used in practice as discussed by Griffiths and Fen-
ton (2004). Figure 3 also demonstrates that the slope 
will be essentially safe when FS>1.38 and FS>1.57 
for VC = 0.2 and 0.4, respectively. 

Figure 4 shows the influence of slope angle on the 
pf of a slope with D = 1.5, C = 0.2, VC = 0.2. The in-
fluence of the correlation length on the pf versus  
relationship is also demonstrated. There clearly ex-
ists a cross-over point, previously noted by Griffiths 
and Fenton (2004), corresponding to approximately 
 = 48

o
 at which pf starts to decrease with increasing 

correlation length. It is interesting to note the step 
function that corresponds to  = 0 where pf at  = 
63

o
 suddenly changes from zero to one. When  



equals zero, all the variances are removed and the 
problem becomes deterministic with a uniform 
strength given by the Median. It is obtained analyti-
cally that slope of < 63

o
 will have a FS greater 

than one (pf = 0). It seems that the value of the slope 
angle corresponding to 63

o
 lies to the right of the 

crossover point. Results show that when< 48
o
, 

perfect correlation tends to overestimate pf which is 
conservative for engineering desig- 
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Figure 3. Probability of failure versus factor of safety (based on 

the mean) of undrained slopes with D = 1.5, C = 0.2, lnC = 

0.5. 

 
n, while the opposite effect is observed for > 48

o
 

which is unconservative. 
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Figure 4. Influence of slope angle on the probability of failure 

of undrained slopes; D = 1.5, C = 0.2, VC = 0.2. 

 
Figure 5 contains the same information as that in 

Figure 4, but is arranged in a different way with the 
correlation length along the horizontal axis. This 
figure shows two tails, with pf tending to one as  
decreases for all the slope angles greater than about 
48

o
 and tending to zero with decrease in  for slope 

angle less than about 48
◦
, which emphasises the im-

portance of the slope angle in the relationship be-
tween pf and . 
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Figure 5. Influence of slope angle on the probability of failure 

of undrained slopes; D = 1.5, C = 0.2, VC = 0.2. 

3.2 Influence of slope angle on the failure 
mechanism location (D = 1.5) 

 
Figure 6 shows undeformed and deformed meshes at 
failure for several combinations of parameters. Un-
like deterministic case, when the slope consists of 
spatially random soil, a vertical cut may display a 
deep mechanism (Figure 6(g)) and a flat slope may 
display a shallow mechanism (Figure 6(h)). Follow-
ing Monte-Carlo simulation which involves 2000 re-
alizations for each parametric combination, the pro-
portion of toe failures is defined as the number of toe 
failures divided by the total number of failure simu-
lations.  

Figure 7 presents the influence of slope angle on 
the proportion of toe failures affected by different 
correlation length. For  > 48

o
, both correlation 

length and slope angle have no influence on the pro-
portion of toe failures. For slope angle lying between 
20

o
 and 40

o
, slopes that have higher correlation 

length give lower proportion of toe failures. This is 
due to that higher correlation length implies a more 
statistically homogeneous field, so that most of the 
pattern of mechanism is deep, closer to the determin-
istic case. 
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Figure 6. Failure mechanism of undrained slope with fixed C = 
0.2 and  = 0.5; undeformed mesh: (a) C = 0.2, VC = 0.2,  = 
90

o
, (b) C = 0.2, VC = 0.2,  = 30

o
; deformed mesh at failure: 

(c) C = 0.2, VC = 0.2,  = 90
o
, (d) C = 0.2, VC = 0.2,  = 30

o
; 

undeformed mesh: (e) C = 0.2, VC = 0.3,  = 90
o ◦

, (f) C = 0.2, 
VC = 0.3,  = 30

o
; deformed mesh: (g) C = 0.2, VC = 0.3,  = 

90
o
, (h) C = 0.2, VC = 0.3,  = 30

o
. 
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Figure 7. Influence of slope angle on the proportion of toe 
failures of undrained slopes with D = 1.5, C = 0.2, VC = 0.2. 

4 CONCLUDING REMARKS 

This paper investigates the pf and failure mechanism 
location of undrained slopes with spatially random 
soil. The following conclusions can be drawn. 

The influence of slope angle on pf indicated a 
critical value of slope angle above which it would be 
unconservative to assume high spatial correlation 
length and below which it would be conservative to 
assume high spatial correlation length. 

The influence of slope angle on the proportion of 
toe failures is affected by different correlation 
length. For  > 48

o
, both correlation length and slope 

angle have no influence on the proportion of toe 
failures. For slope angle lying between 20

o
 and 40

o
, 

slopes that have higher correlation length give lower 
proportion of toe failures. This is due to that higher 
correlation length implies a more statistically homo-
geneous field, so that the pattern of mechanism is 
deep, closer to the deterministic case.  
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