
6th Asian-Pacific Symposium on Structural Reliability and its Applications (APSSRA2016) 
28-30 May 2016, Shanghai, China 

H.W. Huang, J. Li, J. Zhang & J.B. Chen (editors) 

—1— 

 
Observations on Probabilistic Slope Stability Analysis  

 
D.V. Griffiths1,3, Desheng Zhu2, Jinsong Huang3 and Gordon A. Fenton4 

 
1Colorado School of Mines. Email: d.v.griffiths@mines.edu 

2Hohai University. Email: zhudesheng87@163.com 
3University of Newcastle. Email: jinsong.huang@newcastle.edu.au 

4Dalhousie University. Email: Gordon.fenton@dal.ca 
 

Abstract: The paper reflects on developments and advances in probabilistic slope stability analysis, particularly 
when soil properties are modeled using random field theory in conjunction with elastic-plastic finite element 
analysis. Discussion will include the “seeking out” effect of failure mechanisms, “worst case” spatial correlation 
lengths, and some examples of slopes with linearly increasing mean strength. It is suggested that numerical 
discretization approaches to probabilistic slope stability represent the most rational way forward, and use of 
classical limit equilibrium slope stability methods with fixed failure mechanisms should be avoided. 
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1. Introduction 
Slope stability analysis is a branch of 
geotechnical engineering that is highly amenable 
to probabilistic treatment, and has received 
considerable attention in the literature. Important 
early probabilistic papers appeared in the 1970s 
(e.g., Lumb 1970, 1972; Matsuo and Kuroda 
1974; Alonso 1976; Tang et al. 1976; 
Vanmarcke 1977a, 1977b; Yong et al. 1977) and 
publications have continued at an ever 
increasing rate. According to the SCOPUS 
citation database, the most cited papers on 
probabilistic soil slope stability analysis 
(excluding those specifically on rock slopes, 
earthquakes or landslides) include: Vanmarcke 
(1977a), Christian et al. (1994), Griffiths and 
Fenton (2004), Whitman (1984),  EI-Ramly et 
al. (2002), Li and Lumb (1987), Vanmarcke 
(1977b), Wong (1985), Hassan and Wolff 
(1999), Husein Malkawi et al. (2000), Griffiths 
et al. (2009), Alonso (1976), Low et al. (1998), 
Tang et al. (1976). Baecher and Christian (2003) 
published the first textbook dedicated to 
geotechnical reliability, and important 
contributions, especially in the realm of 
engineering practice, should be mentioned from 
Duncan (2000), the NGI group (e.g., Lacasse 
1994; Lacasse and Nadim 1996; Uzielli et al. 
2008; Lacasse et al. 2004, 2007, 2013a, 2013b) 
and the University of New South Wales (e.g., 

Lee et al. 1983; Mostyn and Soo 1992; Mostyn 
and Li 1993). 

Lacasse et al. (2013a) discussed some 
geotechnical projects benefiting from 
probabilistic approaches, but also noted that the 
geotechnical profession was slow to adopt these 
methods in geotechnical design, especially in 
traditional problems such as slopes and 
foundations.  

In his foreword to the inaugural issue of 
Géotechnique in 1948, Karl Terzaghi wrote, 
“…in earthwork engineering the designer has to 
deal with bodies of earth with a complex 
structure and the properties of the material may 
vary from point to point.”  

While tools have been developed for tackling 
probabilistic geotechnical analysis, ranging from 
event trees to first order second moment (FOSM) 
and first order reliability methods (FORM) (e.g., 
Whitman 1984; Wolff 1996; Lacasse 1994; 
Christian et al. 1994; Hassan and Wolff 1999; 
Duncan 2000), the role of spatial variability 
referred to in Terzaghi’s preface is regularly 
ignored, even though its importance in slope 
stability analysis has long been recognized (e.g., 
Mostyn and Soo 1992).  

Griffiths and Fenton (2004) and Griffiths et 
al. (2009) showed that simplified probabilistic 
analyses, in which spatial variability is ignored 
(by essentially assuming infinite correlation 
lengths), can lead to unconservative estimates of 
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the probability of failure. Furthermore, it has 
also been observed that some probabilistic 
geotechnical analyses display a “worst case” 
spatial correlation length at intermediate scales, 
where the probability of failure is a maximum. 

At the time of writing, the majority of 
probabilistic slope stability analyses continue to 
combine probabilistic theories with classical 
limit equilibrium methods, often restricting 
failure surfaces to be circular. Spatial variability 
means that potential failure surfaces are 
frequently non-circular, as the mechanism 
“seeks out” the weakest path through the soil. In 
these circumstances, the assumption of a circular 
failure surface is liable to miss the important 
influence of spatial variability on failure, and 
lead to upper-bound solutions. 

It is only quite recently that Terzaghi’s 
observation of spatially varying soil properties 
was tackled explicitly by a numerical method 
called the Random Finite Element Method 
(RFEM), initially applied to seepage problems 
(Griffiths and Fenton 1993, Fenton and Griffiths 
1993), and later to slope stability analysis 
(Griffiths and Fenton 2000, 2004; Hicks and 
Samy 2002, Fenton et al. 2003). In this work, 
slope stability analyses were presented using 
elastic-plastic finite elements combined with 
random fields. The random fields were 
generated using the Local Averaging 
Subdivision (LAS) method (Fenton and 
Vanmarcke 1990) which is able to model spatial 
variability while properly accounting for local 
averaging over each finite element. The 
deliverable in such an analysis by RFEM is the 
probability of failure as opposed to the classical 
factor of safety. Since the development of the 
RFEM in the mid-1990s, and the subsequent 
wide dissemination of the theory and programs 
(Fenton and Griffiths 2008)  
(e.g., http://inside.mines.edu/~vgriffit/rfem/) the 
method is now used by research groups 
worldwide and has become the state-of-the-art in 
advanced probabilistic geotechnical analysis. 

Some of the issues relating to the proper 
modelling of spatial variability will be reviewed 
and discussed in this paper.  

 

2. Seeking out Failure 
2.1 Deterministic slope stability analysis 
The use of finite elements as a deterministic 
method of slope stability analysis is now widely 
accepted (Griffiths and Lane 1999) and has been 
incorporated into several well-known 
commercial codes. 

While circular failure surfaces are often 
adequate for homogeneous slopes, or slopes 
with gradually varying properties, the “seeking 
out” effect is easily demonstrated in layered 
soils. Fig. 1 shows a finite element analysis of 
the James Bay Dyke (e.g., Christian et al. 1994) 
clearly showing a non-circular critical failure 
surface passing through the weak soil below the 
dyke giving a factor of safety of 1.27FS ≈ . 

 
Figure 1. FE analysis of the James Bay Dyke 

Another deterministic case where the 
benefits of finite element slope stability analysis 
are demonstrated is shown in Fig. 2, involving 
the analysis of a 3-layer slope. 

 
Figure 2. FE analysis of a 3-layer clay slope 

In this case, the finite element analysis 
naturally detects three potential failure surfaces, 
all with about the same factor of safety of FS ≈ 
1.38. A conventional limit equilibrium analysis 
could easily have missed one or more of these 
failure surfaces. 



6th Asian-Pacific Symposium on Structural Reliability and its Applications (APSSRA2016) 
28-30 May 2016, Shanghai, China 

H.W. Huang, J. Li, J. Zhang & J.B. Chen (editors) 

—3— 

The “seeking out” phenomenon is even more 
important when performing probabilistic studies 
using the RFEM. 

2.2 Random slopes with linearly increasing 
strength with depth 
Consider the case shown in Fig. 3 involving a 
lognormally distributed undrained slope with a 
linearly increasing mean strength and constant 
coefficient of variation (e.g., Griffiths et al. 2015). 

 
Figure 3. Random slope with linearly increasing mean 
strength 

Normally consolidated soils regularly 
display an increasing undrained strength with 
depth due to the influence of the effective 
overburden pressure. A special case where the 
strength at the ground surface is zero (

0

0
uc

μ = ) 

is sometimes referred to as a “Gibson soil” 
(Gibson and Morgenstern 1962). 

With reference to Fig. 3 let the mean strength 
at z H=  be given as 

uHcμ . In order to generate 
a random field with the properties 

        
( )

uz uH
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c c

c c c

H z

v
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        (1) 

where 0
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Step 1: 
Generate a homogeneous stationary 

lognormal random field based on the parameters 
at the base of the slope, i.e. mean 

uHcμ , standard 
deviation 

uHcσ  and spatial correlation length θ . 
Let the initial values assigned to all elements at 

this stage be 0 , 1,2, ,ic i n=   where n  is the 
number of elements in the mesh. 

 
Step 2:  

Element values are then adjusted to account 
for other depths using the scaling factor 

0

( )
,  1, 2, ,uH

uH

c
zi i

c

H z
c c i n

μ ρ
μ

− −
= = …    (2) 

where z  is sampled at the centroid of each 
element. See the Appendix for more details. 

It may be noted that for the special case 
where 

uHc Hμ ρ= , 
0

0
ucμ = , and Eq. (2) 

simplifies to  

0 ,  1,2, ,zi i
zc c i n
H

= = …            (3) 

It may also be noted that if 0ρ = , no 
adjustment is necessary, and the stationary 
random field generated in Step 1 is retained. 

Fig. 4 shows two failure mechanisms from a 
suite of Monte-Carlo simulations on a slope with 
the properties indicated in the figure caption. 

 
Figure 4. Failure simulations for a random slope with 

20β = ° , 0.75M = , 1.5D = , 0.5
ucv = , 0.6Θ =   

An isotropic spatial correlation length Θ = θ/H 
was assumed. The figures show complex critical 
failure mechanisms that are clearly non-circular, 
and which would defy meaningful analysis by any 
traditional limit equilibrium method.  

Recent work on the deterministic slope 
stability problem shown in Fig. 3 (Griffiths and 
Yu 2015) has led to some modifications to the 
charts of Hunter and Schuster (1968). The 
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fundamental solution is a stability number 
N given by 

               ( , , )N f D Mβ=             (4) 

after which the factor of safety can be retrieved 
as 

                 (5) 

 

It may be noted that when 0M = the 
stability number no longer depends on D , and 
is a function of β  only, thus  

 ( )N f β=                (6) 

A typical chart from Griffiths and Yu (2015) 
for the case of 2M =  is shown in Fig. 5. A 
striking characteristic of these charts is that as 
D  increases, there comes a point where N  no 
longer depends on D  as indicated by the 
horizontal lines.  

Considering the case of 15β = ° , it can be 
seen that N  falls quite steeply in the range 
1 2D< < , but reaches a constant of 23N ≈  for 
all 2D > . Since FS N∝  from Eq. (5), the 
same trend is true of the factor of safety. 

 

Figure 5. Deterministically, the stability number 
remains constant for D>2 when β = 15° and M = 2 

(see also Fig. 3) 

A probabilistic analysis was performed on 
the same slope with 2M =  using RFEM 
assuming a random soil with linearly increasing 
mean strength with depth and a constant 
coefficient of variation. To facilitate comparison 
with the stability number N  in Fig.5, Fig. 6 
shows the reliability R , as a function of the 
depth ratio D . The results show that as D  is 
increased in the range 1 2D< < , R  falls quite 
steeply as might be expected ( N  is also falling 
in this range), but R  continues to fall at a 
decreasing rate for 2D > .  

This further emphasises the nature of the 
“seeking out” advantages of RFEM. Failure 
mechanisms will remain within the 2D ≤  
range for a deterministic slope with 15β = °  
and 2 ,M = but can go into 2D >  
probabilistically, if weak soil happens to occur 
in this deeper range. 

 
Figure 6. RFEM analyses showing that R (= 1－pf)    

continues to fall in the D > 2 range 

2.3 Random Infinite Slopes 
The “seeking out” phenomenon is strikingly 
demonstrated in the case of a random infinite 
slope analysis, where a 1－D random field is 
used to describe the variation of strength 
properties in the vertical direction. Examples of 
two random fields, one with “long” and “short” 
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spatial correlation lengths are shown in Figs. 
7(a), 7(b) respectively. 

The role of cohesion, friction and pore 
pressure were considered by Griffiths et al. 
(2011), but for the purposes of this section, only 
an undrained infinite slope will be discussed. 
Deterministically, the factor of safety of an 
undrained infinite slope of height H  and 
constant strength uc  is given by 

( )cos sinuFS c Hγ β β=          (7) 

where β  is the slope angle and γ  is the 
saturated unit weight. From Eq. (7), it is clear 
that the minimum factor of safety occurs at the 
greatest depth, i.e. when z H= . If the soil 
properties are randomized however, and uc   
varies with z  as in Fig. 7, failure will occur 
when the ratio uc z  is a minimum, which will 
not necessarily occur at the base. All that is 
needed for analysis of the random case, is to    
compute FS  from Eq. (7) for each slice in the 
range 0 z H< <  and select the minimum value. 
The analysis is essentially “seeking out” the 
weakest path through the infinite slope. 
 Fig. 8 shows the probability of failure 
(proportion of Monte-Carlo simulations where 
the minimum FS < 1) as a function of the 
dimensionless spatial correlation length (Θ = 
θ/H). 
 Clearly the smaller correlation length gives 
more opportunities for failure due to the rapidly 
varying strength with depth, and therefore the 
highest probability of failure. Conversely, the 
“single random variable” solution where 
Θ → ∞  is clearly unconservative. 

3. Worst Case Spatial Correlation Length 
The infinite slope example and results shown in 
Fig. 8 clearly indicate that the probability of 
failure is a maximum when the spatial 
correlation length 0Θ → . This is a fairly 
obvious example of a “worst case” spatial 
correlation length because the system involves a 
series of elements which fails at the “weakest 
link” (i.e. where uc z  is a minimum). In this 
perfectly brittle system, the smaller the value of 
Θ , the more likely it is that a weak link will be 

 
(a)             (b) 

Figure 7. Infinite slope with random shear strength 
and (a) “long” and (b) “short” spatial correlation    

lengths 

Figure 8. Influence of spatial correlation length on the 
probability of failure of a random infinite slope 

found in the depth range 0 z H< ≤  and the 
higher the fp .    

Evidence of a “worst case” phenomenon has 
also been observed in other probabilistic 
geotechnical analyses, although not always as 
strikingly as in Fig. 8. Baecher and Ingra (1981) 
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in a study of foundation settlement, used a 
stochastic finite element approach to show that 
the standard deviation of differential settlement 
between two footings, reached a maximum at a 
spatial correlation length similar to the footing 
separation. Griffiths and Fenton (2001) observed 
a modest reduction in the mean bearing capacity 
of a footing on an undrained random soil when 
the correlation length was of the order of the 
footing width. Examples of “worst case” spatial 
correlation lengths in foundations and earth 
pressure analyses have also been reported by the 
authors. 

3.1 Block compressibility 
Allahverdizadeh et al. (2015) used RFEM to 
investigate the influence of spatial correlation 
length on the compressive strength of a block of 
unconfined Mohr-Coulomb material with the 
typical mesh shown in Fig. 9. A similar problem 
was also considered by Ching et al. (2014).  

Assuming lognormal random properties and 
consistent units with mean values  

tan 0.5774φμ ′ =  and 100cμ ′ = , the 
“characteristic” mean compressive strength can 
be given by  

  ( )0.52
tan tan2 1 346.4mean cq φ φμ μ μ′ ′ ′

 = + + =  
  (8) 

 
Figure 9. Typical RFEM mesh for compressive 

strength analysis of a block 

Following RFEM and Monte-Carlo 
simulation, Fig. 10 shows minima in the mean 
compressive strengths. For the case of 

0.5v = (assuming the same coefficient of 
variation for both c′  and tanφ′ ) the reduction 
is to about 68% of the strength given by Eq. (8) 
when 0.2Θ ≈ . It may be noted that as 0Θ → , 
the values tend to a deterministic result based on 
the median due to finite element local averaging. 

 

Figure 10. Reduction in mean compressive strength 
for different values of BθΘ =  and v 

A probabilistic interpretation including both 
the simulated mean and the standard deviation is 
shown in Fig. 11. 

 

Figure 11. Probability of failure defined as 
[ ]f ult meanp P q q FS= <  

The most pronounced maxima in pf    
occur at lower factors of safety and intermediate 
values of 1Θ ≈ . It seems that the optimal 
spatial correlation lengths facilitate the 
formation of failure mechanisms through the 
block and hence push up the probability of 
failure. 
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3.2 Slope stability 
“Worst case” spatial correlation lengths can also 
be observed for some slope stability analysis. 
Fig. 12 shows three FE meshes corresponding to 
different slopes consisting of undrained clay. 

 
Figure 12. Meshes used in RFEM slope analyses 

Two sets of RFEM results for these slopes 
with stationary lognormal random fields are 
shown in Figs. 13(a),(b) which have been 
deliberately chosen to highlight the “worst case” 
phenomenon. All FS values are based on the 
mean strength. Fig. 13(a) shows the results for 
three different slopes with a fixed mean strength 
and coefficient of variation as indicated. 
Fig.13(b) also varies the mean strength.  

The 90β = ° result in both figures is the 
same. The coefficient of variation is fixed at 

0.5
ucv =  since this is often considered to be a 

practical upper bound for variability of 
undrained strength (e.g., Lee et al. 1983; Phoon 
and Kulhawy 1999). The most pronounced 
maxima in Fig. 13b occur when the mean factor 
of safety is quite low. i.e. 1.15 1.32FS ≈ −  and 
when the spatial correlation length is in the 
range 0.1 0.5< Θ < . 

 

 

Figure 13. Examples of “worst case” spatial 
correlation lengths in RFEM analysis of slopes with 

different angles and strengths 

Consideration of extreme values of Θ  is 
useful for validation. When Θ→0, the slope 
become deterministic, with a uniform strength 
fixed at the median of the lognormal pdf. In all 
cases shown in Fig. 13, the median corresponds 
to FS > 1, so pf = 0. 

When Θ→∞, each Monte-Carlo simulation 
generates a different uniform strength,      
and fp  is simply the proportion of simulations 
where the mean 1FS < . The Θ→∞ case has an 
analytical solution which was presented as a 
chart by Griffiths and Fenton (2004) using the 
formula 
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ln(1 ) 2ln

2 ln(1 )
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u

c
f

c
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p

v

 + − = Φ
 + 

         (9) 

where Φ[.] is the standard normal cumulative 
distribution function. Griffiths and Fenton (2004) 
noted that this chart, reproduced here as Fig. 14, 
could be unconservative for relatively low mean 
factors of safety and relatively high coefficients 
of variation. 

As an example, when the mean FS = 1.31 
and 0.5

ucv = , the probability of failure from the 
chart is given as pf ≈ 0.37, which is the 
asymptote towards which the β = 60° result is 
heading in Fig. 13b. Clearly Θ→∞ in this case 
leads to an unconservative result.  

 

Figure 14. Mean FS vs. pf assuming infinite spatial 
correlation (Θ→∞) for undrained clays (after Griffiths 

and Fenton 2004) 

A further example demonstrating the 
contrast between the Griffiths and Fenton (2004) 
chart and an RFEM analysis is shown in Fig. 15. 
The actual dimensions used in the RFEM 
analyses are shown on the figure. The chart 
result (Θ→∞) with 0.5

ucv =  is shown as a 
smooth line and the RFEM results 
corresponding to several different spatial 
correlation lengths are also displayed. It can be 
seen that the lower values of Θ give conservative 
results (higher pf values) towards the left side of 
the figure, corresponding to lower mean FS 
values. It may be noted that the highest spatial 
correlation length considered in Fig. 15, Θ=5, is 
becoming parallel to the Θ→∞ line, so the 
cross-over point is more sensitive to natural 
fluctuations caused by the Monte-Carlo process 

(the results presented in Fig. 15 used 2000 
simulations). 

 

Figure 15. Influence of spatial correlation by RFEM 
compared with chart results from Fig.14 

Even without spatial variability, a further 
problem with Fig. 14 as noted by Griffiths and 
Fenton (2004) is that the use of the mean FS  
leads to unrealistically high probabilities of 
failure (e.g., note the variation of FS with pf for 
the case of 0.5

ucv = ). Clearly, the choice of the 
mean strength to calculate the FS is overly 
optimistic in this case.   

A more detailed discussion of the choice of 
the characteristic values for computation of FS  
was presented in Griffiths and Fenton (2004). 
Great care should be taken when attempting to 
make direct comparisons between factors of 
safety and probabilities of failure  There are 
well-known counter-intuitive examples (e.g., 
Lacasse et al. 2013a) in which a given slope can, 
at the same time, have a higher factor of safety 
and a higher probability of failure than a second 
slope!  

4. A note on input distribution types 
Hicks and Samy (2002) reported RFEM results 
on undrained slopes exhibiting both uniform and 
linearly increasing “Gibson soil” random field 
distributions. Those authors commented on the 
convenience of the normal distribution, but also 
the well-known disadvantage that the 
distribution can lead to “impossible” negative 
values. 

Fig. 16 shows a typical slope failure 
analysis in which unacceptable negative strength 
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values have crept into an RFEM analysis by the 
use of an unmodified normal distribution. Even 
though very few elements may become negative, 
the numerical effects can be locally spectacular, 
even though the rest of the analysis appear to be 
performing normally. 

 
Figure 16. Influence of a negative soil strength on the 

slope stability analysis of a random soil 

Hicks and Samy (2002) went on to note 
that the inevitable negative values that come 
with a normal distribution can be easily rectified 
for low and intermediate values of 

ucv by 
introducing a lower bound on uc . For a normal 
distribution, 99.73% of data lie in the range, 

3
uz uzc cμ σ± , hence for 0.33

ucv < , the exclusion 
of any values less than 3

uz uzc cμ σ−  will result in 
only 0.135% of data being truncated. Although 
this is a small proportion, if a mesh with several 
thousand elements, such as that shown in Fig. 16, 
is being used, it is likely that several elements 
will become negative in every simulation, 
especially for smaller values of Θ . In a slope 
stability problem dominated by low strength 
elements, this truncation will certainly influence 
the computed fp .  

In order to investigate this, a slope with a 
stationary random field was analysed using (i) a 
lognormal distribution, and (ii) a truncated 
normal distribution in which simulations 
including one or more elements with properties 
falling below a threshold defined by 

zi cz czc μ ασ< −  were truncated from the analysis. 
The influence of α  is shown in Fig. 17. 

As might be expected, increasing α  results 
in increasing fp , because fewer low-strength 
(positive) elements are being excluded. Results  

 

 

Figure 17. Comparison of lognormal and truncated 
normal distributions in RFEM 

in which any simulation which included a 
negative which included a negative property 
were excluded gave essentially the same result 
as 3.3α = . Results from the truncated normal 
distribution as α  increases, seem to be slowly 
heading towards the lognormal result of 

0.5fp ≈ .  

4.1 The bounded tanh distribution 
The lognormal distribution remains the authors’ 
preferred distribution on account of its simple 
transformational relationship with the normal 
distribution, and its non-negative character. The 
distribution is skewed however, and can deliver 
very high values in the right tail. The possibility 
of high values may be not an issue in a 
geotechnical stability or deformation problem, 
where occasionally high strengths or stiffnesses 
may be encountered. It is not reasonable 
however, to use lognormal to model properties 
which are physically bounded (e.g., the friction 
angle, Poisson’s ratio etc.). For example, if the 
friction angle φ′  of a sand is to be made 
random, (as opposed to the preferred tanφ′ ), it 
might reasonably be bounded in the range 
28 48φ′° < < °  (e.g., Bardet 1997). Neither 
normal nor lognormal distributions would be 
suitable for such a range, in which case the 
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bounded “tanh distribution” becomes an 
attractive option. The shape of the tanh 
distribution has considerable flexibility via two 
curve fitting parameters, but the simplest version 
is one that is symmetrical about its mid-point, 
and has the appearance of a normal distribution 
with its tails anchored to the “ axisx − ”. Such a 
tanh distribution for a generic random variable 
X , bounded in the interval ( ),a b , is given by 

the pdf 

( ) ( )
( )( )

2

2
1exp ln

22X
b a x af x

b xss x a b x
π

π
 −  −  = −   −− −     



   (10) 

with the following parameters 

( ) ( )
2 2

0.461 ,     
2 4

X X
b a s

a b
s

μ σ
π

−
= + ≈

+
     (11) 

 
Figure 18. Comparison of the bounded tanh and 

lognormal distributions 

The bounded tanh distribution can be 
shown to be a simple transformation of a 
normally distributed random variable (see 
Fenton and Griffiths 2008 for more details). The 
pdf given by Eq. (10) and the corresponding 
lognormal distribution with the same mean and 
standard deviation from Eq. (11) are plotted 
together in Fig. 18.  

The results of RFEM analyses using these 
two distributions are shown in Fig. 19, and are 
clearly similar, with the tanh distribution giving 
a slightly more pronounced “worst case” 
probability. The authors feel that further RFEM  

probabilistic studies in geotechnical engineering 
using the tanh distribution would be of value. 

 

Figure 19. RFEM slope analysis using bounded tanh 
and lognormal distributions 

5. Concluding Remarks  
In 1997, Lane and Griffiths wrote a paper 
entitled, “Finite element slope stability analysis. 
Why are engineers still drawing circles?” That 
paper was entirely focused on deterministic 
slope stability analysis, however that question 
needs to be asked with even greater urgency 
when it comes to probabilistic slope stability 
analysis. 

As shown in this paper and elsewhere, if a 
slope consists of spatially variable soil, the 
critical failure mechanism will “seek out” the 
weakest path through the soil which will not 
necessarily be circular. Only FE (or FD) slope 
stability methodologies allow the failure 
mechanism to form “naturally”, without any 
assumptions being imposed a priori by the 
choice of slope stability method. For this reason, 
classical limit equilibrium methods should be 
avoided in probabilistic slope stability analysis. 
The imposition of an incorrectly shaped failure 
mechanism (e.g., circular) will typically deliver 
an “upper bound” (unconservative) solution. 

The paper has also discussed the 
phenomenon of the “worst case” correlation 
length. This is the correlation length that leads to 
the highest probability of failure with all other 
parameters held constant. This was 
demonstrated through examples of infinite 
slopes, block compressibility and simple slope 
stability analyses. It was shown that the “worst 
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case” correlation length is problem dependent. 
Infinite slopes gave a “worst case” at very short 
correlation length ( 0Θ → ). Typical slopes with 
higher probabilities of failure displayed a “worst 
case” at intermediate correlation lengths, while 
those with smaller probabilities of failure 
displayed a “worst case” at higher values 
( Θ → ∞ ). 

A brief discussion was introduced about 
the random distribution type assumed for shear 
strength in a probabilistic slope stability analysis. 
The normal distribution remains popular on 
account of its simplicity and familiarity, 
however it brings with it an inevitable 
possibility of generating negative properties 
which are physically meaningless. Negative 
values are easily excluded from an analysis, 
however this raises theoretical questions since 
the truncated normal is not a known distribution 
with an analytical basis. The authors’ preference 
is usually to use the lognormal distribution for 
modelling geotechnical parameters, on account 
of its non-negativity and its simple relationship 
to the normal. For bounded properties however, 
such as the friction angle or Poisson’s ratio, the 
“tanh distribution” is an attractive alternative 
worthy of further investigation. 

Appendix 
Given that for any random variable X with 
lognormal distribution 

( )2
ln ln 1X Xvσ = +          (A1) 

          2
ln lnln 2X X Xμ μ σ= −         (A2) 

Since 
ucv is constant 

              
0ln lnzi ic cσ σ=             (A3) 

The relationship between zic  and 0ic  is 
therefore 
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 −

= × +  
 

 

( )00 ln lnexp ln
i zii c cc μ μ= − +  

0

2
0 ln ln

1exp ln ln
2i zi zii c c cc μ μ σ = − + − 

 
 

0 0

2
0 ln ln

1exp ln ln
2i zi ii c c cc μ μ σ = − + − 

 
 

( )00exp ln ln ln
i zii c cc μ μ= − +  

0

0
zi

i

c
i

c
c

μ
μ

=                         (A4) 

According to Eq. (1), ( )
zi uHc c H zμ μ ρ= − − . 

As the mean of initial values 0ic  is 
uHcμ , 

0i uHc cμ μ= , thus 

0

( )
uH

uH

c
zi i

c

H z
c c

μ ρ
μ

− −
=        (A5) 

Notation 
a      lower bound of the interval 
b      upper bound of the interval 
B      width and height of a block 
c′      effective cohesion 

0ic     initial strength values 

uc      undrained strength 

zic      strength values after adjustment 
D      depth ratio 
H      slope height 

0H     height above crest where u 0c =  
i       simple counter 
M      strength gradient parameter 
FS     factor of safety 
n       number of elements 
N      stability number 

fp      probability of failure 

meanq     mean compressive strength 

ultq       ultimate compressive strength 
R      reliability ( 1 fp= − )  
s        scale parameter 
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Xv       coefficient of variation of X  
X       generic random variable 
z        depth below crest 
α        standard deviation factor 
β        slope angle 
γ        unit weight 

[ ].Φ     standard normal cumulative 
distribution function 

Θ       dimensionless spatial correlation 
length 

θ       spatial correlation length 

( )ln ucθ    spatial correlation length of ( )ln uc  

Xμ      mean value of X  
ρ       strength gradient 

Xσ      standard deviation of X  
φ′      effective friction angle 

uφ       total stress friction angle (=0) 
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