
Influence of highly anisotropic properties on 

probabilistic slope stability  
Influence des propriétés hautement anisotropes sur la stabilité des 

pentes probabiliste 

P. Allahverdizadeh
*1

, D. V. Griffiths
1
 , and G. A. Fenton

4
 

1
 Colorado School of Mines, Golden, CO, USA 

2
 Colorado School of Mines, Golden, CO, USA 
3
 Dalhousie University, Halifax, NS, Canada 

 
ABSTRACT  This paper investigates the probability of failure of slopes using the random finite element method (RFEM), which uses ela-
to-plasticity combined with random field theory in a Monte-Carlo framework. The paper demonstrates the role of isotropic spatial variabili-

ty and goes on to investigate the influence of highly anisotropic random soil properties on probabilistic slope stability predictions. In the 

limit, infinite spatial correlation lengths are considered in both the vertical and horizontal directions. Parametric studies are presented on 
some different benchmark slope problems. The influence of infinite spatial correlation length in the horizontal direction is shown to have a 

significant impact on probabilistic outcomes. 

 
RÉSUMÉ  Ce document étudie la probabilité de défaillance des pistes à l'aide de la méthode des éléments finis aléatoire (de RFEM), qui 

utilise Elato-plasticité combinée avec la théorie des champs aléatoires dans un cadre de Monte-Carlo. L'article démontre le rôle de la varia-

bilité spatiale isotrope et continue d'étudier l'influence de très anisotropes propriétés du sol au hasard sur des prévisions probabilistes de la 
stabilité des pentes. A la limite, infinite longueurs de corrélation spatiale sont pris en compte dans les deux directions verticale et horizon-

tale. Des études paramétriques sont présentés sur des problèmes différents de la pente de référence. L'influence de l'infini spatial longueur 

de corrélation dans la direction horizontale est montré pour avoir un impact significatif sur les résultats probabilistes. 
 

1 INTRODUCTION 

Probabilistic methods have been used in slope stabil-

ity analysis since 1970s, and have received consider-

able attention in the literature. Starting in the early 

90’s, a new method called the Random Finite Ele-

ment Method (RFEM), which combines random field 

theory and the finite element method, was developed 

for use in probabilistic geotechnical engineering (e.g. 

Griffiths and Fenton 1993). The method was subse-

quently applied to several areas of geotechnical engi-

neering including probabilistic slope stability analy-

sis by Griffiths and Fenton 2000, 2004. The Local 

Average Subdivision method (LAS) proposed by 

Fenton and Vanmarcke (1990) was used for generat-

ing the random fields. It was shown that traditional 

probabilistic analyses, in which spatial variability is 

ignored by implicitly assuming perfect correlation, 

does not necessarily result in a conservative estimates 

of the probability of failure. Later on, Griffiths et al. 

(2009) studied the influence of spatial variability of 

soils more precisely.  

One of the advantages of using elastic-plastic fi-

nite elements for stability analysis is that the failure 

mechanism is allowed to find the weakest path 

through the soil. The ability of the FE approach to 

model the shape and location of the failure mecha-

nism offers many benefits over traditional methods in 

which the shape of the failure mechanism is fixed a 

priori. Slope stability analysis is a good example this, 

in which commonly used methods such as Bishop’s 

method, require the failure mechanism to be circular.  

This paper investigates the influence of highly an-

isotropic soil properties on probabilistic slope stabil-

ity analysis. Numerical results show that very (infi-

nite) large spatial correlation length in the horizontal 



direction, can increase the probability of failure of 

slopes.  

The slope studied in this paper is shown in Figure 

1 with consideration of an undrained ϕu = 0, cu slope. 

The slope inclination, height, and foundation ratio is 

given by β, H and D respectively. The saturated unit 

weight of the soil, γ are held constant, while the shear 

strength cu of the slope is assumed to be the random 

variable. cu was expressed in dimensionless forms as 

Cu where Cu = cu /(γsat H). 

 

 

 
 

Figure 1. Slope profile. 

 

 

The shear strength parameter of the soil Cu is 

treated as random variable, characterized statistically 

by lognormal distributions; in other words, the loga-

rithms of the properties are normally distributed. The 

lognormal distribution is one of many possible choic-

es (e.g. Fenton and Griffiths, 2008) that has been ad-

vocated and used by several other investigators as a 

reasonable model for variable soil properties (e.g. 

Massih et al., 2008). Lognormal distributions guaran-

tee that the random variable will never have negative 

values. 

The lognormal distribution is defined by a mean µ 

and a standard deviation σ. The probability density 

function of Cu is given by Equation 1. 
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The mean and standard deviation can conveniently 

be combined in terms of the dimensionless coeffi-

cient of variation defined as: 

 

𝑉𝐶 =
𝜎𝐶𝑢

𝜇𝐶𝑢

                                                                             (2)     

                                                                                                   
 

2 RANDOM FINITE ELEMENT METHOD 

(RFEM)  

The RFEM implementation used in this study com-

bines elastic-plastic finite element analysis with ran-

dom field theory in slope stability analysis. The 

methodology has been described in details elsewhere 

(e.g. Fenton and Griffiths, 2008).  

The RFEM is used in conjunction with Monte 

Carlo simulations in which the stability analysis is 

repeated until the probabilities relating to output 

quantities of interest become statistically reproduci-

ble. In the case of slope stability analysis, the proba-

bility of failure is defined by dividing the number of 

realizations in which the slope failed by the total 

number of realizations.  

2.1 Spatial correlation 

Generally, the mean and standard deviation of a vari-

able are well understood by engineers. However, the 

spatial correlation length θ of a random property is 

less well understood. This property, called the “scale 

of fluctuation” or “spatial correlation length”, has 

units of length, and represents the distance over 

which the soil or rock property in question is reason-

ably well-correlated to its neighbors. In this paper, a 

“Markovian” correlation function is used where the 

spatial correlation is assumed to decay exponentially 

with distance (Vanmarcke 1984). 

 

 

𝜌 = 𝑒−2|𝜏|/𝜃
                                                                                           (3) 

 

 

In Eq (3) which is for an isotropic material, τ is the 

absolute distance between any two points in the ran-

dom field, and ρ is the correlation coefficient be-

tween properties assigned to two points in the ran-

dom field separated by τ. 

Since the actual undrained shear strength field is 

lognormally distributed, its logarithm yields an un-

derlying normal distributed (or Gaussian) field. The 

spatial correlation length is measured with respect to 

this underlying field, that is, with respect to lnCu. In 



particular, the spatial correlation length (θlnCu) de-

scribes the distance over which the spatially random 

values tend to be significantly correlated in the un-

derlying Gaussian field. Thus, a large value of θlnCu 

implies a smoothly varying field, while a small value 

will imply a ragged field. In this study, the spatial 

correlation length has been non-dimensionalized by 

dividing it by the height of the slope H and will be 

expressed in the form: 

 

 

𝛩𝐶𝑢
=

𝜃ln 𝐶𝑢

𝐻
                                                                        (4) 

 

The influence of θ on a wide range of geotechnical 

systems has been assessed through parametric studies 

(e.g. Griffiths and Fenton 2004, Griffiths et al. 2009, 

Huang et al. 2010, Kasama and Whittle 2011, Al-

Bitar and Soubra 2013) and has been shown to have a 

significant influence on probabilistic quantities under 

considerations. 
 

3 RFEM RESULTS 

The results of the RFEM analysis for the un-

drained slope are presented in this section. Using this 

method, random fields are generated and assigned to 

each element. Gravity loads are then applied, and if 

the algorithm could not converge within a specific 

number of iterations, failure is said to have occurred. 

Lack of convergence means that no stress redistribu-

tion could be found that is simultaneously able to sat-

isfy both the Mohr Coulomb failure criterion and 

global equilibrium. The analysis is repeated numer-

ous times, using Monte Carlo simulations, using the 

same mean, standard deviation, and spatial correla-

tion length of soil properties. The spatial distribution 

of properties, however, varies from one realization to 

the next. Following a “sufficient” number of realiza-

tions, the probability of failure pf is estimated by di-

viding the number of failures by the total number of 

simulations. 

A typical finite element mesh used for this prob-

lem is shown in Figure 2. The majority of the ele-

ments are 8-node square except the elements adjacent 

to the slope which are degenerated into triangles. The 

slope model has 910 total elements which results in 

910 random variables for the slope in each simula-

tion. 4000 simulations were used to ensure the repro-

ducibility of the model.  
 

 

 
 

Figure 2.  Typical mesh used for the RFEM slope stability analy-

sis. 

 

 

In this study, H and β are equal to 1 and 26.6° re-

spectively and the μCu of the soil has been chosen to 

be 0.25. The slope has been modeled with 4 different 

coefficients of variation equal to 0.25, 05, 1, and 2. 

ΘCu has varied from 0.01 to 10 for each slope. Figure 

3 shows the Probability of Failure pf versus non-

dimensionless spatial correlation length ΘCu for these 

slopes. The spatial correlation lengths in the both X 

and Y directions are equal. Figure 3 clearly indicates 

two branches, with the Probability of Failure tending 

to unity or zero for higher and lower values of VC, re-

spectively. 

 

 

 
 

Figure 3.  Probability of failure vs. spatial correlation length. 

 

 

Six slopes identical as the previous one with Vc = 

0.5 and μCu = 0.25 has been analyzed while ΘCu was 

chosen to be different in horizontal and vertical di-
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rections with consideration of infinite spatial correla-

tion length. Table 1 indicates the input values of ΘCu 

and corresponding pf for each simulation. Θx and Θy 

represent the spatial correlation lengths of Cu in hori-

zontal and vertical directions respectively. 

 

 

Table 1. Input values of ΘCu and pf for the slope models. 

Slope No. Θx Θy pf 

1 1 1 0.185 

2 2 2 0.221 

3 
4 

5 

6 

Infinite 
Infinite 

1 

2 

1 
2 

Infinite 

Infinite 

0.278 
0.296 

0.108 

0.194 

 

 

The result of RFEM presented in Table 1 shows 

that the slopes with infinite Θx have the maximum 

probability of failure while slopes modeled with an 

infinite Θy led to lower values for pf.  

Figures 4 and 5 illustrate sample random field re-

alizations and failure of the slope with the infinite Θx 

and infinite Θy respectively. The figures depict the 

variation in lnCu and have been scaled in such a way 

that the dark and light regions depict “strong” and 

“weak” soils, respectively. Black represents the 

strongest element and white is the weakest in a par-

ticular realization.  

 

 
Figure 4. Failure mechanism for the slope with Θy =2 and Θx= in-

finite. 

 

 

 
Figure 5. Failure mechanism for the slope with Θx =2 and Θy = in-

finite. 

 

As it can be seen in Figures 4 and 5, slopes have 

different failure mechanism for two cases. The slope 

with an infinite spatial correlation length in horizon-

tal direction tends to have a more linear failure, while 

the other slope has a circular failure profile. A reason 

for this could be that in the slopes with infinite Θx, 
failure can find a weak layer through the soil in the 

horizontal direction and create a more linear failure 

path. This also could be the reason for having a high-

er probability of failure comparing to the slopes with 

infinite Θy.  

Additional RFEM models of the slopes with infi-

nite Θx were developed to study the effect of spatial 

correlation length and coefficient of variation more 

precisely.  The reason for choosing the infinite values 

for Θx is that it resulted in higher probability of fail-

ure for the slope. In other word, slopes with infinite 

Θx seem to be more critical than the slopes with infi-

nite Θy. 

Figure 6 shows the result of these analyses and 

compares them with previous results provided in 

Figure 3 when ΘCu = Θx = Θx.  

 

 

Figure 6. Probability of failure vs. Θy while Θx is constant and 

equal to infinity for “Inf Vc” and Θy = Θy for “Vc” cases.  
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Based on Figure 6 it can be resulted that for small-

er values of Vc, considering the infinite values for Θx 

results in higher probability of failure comparing to 

the cases with identical spatial correlation lengths in 

both vertical and horizontal directions. On the other 

hand, for Vc ≥ 1 the slopes with infinite Θx result in 

lower probability of failure. However, based on Dun-

can (2000) the typical Vc values for undrained shear 

strength lie in the range of 0.13-0.5.  

 

 

4 CONCLUSIONS 

This paper has investigated the probability of fail-

ure for undrained slopes using the RFEM. The 

RFEM combines the FEM with Monte Carlo simula-

tion in which spatial variability is properly taken into 

account. The RFEM enables the failure mechanism 

to seek out a weakest path through heterogeneous 

soil which can lead to higher probabilities of failure 

than might be predicted spatial variability is ignored. 

The influence of the coefficient of variation Vc and 

spatial correlation length ΘCu, on the probability of 

failure pf was studied. Infinite spatial correlation 

length was also modeled in the both horizontal and 

vertical directions, and it was shown that slopes with 

infinite spatial correlation lengths lead to higher pf 

values for the Vc ≤ 1 in which the coefficient of varia-

tion for undrained shear strength of most of the soils 

lies in this range. Soils usually have bigger Θ in hori-

zontal direction and a good example of the slopes 

with infinite horizontal spatial correlation length 

could be the slopes with layered soils. The finding of 

this study can be used in such slopes. 
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