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ABSTRACT: A review of theoretical probabilistic models devised over the last decade for 
geotechnical reliability-based design reveals that they generally follow the same form. That form can 
be used to develop a unified reliability-based design approach that includes the effects of spatial 
variability in the ground, site understanding, and the severity of failure consequences. This paper 
develops and describes the resulting unified model, along with recommendations regarding its use in 
practice. The approach can be used to directly provide required resistance factors for use in an LRFD 
format. 

1. INTRODUCTION 
There is a real desire in the geotechnical 
community to account for site understanding in 
the process of achieving economical, yet safe 
geotechnical designs. To accomplish this, it 
makes sense to have a resistance factor which is 
adjusted as a function of site understanding and 
that allows maintaining overall safety at a 
common target maximum failure probability as 
well as to demonstrate the direct economic 
advantage of increased site understanding.  

The overall safety level of any design 
should depend on at least three factors: 1) the 
uncertainty in the loads, 2) the uncertainty in the 
resistance, and 3) the severity of the failure 
consequences. In most modern codes, these three 
items are assumed independent of one another 
and are thus treated separately. The load factors 
handle the uncertainties in the loads and, on the 
load side, failure consequences are handled by 
applying an importance factor to the more 
uncertain and site specific loads (e.g. earthquake, 

snow, and wind). Uncertainties in resistance are 
handled by resistance factors that are usually 
specific to the material used in the design. When 
dealing with a highly variable and site specific 
material such as the ground, it makes sense to 
apply a factor that depends on both the resistance 
uncertainty and on the consequences of failure. 
Similar to the multiplicative approach taken in 
structural engineering, where the overall load 
factor is a product of a load factor and an 
importance factor, the overall resistance factor 
applied to geotechnical resistance is taken here to 
consist of two parts which are multiplied 
together; 
1. a resistance factor, guϕ or gsϕ ,which accounts  

for resistance uncertainty. This factor aims to 
achieve a target maximum acceptable failure 
probability equal to that used for 
geotechnical designs for typical failure 
consequences.  

2. a consequence factor, Ψ , which accounts for 
failure consequences. Essentially, 1Ψ > if 
failure consequences are low and 1Ψ < if 
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failure consequence exceed those of typical 
geotechnical systems. The basic idea of the 
consequence factor is to adjust the maximum 
acceptable failure probability of the design 
down for high failure consequences, or up for 
low failure consequences.  

This paper will consider limit state design (LSD) 
of geotechnical systems within a load and 
resistance factor design (LRFD) framework. The 
goal is to provide a single theoretical model 
which can be used to determine the resistance 
and consequence factors required to achieve a 
target maximum acceptable failure probability 
for a variety of geotechnical design problems. 

Within the LRFD framework, geotechnical 
designs proceed by adjusting the resistance 
parameters (usually the foundation geometry) so 
that the factored geotechnical resistance at least 
equals the effect of factored loads. For example, 
for ultimate limit states (ULS), this means that 
the geotechnical design should satisfy an 
equation of the form 
 ˆ ˆ

u gu u i i iR I Fϕ αΨ ≥∑   (1) 
in which uΨ is a consequence factor, guϕ is the 

geotechnical resistance factor, and ˆ
uR is the 

characteristic ultimate resistance, all at the ULS. 
The right-hand-side consists of iI , an importance 
factor, multiplying the ith factored load effect, 

ˆ
i iFα . A similar equation must be satisfied for 

serviceability limit states (SLS), with the 
subscript u replaced by s. 

Since the focus of this work is on calibrating 
resistance and consequence factors, which are 
applied to the characteristic resistance, the 
importance factors, iI , will be assumed to have 
values 1.0. In addition, only dead and live loads 
will be considered in this study. If the 
characteristic total load, T̂F  , is defined as the 
sum of the factored characteristic loads, 

 
ˆ ˆ ˆ for ULS design  

   ˆ ˆ for SLS design       
T L L D D

L D

F F F

F F

α α= +

= +
  (2) 

where it is assumed that the SLS load factors are 
1.0, then the LRFD eq. (1) simplifies to 

 
ˆ ˆ

ˆ ˆ
u gu u T

s gs s T

R F

R F

ϕ

ϕ

Ψ ≥

Ψ ≥
  (3) 

for the ULS and SLS cases, respectively. Three 
failure consequence levels will be considered in 
this paper; 
1) high consequence: failure of the supported 

structure  has large safety and/or financial 
consequences (e.g., hospitals,  schools, and 
lifeline highway bridges), 

2) typical consequence: has failure 
consequences typical of the  majority of civil 
engineering projects, and 

3) low consequence: failure of the supported 
structure has little  or no safety and/or 
financial consequences (e.g., low use storage  
facilities or low use bridges). 

Most designs will be aimed at the typical failure 
consequence level.  

2. THEORETICAL FAILURE PROBABILITY 
AND DERIVED DESIGN FACTORS 

The theoretical framework required to estimate 
the failure probability of a geotechnical system 
should consider; 
1) uncertainty in the loads, and 
2) uncertainty in the resistance, including 

random field models of the  ground to 
characterize its natural spatial variability, 
along with  prediction model uncertainty, and 
uncertainty in ground strength  parameters 
(due to measurement errors and lack of 
sufficient sampling)  within the zone of 
influence under and around the foundation 
being  designed. 

In its simplest form, a geotechnical system fails 
if its actual resistance, R, is less than the 
supported total load, TF , any time during the 
system's design life. For example, Figure 1 
illustrates a bearing failure mechanism which 
might occur at an instant in time during the 
design life of a footing. Rather than the 
traditionally assumed symmetric double log-
spiral failure mechanism predicted when the 
ground properties are spatially constant, the 
failure mechanism that occurs when ground 
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properties vary spatially follows the weakest 
path, resulting in non-symmetric and sometimes 
quite erratic failure paths (Fenton and Griffiths, 
2008).  

 

 
Figure 1: Bearing failure of a shallow foundation on 
a spatially variable soil. 
 
The major challenge in reliability-based design is 
how to capture the weakest path behaviour of the 
ground in a way that is simple enough to use in 
practice.  The key to answering this question is to 
replace the spatial variability of the ground by a 
single random variable which yields the same 
probabilistic behaviour as the spatially variable 
ground. In other words, is there a single random 
variable which gives the same failure probability 
as does the random field? Clearly, there must be. 
Consider, for example, the settlement of a 
shallow foundation where performance failure is 
defined as the event that the actual foundation 
settlement, δ , exceeds the serviceability limit, 

maxδ , i.e., 
 [ ]Pf maxp δ δ>=   (4) 
The actual settlement, δ , is a function of the 
random loads the foundation sustains over time, 
the foundation geometry, and the random 
(usually non-linear and time varying) 
compressibility field of the ground under the 
footing. Thus, δ is a very complicated function 
of many random variables. Nevertheless, δ is a 
single random variable which has some 
distribution. If that distribution can be found, 
then fp  can be determined. 

To illustrate the process in a geotechnical 
context, consider the bearing failure of a strip 
footing supported by a c φ−  soil, as shown in 
Figure 1 (following Fenton et al., 2008). To 

simplify the illustration, the soil will be 
considered weightless with no foundation 
embedment nor surcharge. 

The characteristic resistance becomes 
 ˆ ˆˆu cR BcN=   (5) 
where B is the footing width, ĉ  is the 
characteristic cohesion, and the characteristic 
bearing capacity factor, ˆ

cN , is given by (see e.g., 
Prandtl,1921, and Griffiths et al., 2002) 

 
( )2

2ˆ ˆ ˆexp{ tan } tan 1 tan 1
ˆ

ˆtancN
p φ φ φ

φ

+ + −
=  (6) 

The characteristic ground parameters (e.g., 
cohesion and friction angle) are obtained through 
a site exploration program. Although the 
definition of ‘characteristic’ varies quite widely 
around the world, it is assumed here that the 
characteristic values are ‘a cautious estimate of 
the mean ground parameter’. They will be taken 
to be some sort of average, usually a geometric 
average since it is low-strength dominated, of the 
soil sample.  

Using eq. (5) in eq. (3), the LRFD equation 
at ULS becomes 
 ˆ ˆ ˆˆu gu c L L D DBcN F Fϕ α αΨ ≥ +   (7) 
which, taken at the equality, allows the footing to 
be designed, 

 
ˆ ˆ

ˆˆ
L L D D

u gu c

F FB
cN

α α
ϕ
+

=
Ψ

  (8) 

Failure of the footing occurs if the actual total 
load on the footing, T L DF FF= + , where LF is the 
actual live load and DF is the actual dead load 
(both random), exceeds the actual (random) 
resistance. The probability of failure is thus 
 P

gf T g cF Bp c N = >    (9) 

where gc and
gcN are some sort of averages of the 

random cohesion and friction fields, taken in the 
vicinity of the footing, such that the product 

gg cc N B has the same distribution as the actual 
resistance of the spatially variable ground. Past 
research by the authors has shown that gc   and 
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gcN are well approximated by suitably selected 
geometric averages of c and φ in the vicinity of 
the foundation. Substituting eq. (8) into eq. (9) 
and collecting all random variables to the left 
side of the inequality leads to 

 
ˆ ˆˆ

P
g

c T
f T

g c u gu

cN FF
c

p
N ϕ

>
 

=  
 Ψ  

  (10) 

If we let 

 
ˆˆ

g

c
T

g c

cNW F
c N

=   (11) 

then the failure probability can be written in 
general terms (for either ULS or SLS by 
dropping the u subscript on the resistance and 
consequence factors) as 

 
ˆ

P T
f

g

Wp F
ϕ

 
= > Ψ  

  (12) 

The random variables on the right-hand-side of 
eq. (11) are all assumed to be lognormally 
distributed. If this assumption is true, then W is 
also (at least approximately) lognormally 
distributed, so that 

 
lnW

lnW

ˆln ln ln

ˆln n
1

P

l

f T g

T g

p W F

F

ϕ

ϕ µ
σ

> − Ψ

 − Ψ

 = 

−
= −F



 
 

  (13) 

where Φ is the cumulative standard normal 
distribution function. Noting that the probability 
of failure can be expressed in terms of the 
reliability index, β , as 1 ( )fp β= −Φ , then an 
explicit expression for the total factor applied to 
the resistance, is 

 
{ }ln ln

ˆ

exp
T

g
W W

Fϕ
µ βσ

Ψ =
+

  (14)  

Eq's (13) and (14) can be used to determine the 
failure probability and total resistance factor for 
many geotechnical problems, so long as suitable 
averaging regions can be found under or around 
the geotechnical system.  It is expected that the 
only geotechnical problems which cannot be 
easily handled by eq’s (13) and (14) are slope 
stability and problems where the soil acts as both 

the load and the resistance (e.g., some retaining 
wall systems). In addition, it is found that usually

ln ln TW Fµ µ= and that lnWσ  has a form which is 
common to most geotechnical problems. 

For the bearing capacity of a strip footing, 
the parameters of the lognormally distributed 
random variable W are obtained by looking at the 
mean and variance of lnW , where 
 ˆˆln ln ln ln ln ln

gT g c cW F c c N N= + − + −  (15) 

Now assume that ĉ and gc are defined as 
geometric averages over the sample volume and 
over some suitable volume under/around the 
foundation, respectively. If so, then ˆln c and 
ln gc are arithmetic averages of ( )ln c x



, 

 

1ˆln ln ( )

1ln ln ( )

s

f

V
s

g V
f

c c x dx
V

c c x dx
V

=

=

∫

∫

 

 

  (16) 

where x


  is spatial position, sV is the volume of 
the soil sample, and fV is the suitably selected 
volume of the averaging region in the vicinity of 
the foundation. The main difficulty with the 
solution of eq's (13) and (14) is with the selection 
of an appropriate averaging region, fV . 

In order to solve eq's (13) and (14), the 
mean and variance of lnW must be found. The 
mean is relatively simple if the ground is 
assumed to be statistically stationary (the mean 
and covariance structure remains constant over 
space), so that 

 
ˆln ln ln

ˆ ln lnln

g

c cc g

c c c

N NN

µ µ µ

µ µ µ

= =

= =
  (17) 

which gives 
 ln ln TW Fµ µ=   (18) 
The variance of lnW is complicated by the 
random field model of the ground. As mentioned 
above, the basic idea is to replace the spatial 
variability of the actual ground with suitably 
defined local averages. Figure 2 illustrates the 
local averages involved: one local average under 
the footing is the region fV , and if the size of fV
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is properly selected, then the ground properties 
averaged over fV will have approximately the 
same bearing capacity distribution as the actual 
ground. Because the bearing failure follows the 
weakest path through the ground, a geometric 
average has been found to be appropriate (Fenton 
et al., 2008). Similarly, in order to perform the 
design, the ground will have been sampled at 
some location and then the characteristic ground 
parameters used in the design would be some 
sort of average of the sample values. If it is 
assumed that the soil sample is actually a CPT 
sounding of depth H at some location r away 
from the center of the footing, then the 
characteristic ground parameters would be an 
average of the observations over the volume sV . 
It will be assumed here that a CPT sounding 
reflects the soil's strength parameters over a 
region around the cone of width x∆ and it is 
further assumed that the appropriate average to 
use is again a geometric average. 

 
Figure 2. Averaging regions used to predict 
probability of bearing capacity failure. 
 
If the load, TF , and ground strength parameters, 
in this case c andφ , are assumed to be mutually 
independent then, to at least first order (see 
Fenton et al., 2008, for details), 
 ( )2 2 2 2

ln ln ln ln 2
T cW F c N f s fsssss    γ γ γ = + + + −   (19) 

where fγ is the variance reduction due to 
(geometric) averaging over a suitable region 

( )fV under or around the foundation, sγ is the 
variance reduction due to (geometric) averaging 
over the soil sample volume ( sV ), and fsγ is the 
average correlation coefficient between the 
region fV and the region sV . The last is really a 
reflection of how well the soil sample describes 
the nature of the ground under the footing. As r 
increases, it is expected that fsγ will decrease, 
indicating that the ground conditions at the 
footing are less well predicted by the sample. In 
this way, the degree of ‘site understanding’ that 
goes into the design of the footing can be 
reflected by adjusting r. If a designer has high 
confidence in their understanding of the ground 
parameters under the footing being designed, 
then that corresponds to a small value of r in this 
model. Conversely, low understanding of ground 
properties under the footing corresponds to a 
large value of r. In detail, 

 

2

2

1 ( )

1 ( )

1 ( )

f f

s s

f s

f V V
f

s V V
s

fs V V
f s

d d
V

d d
V

d d
V V

γ ρ η ξ η ξ

γ ρ η ξ η ξ

γ ρ η ξ η ξ

= −

= −

= −

∫ ∫

∫ ∫

∫ ∫

   

   

   

  (20) 

where η


 and ξ


are spatial positions and ρ
returns the correlation coefficient between two 
points in the ground separated by distanceη ξ−

 

.  

The averaging volume, sV , is usually 
known, at least approximately, and will be one of 
the following values; 
1) for 1-D averaging, sV H=  , 
2) for 2-D averaging, sV x H= ∆ ×  , 
3) for 3-D averaging, sV x x H= ∆ ×∆ ×  . 
The main challenge at this point is to decide on 
the appropriate size of the averaging volume, fV . 
The geotechnical failure mechanism below (or 
around) the foundation usually involves some 
averaging of the strength or deformation 
properties of the ground and the size of fV
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should properly reflect the actual averaging. This 
means that fV is dependent on the size of the 
foundation itself, which means that, strictly 
speaking, fV is not known until after the 
foundation is designed (which means that the 
resistance factors need to be known before fV
can be determined). 

In some cases, the variance reduction factor, 
fγ , and the average correlation, fsγ , are not very 

sensitive to fairly significant changes in fV . This 
mean that fV can sometimes be reasonably 
approximated by using a `typical' design, perhaps 
based on the mean ground properties and a 
typical (or traditional) resistance factor. In other 
cases, the variances and correlations are more 
sensitive to the size of fV , in which case an 
iterative approach provides better results. If 
iteration is required, the basic algorithm to be 
used is as follows; 
1) choose a reasonable starting value for the 

total resistance  factor ( )gϕΨ , 
2) find the minimum foundation dimensions 

which satisfy the  LRFD requirements (see 
eq. 3), 

3) set the fV averaging domain as some 
appropriate function of the  foundation 
dimensions (this step will be discussed in 
more detail  for each geotechnical problem 
considered shortly), 

4) compute fγ , sγ , and fsγ according to  eq's 
(20), 

5) use eq. (19) to compute 2
lnWσ , 

6) update the total resistance factor ( )gϕΨ   
according to eq. (14). Compute the failure 
probability, fp , according to eq. (13) if 
desired. If the total resistance factor  has 
changed by only within some relative error 
tolerance (e.g.,  0.001), or if fp is within 
some relative error tolerance from the  target

mp , then the iterations can stop. Otherwise, 

repeat from  step 2 using the adjusted value 
of the total resistance factor. 

Once the total resistance factor, ( )gϕΨ , has been 
determined for a variety of values of the target 
failure probability, mp , the consequence factor, 
Ψ , is determined rather simply. Consider again 
the bearing capacity problem and assume that the 
total resistance factor has been determined for 

1 /1000mp = (low consequence), mp = 1/500 
(typical consequence) and 1 /10000mp = (high 
consequence). Denoting the corresponding total 
resistance factors ( )u gu lowϕΨ , ( )u gu typϕΨ , and
( )u gu highϕΨ , then assuming that 1.0uΨ =  for the 
typical case, we get 

 
( ) ( )
( ) ( )

low consequence: /

high consequence: /

u u gu u gulow typ

u u gu u gu typhigh

ϕ ϕ

ϕ ϕ

Ψ = Ψ Ψ

Ψ = Ψ Ψ
 (21) 

3. FACTORS FOR THE ULS DESIGN OF 
SHALLOW FOUNDATIONS 

To illustrate the above theory, the required 
resistance and consequence factors for the ULS 
bearing capacity design of a shallow foundation, 
with parameters as given in Table 1, will be 
considered. The characteristic factored load, ˆ ,TF
assumes live and dead load factors of 1.5Lα =   
and 1.25Dα = along with live and dead load bias 
factors of 1.41 and 1.18, respectively.  
 
Table 1: Parameters used in the investigation of 
required resistance and consequence factors for 
the ULS design of shallow foundations. 

Parameter Value 
,c cvµ   100 kN/m, 0.3 

, ,min max sφ φ   10 ,30 ,3o o   
,L Lvµ   200 kN/m, 0.3 

,D Dvµ   600 kN/m, 0.15 

T̂F   1308 kN/m 

,x H∆   0.15 m, 4.8 m 
θ   0.1 to 50 m 
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The main features of the ULS reliability-based 
design of a shallow foundation can be found in 
Fenton et al. (2008). They found that fV is well 
approximated by a square of dimension C C×  
centered under the footing (see Figure 2), where 
C is about 80% of the mean depth of the classical 
wedge failure zone given by Prandtl, 

 0.8 ˆ tan
2 4 2BC φµπµ  

= + 
 

  (22) 

In the above, ˆBµ is an estimate of the mean 
footing width obtained by evaluating eq. (8) at 
the mean of the ground properties 

 
ˆ

ˆ
0.7

c

T
B

c N

Fµ
µ µ

=   (23) 

Using this result in eq. (23) to define fV C C= ×
allows the results of the previous section to be 
used to find the failure probability and resistance 
factors required to achieve a target failure 
probability, mp . 

For the uncertainty levels given in Table 1, 
the resistance factors required to achieve a 
typical lifetime maximum acceptable failure 
probability of 1 / 5000mp =  are shown in Figure 
3. Notice the presence of a ‘worst case’ 
correlation length which is approximately equal 
to the distance between the foundation and the 
sample, r. 

 
Figure 3. Resistance factors required to achieve 

1 / 5000mp = ( 3.5β = ) for the bearing capacity 
design of a shallow foundation ( 0.3cv = , and 
conservative load bias factors). 
 

Figure 4 shows the low and high consequence 
factors, obtained using eq's (21). Although the 
consequence factor is supposed to be primarily 
dependent on the target maximum acceptable 
failure probability appropriate for the failure 
consequence, there is some residual dependence 
on site understanding (r) and correlation length (
θ ). However, the dependence is slight, 
amounting to less than 4% relative change for 
high consequence (Figure 4b) and less than 12% 
for low consequence (Figure 4a). This 
dependence on r and θ is negligible compared to 
the changes seen in the resistance factor, which 
is supposed to depend on r andθ , (see guϕ in 
Figure 3) of up to 300%. 

 
Figure 4. ULS consequence factors for shallow 
foundations required to adjust mp = 1/5000 to 
low consequence mp = 1/1000 in (a) and to high 
consequence mp = 1/1000  in (b). 
 
Noting that consequence factors of lower value 
result in lower failure probability, it can be seen 
that if uΨ is selected as 0.9 for  high failure 
consequence cases, then the target maximum 
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acceptable failure probability will be less than 
1 /10,000mp = for all cases of r and θ

considered in Figure 4b. 
Since it is not so important to remain 

conservative when the failure consequences are 
already low, Figure 4a suggests that 1.15uΨ =
might be appropriate for low failure consequence 
designs. 

4. CONCLUSIONS 
The paper presents a unified theory which allows 
the estimation of both failure probability and the 
resistance and consequence factors required to 
achieve a target failure probability. Perhaps the 
most important component of this unified theory 
is eq. (19), which in a more generalized form 
appears as 
 2 2 2

ln ln ln 2
TW F R f s fssss   γ γ γ = + + −    (24) 

where R denotes ‘resistance’ and is replaced by 
the ground parameter(s) which are important for 
the problem. This equation can then be used in 
eq. (13), to determine failure probability, or in 
eq. (14) to determine required resistance factors 
given a target reliability. Eq. (24) includes the 
following components; 
1) variability of the applied load ln( )

TFσ , 
2) variability of the ground ln( )Rσ , 
3) variance reduction due to averaging of the 

ground properties  under and around the 
foundation  ( )fγ , 

4) variance reduction due to averaging of the 
ground properties  found in the soil sample
( )sγ , and perhaps most importantly, 

5) correlation between the sample and the 
properties of the ground  under and around 
the foundation ( )fsγ . 

The last allows for a reasonable modeling of ‘site 
understanding’ so that resistance factors can be 
selected based on how well the response of the 
ground supporting the foundation can be 
predicted. The distance r used in this study can 
be used as a proxy to reflect general site and 
model understanding, where `model 
understanding' refers to how accurate the ground 

response prediction model is. As site and model 
understanding decreases, the corresponding 
value of r selected in this study would be 
increased. 

The consequence factor is used to adjust the 
target failure probability from the ‘typical’ level 
to either a high or low consequence level. 
Although not shown in this paper, a review of 
the consequence factors required for various 
limit states shows that the consequence factors 
are very similar, meaning that they are largely 
independent of the limit state under 
consideration. Thus, the distinction between sΨ
and uΨ can be dropped, and a common 
consequence factor, Ψ , used.  

5. ACKNOWLEDGEMENTS 
The authors are thankful for the support provided 
by the Natural Sciences and Engineering 
Research Council of Canada and by a Special 
Research Project Grant from the Ministry of 
Transportation of Ontario (Canada). 

6. REFERENCES 
Fenton, G.A., and Griffiths, D.V. (2008). Risk 

Assessment in Geotechnical Engineering, John 
Wiley & Sons, New York. 

Fenton, G.A., Griffiths, D.V., and Zhang, X.Y. 
(2008). Load and resistance factor design of 
shallow foundations against bearing failure, 
Can. Geotech. J., 45(11), 1556–1571. 

Griffiths, D.V., Fenton, G.A., and Tveten, D.E. 
(2002). Probabilistic geotechnical analysis: 
How difficult does it need to be?,  Proc. Int. 
Conf. on Probabilistics in Geotechnics: 
Technical and Economic Risk Estimation, 
United Engineering Foundation, Graz, Austria, 
3–20. 

Prandtl, L. (1921). Uber die Eindringungsfestigkeit 
(Harte) plastischer Baustoffe und die Festigkeit 
von Schneiden, Zeitschrift fur angewandte 
Mathematik und Mechanik, 1(1), 15–20. 

 
 


	1. INtroduction
	2. Theoretical Failure Probability and Derived Design Factors
	3. Factors for the ULS Design of Shallow Foundations
	4. Conclusions
	5. Acknowledgements
	6. References

