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Abstract. It is well known that redundancy generally improves system reliability. For example, a geotechnical support system 
comprised of a single monopile will have the same failure probability as the monopile itself. Alternatively, if the geotechnical support 
system is comprised of two piles, each of which can support the load with probability 1 fp− , then the system failure probability will 

lie somewhere between fp and 2
fp . In this case, if the failure probability of an individual pile is 1 /100fp = , then the system failure 

probability will lie between 1/100 and 1/10,000, depending on the degree of statistical dependence between the piles. Clearly, 
redundancy in the geotechnical system has the potential to significantly reduce the system failure probability. From a design point of 
view, since redundancy generally increases system reliability, the individual system elements (e.g., piles) need not necessarily be 
designed to the same level of reliability. In other words, if the supported load is distributed amongst a number of footings or piles, 
redundancy should be taken into account to achieve construction savings while maintaining overall safety. This paper looks 
specifically at the effects of redundancy in pile support systems on the overall system reliability. It is assumed that the support only 
fails when all piles have failed and piles fail randomly according to the local ground strength (pile structural capacity is not 
considered). Two load transfer models between failed (excessively displaced) and surviving piles are considered. Pile system 
reliability is then estimated as a function of the distribution of pile resistance, the load transfer model, the number of piles, and the 
target design reliability of individual piles. Charts are produced to allow the selection of individual target design reliability for a given 
number of piles and the target system reliability. 
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1. Introduction 

System redundancy generally increases system 
reliability, which means that individual elements 
(e.g. piles) need not be designed to the same level 
of reliability if it is known that failure of individual 
piles will not result in system failure. In other 
words, if the load is distributed amongst a number 
of piles, redundancy should be accounted for to 
achieve construction savings while maintaining 
overall safety. 

All systems are made up of one or more 
components, and the reliability of a system largely 
depends on the reliability of the individual 
components. Thus, it is necessary to first identify 
the components that make up a system, and how 
they individually contribute to system reliability. 
The next step is to establish the distribution of the 

individual component reliabilities from which 
reliability of the system is computed. 

The main goal of this paper is to investigate 
the relationship between number of piles and 
system reliability for various resistance statistics 
and various levels of dependency between piles. 
 
1. Methodology 

Piles are often used in groups and connected at the 
top by a pile cap. A pile system consisting of pn
piles is considered here, which supports the total 
vertical load TF . Practically speaking, the 
following three scenarios can be considered when 
reliability of a pile system is of concern: 
 
• Approach 1: The supported structure is 

somewhat flexible, so that when a pile is 
displaced past its ultimate capacity, its load is 
distributed amongst the remaining piles (load 



sharing). System failure occurs when all piles 
are displaced beyond their ultimate 
capacities. 

 
• Approach 2: The supported structure is rigid, 

in which case the piles are all displaced 
equally by the applied total load. This implies 
that the foundation reaction is purely the sum 
of the individual pile resistances, where the 
resistance of each pile depends on its common 
imposed displacement. 

 
• Approach 3: Piles act independently and are 

loaded independently. It is assumed in this 
case that the supported structural performance 
is lost (system failure) if any of the piles fail. 
System failure thus occurs if one or more piles 
fail, i.e, 

 P / minf T p ii
p F n R = ≥    (1) 

where iR  is the resistance provided by the thi
pile.  

Since approach 3 does not involve any redundancy, 
it will not be considered further in this research. 
Therefore, only the first two approaches are 
investigated in detail here. 
 
2.1. Approach 1 

Assuming that F  is the event corresponding to 
failure of the pile system, then 
 { }1 2 ...

pnF F F F= ∩ ∩ ∩   (2) 

That is, the failure of the pile system occurs only if 
all of its elements fail, where iF  denotes the 

failure of the thi pile, 1, 2,..., pi n= . Thus, the 
failure probability of the pile system can be 
computed using the multiplication rule as 
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Assuming that iR is the resistance provided by thi
pile, then 

 [ ]P =P /f i i T pp F R F n = <    (4) 
where all piles are assumed to have the same 
resistance distribution (with the same mean and 
variance). 

The first probability in Eq. (3) is calculated as 
follows. Assuming that the lognormal distribution 
is the appropriate distribution to represent both 
load and resistance, then the probability that the 
first pile fails under load /T pF n  is 
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where   
 1 1 /p TZ n R F=   (6) 
is lognormally distributed so that 
 ( )1 1ln ln ln lnp TZ n R F= + −   (7) 
is normally distributed with mean and variance 
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assuming independence between load and 
resistance. /R R Rv σ µ=  and /T T Tv σ µ=  are the 
coefficients of variation of 1R  and TF respectively. 

One simple way to introduce dependence 
between piles is to assume that they share the load 

TF  equally, but otherwise fail independently. This 
means that if one pile fails, the other 1pn − piles 
share the load / ( 1)T pF n − . 

The second probability in Eq. (3) corresponds 
to the case that a pile fails given that another pile 
has already failed. In this case, the total load TF is 
assumed supported by, and distributed amongst the 
remaining 1pn − piles, so that 
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where  
 2 2( 1) /p TZ n R F= −   (10) 
is lognormally distributed so that 
 ( )2 2ln ln 1 ln lnp TZ n R F= − + −   (11) 
is normlly distributed with mean 
 

2ln ln lnln( 1)
TZ p R Fnµ µ µ= − + −   (12) 

and variance as given by Eq. (8).  In general, the 
probability that a pile fails given that 1i −  piles 
have already failed is 
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where 
 ( 1) /i p i TZ n i R F= − +   (14) 
is lognormal so that 
 ( )ln ln 1 ln lni p i TZ n i R F= − + + −   (15) 
is normal with mean 
 ( )ln ln lnln 1

i TZ p R Fn iµ µ µ= − + + −   (16) 
and variance as given by Eq.(8). 
 
Substituting Eq. (13) into Eq. (3) results in 
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Once the probability of the system failure is 
determined, the number of piles, pn , to achieve a 
certain target system failure probability, maxp , can 
be found using root-finding algorithms, such as 
one-point iteration or bisection, by setting 

maxfp p= . Now pn can be found as roof of 
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Similarly, for a given maxp , pn , Rv , Tv , and 

Tµ , the required individual mean pile resistance, 
can be found by using the bisection algorithm to 
solve for the required ln Rµ  in Eq. (18) combined 
with Eq. (16). From this, the required pile mean 
resistance, Rµ , can be found using the following 
transformation, 

 ln 21R
R Re vµµ = +   (19) 

The system reliability index, sysβ  is defined as 

 ( ) ( )1 1
max max1sys p pβ − −= F − = −F   (20) 

where maxp is the target failure probability. For a 
given sysβ , the reliability index for an individual 
pile, iβ  can be obtained by first finding required 

pn  or ln Rµ , using the methods described above, 
then calculating individual pile failure using Eq. 
(4), and finally 
 [ ]( )1 Pi iFβ −= −F   (21) 

 
2.2. Approach 2 

If the supported structure is rigid, then any 
displacement of the structure involves an equal 
displacement of each pile. This means that the 
resistance provided by each pile is obtained from 
its load-displacement curve at a given common 
displacement. Each pile will have a different load-
displacement curve due to variations in soil 
property, installation procedures, etc, so that the 
resistance provided by each pile will be a random 
variable. Let iR  be the resistance provided by the 

thi  pile at the displacement imposed by the 
structure, so that the total resistance will be 
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The problem now is to determine the 
distribution of iR . General approaches are to 
statistically analyze individual pile tests and 



develop distribution fits. When pile groups are 
involved, correlation between piles can affect the 
overall pile system resistance. This phenomenon is 
typically handled by using the individual pile test 
results to develop the distributions and introducing 
a system efficiency factor, which adjusts the 
overall pile system resistance to account for this 
correlation. The total resistance thus becomes 
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where ξ  is a system efficiency factor (typically 
1≤ ), and is defined as the ratio of the ultimate 

resistance of a pile system to the sum of the 
resistances of the individual piles. The failure 
probability of the pile system is calculated as 
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Since sums of random variables tend to the normal 
distribution by the central limit theorem, the sum 
of individual resistance will be at least 
approximately normal assuming some 
independence between pile resistances. For 
simplicity, it will be assumed that the total load 
(also being a sum of individual structural loads) is 
also at least approximately normal. This means that 

the quantity 
1

pn
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i

Y F Rξ
=

= − ∑  is normally 

distributed with mean and variance 
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So that 
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Eq. (25) assumes that the individual pile 
resistances are uncorrelated. In general, this will 
not be true, and leads to a variance which is lower 
than if the pile resistances are positively correlated. 
The implication of correlation between piles has 
been discussed previously in this section and has 
been assumed to be handled by the system 

efficiency factor. Thus, it will be assumed here that 
the pile resistances are uncorrelated. 

For a given target maximum failure 
probability, maxp , the required number of piles, pn , 
can be found by solving 
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0T p R
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  (27) 

for pn . Alternatively, Eq. (27) can be solved for

Rµ , for a given maxp and pn , to find the required 

individual pile resistance to achieve a given maxp . 
Once pn or Rµ  are obtained for a certain maxp
associated with system reliability 

( )1
maxsys pβ −= −F , then the individual pile failure 

probability and in turn the individual pile 
reliability, iβ , can be found from 
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3. Results 

 
The effect of number of piles on system failure 
probability is depicted in Figures 1 and 2 for 

50Tµ = kN, 0.1Tv = , and 0.3Rv = , and various 
mean resistances, for the two approaches. When 
compared to Figure 1, Figure 2 demonstrates the 
need for a higher number of piles to support the 
applied (random) load in approach 2. 

Figures 3 and 4 illustrate how the reliability of 
individual piles, iβ , relates to the system 
reliability, sysβ . For a given Tµ , Tv , Rv , and pn , 

iβ  is determined in Figure 3 by solving Eq. (18) 
for ln Rµ , finding Rµ via Eq. (19), and finally 
calculating iβ  using Eq. (21). Similarly, iβ  values 
in Figure 4 are obtained by first solving Eq. (27) 
for Rµ , for a given Tµ , Tv , Rv , and pn , and then 

calculating iβ  via Eq. (28). These figures can be 
used for design by drawing a vertical line at the 



target system reliability index, sysβ , and then 

reading off the required iβ  for a given pn . For 
example, for a moderate system reliability sysβ = 
3.5 corresponding to fp = 1/5,000 using approach 
1, the required single pile reliability index ranges 
from 0.9iβ =  for 20pn =  to 2.15 for 5pn = , 
which corresponds to individual pile failure 
probabilities ranging from fp  = 0.18 to 0.016. 
Approach 2 recommends a similar but a narrower 
range for iβ (between 1.1 and 1.7) as shown in 
Figure 4. 

 

 
Figure 1. Plot of fp  versus pn for 50Tµ =  kN, 0.1Tv = , and 

0.3Rv = , and various mean resistance values Rµ = 1.0, 1.3, and 
1.5 kN, generated by Eq. (17) using approach 1 
 

 
 
Figure 2. Plot of fp versus pn for 50Tµ = kN, 0.1Tv = , and 

0.3Rv = , and various mean resistance values Rµ = 1.0, 1.3, and 

1.5 kN, generated by Eq. (26) using approach 2 ( 1ξ = ) 
 
 

 
Figure 3. Plot of iβ  versus sysβ  for 50Tµ = kN, 0.1Tv = , and 

0.3Rv = , and various number of piles, pn , generated by Eq's. 

(18), (19), and (21) using approach 1 
 

 
Figure 4. Plot of iβ  versus sysβ  for 50Tµ = kN, 0.1Tv = , and 

0.3Rv = , and various number of piles, pn , generated by Eq's. 

(27) and (28) using approach 2 ( 1ξ = ) 
 

Figure 5 compares the two approaches in 
terms of the required individual reliability index,

iβ , recommended for a given target reliability 
index sysβ . It is observed that the values of iβ  
generated by approach 2 with 1ξ =  fall inside the 
range generated by approach 1. 

In general, a reliability index of iβ = 3.0 ( fp = 
1/1,000) is prescribed in geotechnical design 
practice to target the design of an individual pile in 
non-redundant pile systems ( 4pn ≤ ), and iβ = 2.3 
( fp  = 1/100) for redundant pile systems ( 5pn ≥ ) 
(Zhang et al. 2001, Paikowsky et al., NCHRP, 



2004, Allen 2005, and Barker et al., NCHRP, 
1991). According to Zhang et al. (2001), a sysβ

value of 3.0 requires a iβ  = 2.0 to 2.8. Figure 5 
gives a iβ = 0.7 to 1.9 for sysβ  = 3.0, when pn
ranges from 5 to 20 over both approaches. 
 

 
Figure 5. Comparison of two approaches in terms of iβ versus 

sysβ  for 5pn = and 20 and 1ξ =  
 

Evidently, Zhang et al.’s (2001) results are 
more conservative than suggested here. It is not 
possible to carefully investigate the cause of the 
discrepancy because Zhang et al. (2001) do not 
clearly describe their model. It is felt that perhaps 
some of the difference is due to natural tendencies 
towards conservatism in designing individual piles 
and to the fact that piles do not actually fail 
independently. More research is required to 
investigate the effects of correlation between pile 
resistances. 

 
4. Conclusions 

In this paper, the reliability of a pile system for 
various levels of pile redundancy and resistance 
statistics, are studied, and a relationship between 
reliability of a pile system and its individual 
components is established. For a given pile system 
reliability, the reliability of an individual pile is 
determined analytically for two different loading 
scenarios. The individual piles can then be 
designed to achieve the individual pile reliability 

required to maintain the target system reliability. 
The redundancy reliability model is simple and 
easy to implement. At the moment, it assumes that 
the individual pile resistances are independent, 
which is probably not generally true. An improved 
model would include the correlation between pile 
resistances (through the soil) and its impact on 
reliability of a pile system. 
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