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Abstract. Using recently obtained deterministic results as a benchmark, probabilistic slope stability analyses have been 
performed on an undrained slope using the random finite element method (RFEM). Non-stationary random fields have been 

generated with linearly increasing mean undrained strength and a constant coefficient of variation. The influence of input spatial 

correlation and variance on the probability of slope failure in a test example is reported, and particular attention is drawn to the 
solutions corresponding to extreme values of the spatial correlation length. 
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1. Introduction 

In the world of probabilistic geotechnical 

analysis, it seems likely that slope stability 

analysis has received more attention than any 

other application. A very significant bibliography 

is now available which is too extensive to 

mention here, but important early contributions 

in the 1970s include those of Matsuo and Kuroda 

(1974), Alonso (1976), Tang et al. (1976) and 

Vanmarcke (1977). Research from the University 

of New South Wales group deserves special 

mention including that of Mostyn and Li (1993) 

from which the title of this session, namely 

“Probabilistic Slope Stability Analysis: The State 

of Play” was borrowed. Recognition of the 

importance that statistical approaches might play 

in geotechnical analysis goes back much further. 

In his foreword to the inaugural issue of the 

journal Géotechnique in 1948, Karl Terzaghi 

talked about soil properties varying “…from 

point to point.” Probabilistic tools have 

subsequently been developed ranging from event 

trees to first order reliability and moment 

methods (e.g. Whitman 1984, Wolff 1996, 

Lacasse 1994, Christian et al. 1994, Hassan and 

Wolff 2000, Duncan 2000).  

 

It is only quite recently however, that Terzaghi’s 

observation of spatially varying soil properties 

has been tackled explicitly by the Random Finite 

Element Method (RFEM). In the work of 

Griffiths and Fenton (2000, 2004), slope stability 

analyses were presented using elastic-plastic 

RFEM. The random fields were generated using 

the Local Averaging Subdivision (LAS) method 

(Fenton and Vanmarcke 1990) which is able to 

model spatial variability while properly 

accounting for local averaging over each finite 

element. The deliverable in such an analysis by 

RFEM is the probability of failure as opposed to 

the classical factor of safety. Several papers 

written by the authors have used RFEM to 

considered slopes with stationary random 

properties, however this paper will describe 

some probabilistic analyses of undrained slopes 

with non-stationary random fields, in which the 

mean and standard deviation of soil strength 

increase linearly with depth.  

The general slope geometry and parameters as 

used in this study are shown in Figure 1 together 

with a typical finite element mesh. 

 



 
Figure 1. a) Slope geometry and soil properties b) typical 

finite element mesh. 

 

Figure 1a shows that the mean undrained 

strength is a linear function of depth according to 

the equation 

0uz uc c z                                (1) 

where  
uzc  is the mean strength at depth z , 

0uc

is the mean strength at crest level and  is the 

gradient of mean strength. In this study the 

standard deviation of undrained strength is also 

assumed to be a linear function of depth with a 

gradient that results in a constant coefficient of 

variation 
ucv . It can also be noted that the spatial 

correlation length   is assumed to be constant 

and isotropic in this study. Other parameters 

include the undrained friction angle 0u   and 

the saturated unit weight  . The slope is inclined 

to the horizontal at angle  , with height H and 

depth ratio to a lower firm layer D .  

2. Random Field Generation with Linearly 

Increasing Mean Strength 

The random field generation is based on the 

RFEM method which is described in detail in 

Fenton and Griffiths (2008). Full source code 

RFEM downloads are available at the web site 
www.mines.edu/~vgriffit/rfem 

 

Initially, a homogeneous, stationary, lognormal 

random field based on the parameters at 0z   , 

i.e. mean 
0uc , standard deviation 

0uc and 

spatial correlation length   is generated across 

the mesh. The element values are then scaled to 

account for depth 0z   using 
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Eq. (1) shows that a quite simple adjustment to 

0c  from the initial stationary random field is 

needed to deliver the non-stationary 
zc with 

linearly increasing mean strength and constant 

coefficient of variation.. 

 

An example of some typical simulations are 

shown in Fig.2, for a relatively short spatial 

correlation of 3m    

 
Figure 2. Three typical simulations of a linearly increasing 

random field  3m    

Higher spatial correlation lengths will lead to 

smoother variations with depth, and for a typical 

simulation, few crossings of the linearly 

increasing mean line. 

 

Figure 3. Grey-scale representation of a simulated random 

field with linearly increasing strength with depth  10m  . 

Dark is stronger, light is weaker. 

http://www.mines.edu/~vgriffit/rfem


3. Probabilistic Slope Stability by RFEM 

Following generation of the non-stationary 

random field as described above, a finite element 

slope stability analysis is performed. The finite 

element code is run in a “Fail/No-Fail” mode 

(e.g. Griffiths and Fenton 2004) where each 

simulation of the Monte-Carlo process results in 

a binary result depending on whether the 

algorithm converges within 500 iterations (no 

fail), or hits the iteration ceiling of 500 (fail). 

Although 500 is user- defined and other values 

could be used, it has been determined that 

simulations needing 500  iterations clearly 

indicate the population of failed slopes. After a 

sufficient number of simulations have been 

performed, the probability of failure 
fp  is 

simply the number of simulations that indicate 

failure, divided by the total number of 

simulations.  

4. Number of Monte-Carlo Simulations 

The number of Monte-Carlo simulations needed 

to obtain stable output is largely a function of the 

variability of the input. Figure 4 shows the 

probability of failure as a function of the number 

of simulations for a typical slope example. 

Reasonably stable and reproducible results are 

seen to occur when the number of simulations 

reaches 1000simn  . 

 
Figure 4. Check on the number of Monte-Carlo simulations 

needed for statistical stability.  

5. Results of Probabilistic Slope Analysis 

A comprehensive set of analyses and parametric 

studies have been performed on the probabilistic 

slope stability problem with linearly increasing 

mean strength. In the current paper, a slope with 

the geometry and properties given in Table 1 will 

be considered. 

Table 1. Geometry and properties of test slope 

 

 

 

  

 

 

  
 

 

Based on the work of Hunter and Schuster 

(1968), and the more recent refinements of 

Griffiths and Yu (2015), a deterministic analysis 

of the slope indicated in Table 1 would have a 

factor of safety of 1.51FS  , with a critical 

failure circle tangent to a depth ratio of 1.38D  . 

It may be noted that the deterministic critical 

failure mechanism does not go to the full depth 

of 1.5D  , as would be the case for a 20    

slope if 
uc  was constant. 

 

 
Figure 5. Probability of slope failure as a function of spatial 

correlation length and coefficient of variation.  

 

 20
o 

H 10 m 

D 1.5 

0uc  18 kPa 

  2.4 kN/m
3
 

  20kN/m
3
 



The computed probability of failure by RFEM 

for a range spatial correlation lengths and 

coefficients of variation is given in Fig.5. 

 

The results show that the probability of failure 

fp  increases with both the coefficient of 

variation 
ucv  and the spatial correlation length  . 

In this particular example, the highest probability 

of failure corresponds to the highest spatial 

correlation lengths. This is not always the case in 

probabilistic slope stability analysis however, 

where steeper slopes with stationary random 

fields can sometimes indicates a “worst case” 

spatial correlation length of the order of the slope 

height  H  (see e.g. Allahverdizadeh 2015). 

It is expected that slopes with linearly increasing 

strength may also exhibit this “worst case” 

phenomenon, which will be explored as part of a 

much broader parametric study. 

 

Returning to the results of the example problem 

presented in Fig.5, insight into the role of spatial 

correlation on the probability of failure can be 

obtained by considering the limiting cases of 

very small  0   and very large   

spatial correlation lengths (e.g. Griffiths et al. 

2009). 

 

5.1. Very Small Spatial Correlation Length 

As 0  , Median
u uc c   and 0

uc  for all

z  due to local averaging of a lognormal process. 

Each Monte-Carlo simulation is therefore 

essentially identical and deterministic, with an 

adjusted linear strength profile given by  
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Typical values of the adjusted surface value at 

0z   and strength gradient from Eq.(2) are 

given in Table 2. 

 

 

 

 

 

 

Deterministic linear strength parameters from Eq.(2) for the 

slope from Table 1 as  0    
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0.0 18.00 2.40 1.51 0 

0.3 17.24 2.30 1.45 0 

0.4 16.71 2.23 1.41 0 

0.5 16.10 2.15 1.35 0 

0.7 14.75 1.97 1.24 0 

0.9 13.38 1.78 1.13 0 

1.1 12.11 1.61 1.02 0 

1.14 11.89 1.59 1.00 1 

1.3 10.97 1.46 0.92 1 

 

It is seen from Table 2 that as the input 

coefficient of variation is increased, the surface 

strength and gradient are proportionately reduced. 

For the cases considered in Fig.5, namely 

0.3,0.4,0.5
ucv  as highlighted in the table, the 

deterministic factor of safety is always greater 

than unity, hence 0fp  . It can also be noted 

from the table however, that as 
ucv is further 

increased, the deterministic factor of safety 

eventually becomes less than unity and 1fp  . 

The sudden switch from 0fp  to 1fp   

occurs at about 1.14
ucv  which would be 

considered a high variability, even for an 

undrained strength (e.g. Lee et al. 1983). It may 

be noted from Eq.(2) that the extrapolated 

strength profiles corresponding to different 
ucv  

values all pass through the same point above the 

crest at a height given by 
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For the particular slope under consideration the 

common point is at 0 7.5mz   as shown in Fig.6. 

 



 

Figure 6. Linear undrained strength distributions showing 
transition from safe to unsafe conditions.  

 

5.2. Very Large Spatial Correlation Length 

As   , each Monte-Carlo simulation gives a 

linearly increasing strength profile, but all 

different to each other. Based on Eq.(1) it can be 

shown that each simulation has a strength profile 

given by 
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where 
0uc  is randomly picked from a lognormal 

distribution with mean 
0uc  and coefficient of 

variation 
ucv . As with Eq.(2), the extrapolated 

strength distributions all pass through the same 

point as given by Eq.(3). 

 

As shown in Fig. 6 and Table 2, slope failure 

occurs when 
0 11.89kPauc  . Since 

0uc  is 

lognormally distributed with a mean of 

0
18kPa

uc   the probability of failure 
fp  will 

depend on 
ucv  . 

 

Take for example, the case in Fig.5 where 

0.5
ucv  . The mean and standard deviation of 

the underlying normal distribution of 
0ln uc  are 

given from standard transformations as 
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The probability of failure is therefore given by 
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where   is the cumulative distribution function.  

Similar operation for the cases where 0.4
ucv 

and 0.3
ucv   lead to 0.19fp   and 0.09fp 

respectively, which define the asymptotic values 

the results are approaching in Fig.5 as   . 

6. Concluding Remarks 

The paper has described probabilistic analysis of 

an undrained slope with linearly increasing mean 

strength and constant coefficient of variation.  

In the example presented, the probability of 

failure increased monotonically with the 

coefficient of variation and the spatial correlation 

length of undrained strength. Attention was also 

drawn to probabilistic behavior corresponding to 

extreme values of the spatial correlation length 

where 0   and    enabling validation 

against deterministic values. Results presented in 

this paper form a subset of a much larger 

probabilistic study on undrained slopes with 

linearly increasing strength, which will be 

reported elsewhere. 
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