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ABSTRACT: This paper presents the results of probabilistic analyses in slope 

stability problems using the Random Finite Element Method (RFEM). The influence 

of spatially variable soil properties on design outcomes relating to slope stability 

analysis has been assessed through parametric studies, with focus on the “worst case” 

(critical) spatial correlation length that leads to a minimum reliability of the soil mass. 

This critical value is of particular interest, because it could be used for design in the 

absence of good site specific data. 

 

INTRODUCTION 

 

   Probabilistic methods have been used in slope stability analysis since 1970s, and 

have received considerable attention in the literature. Starting in the early 90’s, a new 

method called the Random Finite Element Method (RFEM), which combines random 

field theory and the finite element method, was developed for use in probabilistic 

geotechnical engineering (e.g. Griffiths and Fenton 1993). The method was 

subsequently applied to several areas of geotechnical engineering including 

probabilistic slope stability analysis by Griffiths and Fenton 2000, 2004. The Local 

Average Subdivision method (LAS) proposed by Fenton and Vanmarcke (1990) was 

used for generating the random fields. It was shown that traditional probabilistic 

analyses, in which spatial variability is ignored by implicitly assuming perfect 

correlation, does not necessarily result in a conservative estimates of the probability 

of failure. Later on, Griffiths et al. (2009) studied the influence of spatial variability 

of soils more precisely.  
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   One of the advantages of using elastic-plastic finite elements for stability analysis is 

that the failure mechanism is allowed to find the weakest path through the soil. The 

ability of the FE approach to model the shape and location of the failure mechanism 

offers many benefits over traditional methods in which the shape of the failure 

mechanism is fixed a priori. Slope stability analysis is a good example this, in which 

commonly used methods such as Bishop’s method, require the failure mechanism to 

be circular.  

   This paper investigates the influence of soil spatial correlation length on 

probabilistic slope stability analysis. Numerical results show that for a given value of 

the coefficient of variation of soil strength parameters, there is a critical value of the 

spatial correlation length which leads to a minimum reliability of the soil mass. In 

other words, if spatial variation is ignored or implicitly assumed to be infinite, the 

probability of failure can be underestimated resulting in an unconservative design.     

   The slope studied in this paper is shown in Figure 1 with consideration of both 

undrained ϕu = 0, cu and drained c′, tanϕ′ slopes. The slope inclination, height, and 

foundation ratio is given by β, H and D respectively. The saturated unit weight of the 

soil, γ are held constant, while the shear strength cu of the undrained slope and c′ and 

tanϕ′ of the drained slope are assumed to be random variables. For the both drained 

and undrained slopes, cu and c′ were expressed in dimensionless forms as Cu and C′ 

respectively where Cu = cu /(γsat H) and C′ = c′ /(γ H). 

 

 
 

FIG. 1.  Slope profile 
 

 

   The shear strength parameters of the soil Cu and C′ and tanϕ′ are treated as random 

variables, characterized statistically by lognormal distributions; in other words, the 

logarithms of the properties are normally distributed. The lognormal distribution is 

one of many possible choices (e.g. Fenton and Griffiths, 2008) that has been 

advocated and used by several other investigators as a reasonable model for variable 

soil properties (e.g. Massih et al., 2008). Lognormal distributions guarantee that the 

random variable will never have negative values. 

   The lognormal distribution is defined by a mean µ and a standard deviation σ. The 

probability density function of Cu is given by Equation 1 and an equivalent equation 

is applied to C′ and tanϕ′. 
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   The mean and standard deviation can conveniently be combined in terms of the 

dimensionless coefficient of variation defined as: 
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RANDOM FINITE ELEMENT METHOD 

 

   The RFEM implementation used in this study combines elastic-plastic finite 

element analysis with random field theory in slope stability analysis. The 

methodology has been described in details elsewhere (e.g. Fenton and Griffiths, 

2008).  

   The RFEM is used in conjunction with Monte Carlo simulations in which the 

stability analysis is repeated until the probabilities relating to output quantities of 

interest become statistically reproducible. In the case of slope stability analysis, the 

probability of failure is defined by dividing the number of realizations in which the 

slope failed by the total number of realizations.  

 

Spatial Correlation  

 

   Generally, the mean and standard deviation of a variable are well understood by 

engineers. However, the spatial correlation length θ of a random property is less well 

understood. This property, called the “scale of fluctuation” or “spatial correlation 

length”, has units of length, and represents the distance over which the soil or rock 

property in question is reasonably well-correlated to its neighbors. In this research, a 

“Markovian” correlation function is used where the spatial correlation is assumed to 

decay exponentially with distance (Vanmarcke 1984). 

 

     | |                                                                                                          (3) 

    

In Eq (3) which is for an isotropic material, τ is the absolute distance between any two 

points in the random field, and ρ is the correlation coefficient between properties 

assigned to two points in the random field separated by τ. 

   Since the actual undrained shear strength field is lognormally distributed, its 

logarithm yields an underlying normal distributed (or Gaussian) field. The spatial 

correlation length is measured with respect to this underlying field, that is, with 

respect to lnCu. In particular, the spatial correlation length (θlnCu) describes the 

distance over which the spatially random values tend to be significantly correlated in 

the underlying Gaussian field. Thus, a large value of θlnCu implies a smoothly varying 

field, while a small value will imply a ragged field. In this study, the spatial 

correlation length has been non-dimensionalized by dividing it by the height of the 
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slope H and will be expressed in the form: 

 

   
 

     

 
                                                                                                         (4)                                                                                                                  

 

   The influence of θ on a wide range of geotechnical systems has been assessed 

through parametric studies (e.g. Griffiths and Fenton 2004, Griffiths et al. 2009, 

Huang et al. 2010, Kasama and Whittle 2011, Al-Bitar and Soubra 2013) and has 

been shown to have a significant influence on probabilistic quantities under 

considerations.  

   Figure 2 (a and b) indicate two random field realizations and the associated failure 

mechanisms. Figure 2(a) shows a relatively low spatial correlation length of ΘC′ =0.5 

and Figure 2(b) shows a high spatial correlation length of ΘC′ =100. The figures depict 

the variation in lnC′ and have been scaled in such a way that the dark and light 

regions depict “strong” and “weak” soils, respectively. Black represents the strongest 

element and white is the weakest in a particular realization. Although both cases 

shown in Figure 2 had the same mean and variance, the different spatial correlation 

lengths have led to quite different failure characteristics. In the case with a high 

spatial correlation length, a much smoother mechanism was observed, more like the 

type of mechanism that would be observed in a homogeneous soil. 

 

 
FIG. 2.  Typical random field realizations and deformed mesh at slope failure for 

two different spatial correlation length, a) ΘC′ =0.5, b) ΘC  =100 
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RFEM RESULTS  
 

   The results of the RFEM analysis for the undrained and drained slopes are presented 

in this section. Using this method, random fields are generated and assigned to each 

element. Gravity loads are then applied, and if the algorithm could not converge 

within a specific number of iterations, failure is said to have occurred. Lack of 

convergence means that no stress redistribution could be found that is simultaneously 

able to satisfy both the Mohr Coulomb failure criterion and global equilibrium. The 

analysis is repeated numerous times, using Monte Carlo simulations, using the same 

mean, standard deviation, and spatial correlation length of soil properties. The spatial 

distribution of properties, however, varies from one realization to the next. Following 

a “sufficient” number of realizations, the probability of failure pf is estimated by 

dividing the number of failures by the total number of simulations. 

   A typical finite element mesh used for this problem is shown in Figure 3. The 

majority of the elements are 8-node square except the elements adjacent to the slope 

which are degenerated into triangles. The slope model has 910 total elements which 

results in 910 random variables for the undrained slope with Cu and 1820 random 

variables for the drained slope with C′ and tanϕ′ in each simulation. 4000 simulations 

were used to ensure the reproducibility of the model.  

 

 
FIG. 3.  Typical mesh used for the RFEM slope stability analysis 

 

 

   Table 1 and 2 show the strength parameters and dimensions of the undrained and 

drained slopes respectively. Young’s modulus (E) and Poisson ratio (υ) are set to 10
5
 

(kPa)
 
and 0.3 respectively for all analyses. The unit weight of the soil is also 

considered as a deterministic parameter equal to 20 (kN/m
3
). 

   The value of µCu and V was fixed at 5 (kPa) and 0.3 respectively for the undrained 

slope. The 0.3 value for the coefficient of variation was selected, as the typical V 

values for undrained shear strength lie in the range 0.13-0.5 (e.g. Duncan 2000). Four 

slopes with different slope angles were modeled with different spatial correlation 

lengths to study the effect of soil spatial variability and slope angle on the probability 

of failure of slopes. The height of the slope, H is equal to 1. Figure 4 illustrates the 

variation of the probability of failure with non-dimensionalized spatial correlation 

length and slope angle for the undrained slope. 

 

H/tanβ 2H 2H 

H 

H 
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Table 1.  Parameter used in this study for the undrained slope. The coefficient of 

variation was kept constant, V= σCu/µCu =0.3. 

 

µCu (kPa) β (slope angle) ΘCu = θ/H 

5 26.6 0.1, 0.25, 0.5, 1, 2, 4, 8 

5 45 0.1, 0.25, 0.5, 1, 2, 4, 8 

5 55 0.1, 0.25, 0.5, 1, 2, 4, 8 

5 63.5 0.1, 0.25, 0.5, 1, 2, 4, 8 

 

 

Table 2.  Parameter used in this study for the drained slope. Slope angle is kept 

constant to, β = 26.6° (2:1 slope). 

 

µC′ (kPa) tanϕ′ V = σC′/µC′ = σtanϕ′/µtanϕ′ Θ = θ/H 

5 0.364 0.25 0.01, 0.05, 0.1, 0.2, 0.5, 1, 2, 10, 100 

5 0.364 0.3 0.01, 0.05, 0.1, 0.2, 0.5, 1, 2, 10, 100 

5 0.364 0.35 0.01, 0.05, 0.1, 0.2, 0.5, 1, 2, 10, 100 

5 0.364 0.45 0.01, 0.05, 0.1, 0.2, 0.5, 1, 2, 10, 100 

 

 

 
 

FIG. 4.  Probability of failure vs. spatial correlation length for different slope 

angles for the undrained slope, ϕu =0. 

 

 

   As it can be seen in Figure 4, by increasing the slope inclination, the probability of 

failure for the slope increases. This fact was expected based on traditional theories.  
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   An important observation from Figure 4 is the influence of spatial correlation length 

on probability of failure of the slopes. By increasing the spatial correlation length for 

the 2:1 (β = 26.6°) slope, the pf increases. This observation was addressed in previous 

studies on slopes (e.g. Griffiths and Fenton 2004). For the steeper slopes, however, a 

maximum pf happens when the ΘCu is between 1 and 0.5. This spatial correlation 

length called the “worst case” correlation length has been reported by other 

researchers for bearing capacity and retaining wall problems (e.g. Griffiths and 

Fenton 2001, Fenton and Griffiths 2003, Fenton et al. 2005, Massih et al. 2008).  

However, for slopes with small coefficient of variation (V ≤ 0.5) the maximum 

probability of failure was observed to happen when the slope has an infinite spatial 

correlation length.   

   Another 2:1 slope was modeled with drained soil properties. The spatial correlation 

and coefficient of variation of C′ and tanϕ′ were assumed to be the same: 

 

                                                                                                         (5) 

 

V = σC′/µC′ = σtanϕ′/µtanϕ′                                                                                           (6) 

 

   The height of the slope H, is equal to 10m. Three correlations ρ, between C′ and 

tanϕ′ were considered to evaluate the effect of ρ on pf for the drained slope. Figure 5 

shows the variation of the pf with spatial correlation length and ρ. 

   According to Figure 5, a slope with a positive correlation between C′ and tanϕ′ leads 

to the highest probabilities of failure. It has been suggested by some investigators 

(e.g. Cherubini 2000) that C′ and tanϕ′ may have a negative correlation which results 

in lower values for the pf. Thus, modeling the slope with no correlation between the 

C′ and tanϕ′ would be on the conservative side. 

 

 
 

FIG. 5.  Probability of failure vs. spatial correlation length for different cross-

correlations for the drained slope. 
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For the drained slope, the slope angle β, was kept constant while the coefficient of 

variation V, and spatial correlation length varied to investigate the worst case Θ based 

on different V values. Figure 6 illustrates the variation of the pf with Θ and V. The 

mean of C′ and tanϕ′ is kept constant while the standard deviation of these variables 

changed with coefficient of variation.  

 

 
 

FIG. 6.  Probability of failure vs. spatial correlation length for different 

coefficient of variations for the drained slope. 

 

 

   By increasing the coefficient of variation, the pf of the slope increases. A maximum 

probability of failure also occurs by increasing V similar to that observed in the 

undrained slope. The worst case spatial correlation length also has a value between 

0.5H and H. This means that when the slope has a spatial correlation length close to 

the height of the slope, it has the highest value for the probability of failure or lowest 

reliability.  

   When θ/H is large, the field is more strongly correlated, so that it appears smoother 

with less variability in each realization. The slope consequently tends to behave as a 

homogeneous slope more like that predicted by traditional methods. Conversely, 

when θ/H is small, the random field is typically rough in appearance; however, as the 

variability is high, the soil behaves like a uniform mass (with properties approaching 

the median). This results in having a slope with homogeneous soil in each realization 

as well. Thus, for very large and very small spatial correlation lengths, fewer failures 

are expected. 

   In finite element analysis of slope stability, as mentioned before, failure is free to 

seek out the weakest path through the soil. For intermediate correlation lengths within 

the scale of the slope height, the soil properties measured at one location may be quite 

different from those actually present at other locations. It gives the failure the 
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opportunity to find the weakest path through the soil which could have a non-circular 

or non-linear shape. Figure 2(a) shows a failure mechanism for a drained slope with 

intermediate spatial correlation length, θ/H= 0.5 which is the worst case Θ for this 

slope. As it can be seen, failure doesn’t follow a specific path. The failure is be able to 

find its path where the soil has the weaker parameters (lighter color).  Therefore, for 

intermediate correlation lengths, more failures are observed. Following this reasoning, 

the maximum probability of failure occurs when the slope has an intermediate spatial 

correlation length as shown in Figures 4 and 6. 

 

CONCLUSIONS 

 

   This paper has investigated the probability of failure for both drained and undrained 

slopes using the RFEM. The RFEM combines the FEM with Monte Carlo simulation 

in which spatial variability is properly taken into account. The RFEM enables the 

failure mechanism to seek out a weakest path through heterogeneous soil which can 

lead to higher probabilities of failure than might be predicted spatial variability is 

ignored. The influence of the coefficient of variation V, slope angle β, and spatial 

correlation length Θ, on the probability of failure pf was studied. It was shown clearly 

that a worst case spatial correlation length exists for the both drained and undrained 

slopes. This worst case spatial correlation length, leading to a maximum probability 

of failure was shown to be of the order of 0.5H to H, where H is the slope height. The 

implication of this result is that the spatial correlation length need not be estimated if 

there is insufficient data, since the worst case Θ can be used to yield a conservative 

design aimed at a target reliability. This result is a practical and important finding, as 

the soil spatial variability is generally difficult and expensive to estimate accurately 

and requires a large number of samples.  
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