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ABSTRACT 
 

Estimating the shear strength of large in situ discontinuities is far from trivial. One option is to estimate the peak shear 
strength using Barton’s empirical criterion based on the Joint Roughness Coefficient (JRC) that can be measured on a 
trace but JRC is known to be scale dependent. It is also possible to retrieve cores and perform some direct shear tests 
on the surface but such results would require some form of up-scaling, which is still unresolved. A new approach was 
developed to predict shear strength of large discontinuities directly at the intended scale, avoiding changes of scale and, 
as a result, minimizing the scale effect. The approach is based on the rigorous application of random field theory and 
relies on stochastic predictions. This paper presents the validation of the approach, which includes the presentation of a 
new analytical model for shear strength that underpins the application of stochastic predictions. 
 
RESUME 
 

L'estimation de la résistance au cisaillement des discontinuités rocheuses in situ n’est pas aisé. Une option consiste à 
estimer la résistance au cisaillement en utilisant le critère empirique de Barton basé sur le coefficient de rugosité JRC, 
mesurable sur une trace. Toutefois, le JRC est sujet à l’effet d’échelle. Il est également possible d'effectuer des essais 
de cisaillement direct sur des échantillons rocheux, mais ceci implique de procéder à un changement d’échelle pour que 
ces résultats soient pertinents. Une nouvelle approche a été développée pour prédire la résistance au cisaillement de 
grandes discontinuités directement à l'échelle du massif rocheux, en évitant les changements d'échelle et, par 
conséquent, un effet d'échelle. La nouvelle approche repose sur l'application rigoureuse de la théorie des champs 
aléatoires et sur l’utilisation de prédictions stochastiques. Cet article présente la validation de la nouvelle approche et 
celle d'un nouveau modèle analytique de prédiction de la résistance au cisaillement. 
 
 
 
1 INTRODUCTION 
 
The mechanical behavior of rock discontinuities has 
received significant and continuous attention since the 
1960s (e.g. Patton, 1966; Barton, 1976; Barton and 
Bandis, 1980; De Toledo and De Freitas, 1993; Grasselli 
and Egger, 2003, Indraratna et al., 2014). Many facets of 
the problem have been investigated, such as roughness 
characterization (Lanaro, 2000, Ferrero and Giani, 1990), 
anisotropy of response (Jing et al., 1992), effect of 
boundary conditions (Indraratna et al., 1998), as well as a 
number of models to predict shear response. Significant 
advances have also been made on the hydro-mechanical 
couplings with seminal research on the evolution of 
hydraulic conductivity (e.g. Gale, 1982) or unsaturated 
flow in discontinuities (e.g. Indraratna and Ranjith, 2001). 

 

To date, there is still one very important phenomenon 
that is not well accounted for, namely the scale effect. The 
scarce existing data clearly show that the size of the 
specimen tested does influence the peak shear strength 
measured (e.g. Barton and Bandis, 1980; Fardin et al., 
2001). Despite recognition of this effect, there is no 
general consensus on how to upscale test results 
obtained on small sale specimens to a large-scale 
engineering problem. As a consequence, as far as the 
authors are aware, there is reliable method to predict the 
shear strength of large, in-situ discontinuities. One of the 
main challenges when trying to estimate the shear 
strength of an in-situ discontinuity is that the discontinuity 
is typically contained, i.e. hidden, with a rock mass and 
only partial information is accessible on visible traces.  

 



 

This paper presents a new approach to predict shear 
strength of large discontinuities directly at the intended 
scale, avoiding changes of scale and, as a result, 
minimizing the scale effect. The new approach relies on 
the idea that, for natural discontinuities, a trace that is 
visible in situ will share some characteristics with the 
whole surface under consideration. In other words, it is 
assumed that there is enough roughness information from 
a visible trace to create virtual surfaces of specific 
roughness characteristics. Such extrapolation from 2D 
data (trace) to 3D data (surface) is possible via the 
rigorous application of Random Field Theory. 

Although intended for large discontinuity, the method 
is first validated on small-scale specimen, which is driven 
by the need to conduct a significant amount of tests under 
controlled conditions. This paper details the rationale of 
the new method and its validation from laboratory results. 
The paper concludes with a discussion on how the 
method could be used in situ on large discontinuities. 
 
2 A NEW APPROACH FOR SHEAR STRENGTH 

PREDICTION 
 
2.1 Rationale 
 
Most approaches to predict or determine the shear 
strength of discontinuities are deterministic in nature. In 
particular, since the recognition of the role played by 
roughness in the 1960s and 1970s, shear strength 
estimation often requires either the exact discontinuity 
morphology (which inherently captures its roughness) or a 
roughness quantification, for example via the Joint 
Roughness Coefficient (JRC, Barton 1973).  

When trying to estimate the shear strength of a large 
in-situ discontinuity, this deterministic view translates into 
either testing small-scale samples in the laboratory or 
estimating the JRC from a visible trace. Here, it is 
important to remind the reader that in-situ discontinuities 
are often hidden in the rock mass with only few visible 
traces. In that sense, characterizing the whole 
morphology is often not possible. 

Barton and Bandis (1980) showed that a reduction in 
specimen size is typically accompanied by an increase in 
shear strength, which implies that laboratory results are 
not necessarily representative of the strength of a large 
discontinuity. The issue with the in-situ estimate of JRC is 
its known scale dependence (Barton and Choubey, 1977) 
and the fact that there is no consensus on the best 
method to determine JRC. In fact, different methods yield 
different JRC results. 

The idea proposed here is to minimize the scale effect 
by gathering information on the discontinuity directly at 
the intended scale without using a scale dependent 
parameter such as JRC. It is here considered that the 
minimum information available in-situ would be the exact 
profile of a visible trace (referred to as a “seed” trace) that 
can be captured by high precision photographs. This 
profile constitutes a 2D dataset.  
 
For a natural discontinuity, it is reasonable to consider 
that the characteristics of a trace will bear some 
resemblance with that of the full surface. Consequently, it 

is proposed to use the 2D dataset coming from the seed 
trace to create a random field of 3D data, i.e. a synthetic 
surface. The creation of such synthetic surface can be 
achieved via the rigorous use of random field theory 
(Vanmarcke, 1983; Fenton, 1990), which means that the 
3D field is not totally random but follows a specific 
distribution of asperity heights and some degree of 
correlation exists between adjacent points.  

The strength of that synthetic surface could then be 
estimated by using a shear strength predictive model. 
This could be any suitable numerical, analytical or 
empirical model. Note that a specific analytical model has 
been developed for this research (details to be given in 
section 2.2). 

Relying on only one synthetic surface would raise 
questions about the shear strength estimate obtained. 
Indeed, unless the synthetic surface is identical to the real 
surface, the predicted shear strength is unlikely to match 
that of the real surface. The solution adopted here is to 
follow a stochastic approach and run a large number of 
simulations, in a Monte Carlo way, which would then 
produce the possible distribution of shear strength for the 
surface under consideration. Applying this new idea 
requires the development of: 
 
1. A computationally efficient shear strength model. This 

model needs to run in a matter of seconds since many 
synthetic surfaces are to be created and tested. It is 
also preferable for the model to be mechanistic rather 
than empirical, in order to only have the exact surface 
and the rock strength as input and avoid any form of 
calibration. 

2. A random field model to create the synthetic surfaces 
from the statistical properties of a seed trace. This will 
be based on the work by Fenton (1990) and Fenton 
and Vanmarcke (1990). 

 
Information about these models will be given in the 
following sections. 
 
2.2 An analytical model for shear strength 
 
The shear strength model developed here is inspired from 
the work by Huang et al. (2002). The concepts behind 
their 2D model were improved and extended to a 3D 
discontinuity. Note that, despite the model 3D capability, 
2D sketches will be provided to explain some features of 
the model, for the ease of representation. 
 
2.2.1 Inputs and outputs 
 
The model has four inputs:  
 
1. A data file of X, Y and Z coordinates representing the 

gridded surface. X and Y are orthogonal directions 
within the discontinuity plane. The steps along X and 
Y are constant (0.5 mm). In the following, the 
discontinuity plane (X, Y) will be referred to as 
horizontal. Z is the direction perpendicular to the 
discontinuity plane. The lowest point of the surface is 
arbitrarily set to Z=0 mm. At this stage, the two walls 
of the discontinuity are assumed to be perfectly 



 

matching. Non-matching walls will be considered in 
future research. 

2. The rock strength, described a Mohr-criterion, and a 
base friction angle φb. 

3. The shearing direction, which is a unit vector 
contained within the discontinuity plane (X, Y). 

4. The value of normal stress applied to the discontinuity 
(unique value or range). 

 
The model provides an estimate of the peak shear 
strength τpeak, for any given normal stress. Note that this 
simple model cannot predict the evolution of shear 
strength with tangential displacement but this is not an 
issue to apply the proposed method, which focuses on 
strength. 
 
2.2.2 General principles 
 
The model is based on the idea that, upon shearing under 
low confinement, a discontinuity tends to dilate along the 
steepest asperities as illustrated in Figure 1.  
 

 
 
Figure 1: Example of a discontinuity dilating by sliding 
over the steepest asperities. Figure modified after Barton 
(2013). 
 
As a result of this dilation, a redistribution of normal load 
takes place on the asperities that are still in contact. Such 
asperities are referred to as contributing asperities, since 
they are the ones involved in the joint shear resistance.  
 
Note that, in the model, the contributing asperities are not 
only the steepest ones. Once the contribution of the 
steepest asperities has been computed, the model also 
evaluates the contribution of asperities that are less 
steep, until no additional contributing asperities are found 
(process to be detailed in section 2.2.4). In this way, all 
contributing asperities are progressively identified and the 
sum of their individual contribution to shear strength 
becomes the total shear resistance of the discontinuity 
(see Equation 1).  
 
𝑓!"#$ = 𝜏!"#$ ∙ 𝐴!"#$% = 𝑓!!!

!!!      [1] 

where fpeak is the peak shear force, τpeak is the peak shear 
strength, Amacro is the overall area of the discontinuity, N is 
the total number of contributing asperities and fhi is the 
maximum horizontal force that can be sustained by facet 
i. Note that a contributing facet is not necessarily sheared. 
Indeed, a low-lying contributing facet is more likely to be 
slided upon rather than sheared. This will be detailed in 
the section 2.2.3. 
 
2.2.3 Computing shearing and sliding forces  

In its current stage of development, the model only 
accounts for shearing under constant normal stress. 
Following redistribution of the normal load, as mentioned 
in section 2.2.2, all contributing facets are subjected to a 
vertical force fzi estimated from Equation 2: 
 

𝑓!" = 𝜎! ∙ 𝐴!"!#$/𝑁    [2] 

where Atotal is the total area of the discontinuity, N is the 
total number of contributing facets and σn is the normal 
stress applied to the whole discontinuity. A facet can 
sustain a maximum horizontal force fhi (see Figure 2), 
which is either equal to the force required to shear the 
facet (fshearing) or to the force required to slide over the 
facet (fsliding).  
 
fsliding and fshearing are given by Equations 3 and 4, 
respectively:  
 
fsliding = fzi ⋅ tan(φb +θi )       [3] 

 

fshear = Ash ⋅
cos(φ) ⋅sin(θi )

cos(φ +α i ) ⋅sin(θi +α i )
c +σ zi ⋅ tan(α i +φ))

⎛
⎝⎜

⎞
⎠⎟  [4]

 

 
where φb is the base friction angle, θi is the apparent dip 
of the facet, Ash is the area over which shearing occurs 
(assumed to be a plane oriented at αi, see Figure 2), φ 
and c are the Mohr Coulomb parameters, and σzi is the 
local vertical stress (along Z).  
 

 
 
Figure 2. 2D representation of a contributing facet having 
an apparent dip of θi and subjected to vertical force fzi and 
a horizontal force fhi.  
 
The cut-off angle αi is the angle minimizing the amount of 
force required to shear the facet. 
 
For each contributing facet, both fsliding and fshear are 
computed and:  

• If fsliding < fshear then sliding takes place, i.e. 
fhi=fsliding 

• If fsliding ≥ fshear then shearing takes place, i.e. 
fhi=fshearing 

 
2.2.4 Identifying the contributing facets  
 
The first step consists in turning the input surface into a 
triangulated surface, i.e. an assembly of triangular facets 
(see Figure 3). Then, the dip relative to the shear 



 

direction, called apparent dip, is calculated for each facet 
(See Figure 2) according to Equation 5: 
 
𝐴𝑝𝑝𝑎𝑟𝑒𝑛𝑡 𝑑𝑖𝑝 =  𝑎𝑐𝑜𝑠 𝒏. 𝒔 − 90   [5] 

where n  is the unit vector normal to the facet and s  is the 
unit shearing vector. The apparent dip is critical in 
identifying the contributing facets. 
 

 
 
Figure 3: Example of a triangulated surface R and its 
many facets that constitutes the input of the shear 
strength model.  
 
A variable, called critical dip, is used to identify the 
contributing facets. The initial value of critical dip is the 
highest apparent dip: the model starts by computing the 
contribution of the steepest asperities (as per section 
2.2.3). Then, the critical dip is incrementally reduced and, 
each time, the contribution of new facets is added. The 
iterations stop when, for a given critical dip, no more 
shearing occurs, only sliding (see section 2.2.3). In such 
case, no more modification occurs to the surface and no 
other asperities can contribute to the shearing resistance.  
At the end of the iterations, the peak shear strength is 
computed as per Equation 1. The model was 
implemented in Visual Studio using C#.  It takes about 15 
seconds, on a computer having the following 
characteristics: Intel(R) Core(TM) i7-4800MQ CPU @ 
2.70GHz, 8GB of RAM, to obtain a prediction for surfaces 
S and R that contain about 65,000 facets.  
 
2.3 Random field model 
 
A random field model generates random but correlated 
data that follow specific statistical characteristics (Fenton 
and Griffiths, 2008). The subroutines available at 
http://courses.engmath.dal.ca/rfem/rfem_pubs.html, 
created by Fenton, were used for this study.  
 
Ensuring a certain degree of correlation between adjacent 
data points is crucial to obtain realistic synthetic surfaces. 
Indeed, on a natural discontinuity surface, the height of a 
given point is partly conditioned by the height of the points 
adjacent to it. The degree of correlation drops as the 
distance between points grows. This phenomenon is 
captured in a random field model by the correlation 

coefficient, noted ρ(x) where x is the distance between 
two points. Here, a Gaussian correlation formulation, 
common in Geotechnical engineering (Fenton and 
Griffiths, 2008), has been used. It reads: 

 

ρ(x) = e
−π x

θ
⎛
⎝⎜

⎞
⎠⎟
2

      [6] 
 
The rate at which the degree of correlation evolves is 

governed by the correlation length, noted θ, which can be 
estimated from Equation 7: 

 

    [7] 
 
where σh is the standard deviation of heights, σi is the 

standard deviation of gradients and Δx is the spatial 
increment on the surface grid (0.5 mm). The full derivation 
leading to Equation 7 is not provided here for a matter of 
conciseness.  

In conclusion, the inputs for the random field model 
are the statistical distributions of heights and gradients of 
the initial dataset, as well as the correlation length, 
calculated from the statistics of the data set (Equation 7). 
Note that the initial data set can be a full surface or a 
seed trace, which is where this idea can lead to an 
estimate of the shear strength of large in situ 
discontinuities. 
 
Figure 4 provides an example of a synthetic surface 
created from the statistics of surface R (θ = 27.4 mm, σh = 
1.48 mm, σi = 0.15, average of heights = 4.02 mm, 
average of gradients =	-0.0005).	

 
 
Figure 4: example of an artificial surface created from the 
statistics of surface R using the random field model.  
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3 EXPERIMENTAL DATA 
 
3.1 Surfaces and specimen preparation 
 
Three surfaces of different roughness were tested in this 
study. All come from natural discontinuities of 
sedimentary rocks, collected in the vicinity of Newcastle, 
NSW, Australia. Surface S (for smooth) has a JRC in the 
range 2-4, surface M (for medium) has a JRC of 8-10 
while the third one (R – for rough) has a JRC of 16-18. 
For a matter of page limit, only the results pertaining to 
the smoothest (S) and roughest (R) surfaces will be 
presented here. Because of the large number of tests 
required to validate this study, molds were created for 
each surface and mortar replicas of about 100 mm per 
100 mm were tested.  
 

 

 
 
Figure 5: Contour of the surfaces tested in this study: top: 
surface S (JRC: 2-4), bottom: surface R (JRC: 16-18). 
Specimen size is approximately 100 mm per 100 mm. 
Dimensions in mm. 

Figure 5 shows surfaces S and R. After being poured in 
the mold, the mortar was vibrated to avoid the presence 
of air bubbles on the surface and left curing for one week. 
All specimens were tested after one week to avoid 
discrepancy in the results.  
 
3.2 Experimental testing  
 
The specimens were encased in steel boxes using dental 
plaster (as per ISRM recommended method, Muralha et 
al., 2013) before being placed in the direct shear machine 
(see Figure 6). The specimens were sheared under 6 
different values of normal stress (3 values below 1 MPa, 
1.5, 3 and 6 MPa) and in two directions: 0 and 90 
degrees. Looking at the surface represented in Figure 5 
as the bottom wall of the discontinuity, the shearing 
direction of 0 degree corresponds to the top part of the 
discontinuity moving downwards (towards decreasing 
numbers of the vertical axis). 
 
 

 
 
Figure 6: Bottom wall of a discontinuity encased in the 
steel boxes prior to the installation in the shear machine. 
 

 
Figure 7: Evolution of shear stress with tangential 
displacement W under 6 values of initial normal stress for 
surface S. Shearing direction: 0 degree. 
 



 

The tests under 1.5, 3 and 6 MPa were conducted at 
constant normal stress while the tests under lower values 
of normal stress were conducted under a constant normal 
force. This is due to limitations on normal stress control of 
the smaller shear machine. However, it bears no 
consequence on the validation of the model. 
 
3.3 Shear strength response 
 
Figures 7 and 8 presents the typical evolution of shear 
stress with tangential displacement. The response is 
made of an initial linear response where roughness is 
progressively mobilized, until a peak after few millimeters 
of tangential displacement. Asperities are sheared off at 
the peak and the stress progressively drops towards a 
residual value. Consistent with other data of the literature, 
the higher the normal stress, the higher the peak shear 
strength.  
 

 
Figure 8: Evolution of shear stress with tangential 
displacement under 6 values of initial normal stress for 
surface R. Shearing direction: 0 degree. 
 
 
4 VALIDATION OF THE SHEAR STRENGTH MODEL 
 
The digitized surfaces S and R were imported in the shear 
strength model and their peak shear strength was 
evaluated under similar values of normal stresses than 
those used for the experimental tests. Figure 9 provides a 
direct comparison of the predicted peak shear strength 
and experimental peak shear strength for both surfaces, 
two shearing directions and six values of normal stresses. 
Clearly, the model can provide a satisfactory estimate of 
the peak shear strength of both surfaces. Note that no 
calibration of the model is required since it solely relies on 
strength parameters for a given surface morphology. With 
the model validated, let us now it in a stochastic way on 
synthetic surfaces in order to validate the new approach 
for shear strength prediction.  
 

5 VALIDATION OF THE STOCHASTIC APPROACH 
 
5.1 Effect of the number of simulations  
 
As discussed in section 2.1, the new approach aims at 
creating N synthetic surfaces and virtually shearing them 
to obtain N values of peak strength. In the following, the 
prediction results will be expressed in terms of cumulative 
distribution of predicted peak shear strength and/or mean 
value of peak shear strength (noted <τp>). At this stage, 
one relevant question to answer is: how many synthetic 
surfaces should be tested to obtain a reliable distribution 
of shear strength?  
 

 
Figure 9: comparison between predicted peak shear 
strength and measured peak shear strength. 
 
This question was answered by comparing the cumulative 
distributions obtained for 10, 30, 50, 100, 600 and 1000 
synthetic surfaces. All were created from the same 
correlation length of 27.4 mm and a variance of height of 
2.80 mm2  
 

 
 
Figure 10: Effect of the number of simulations on the 
distribution of peak shear strength for synthetic surfaces 
created from the statistics of surface R and sheared under 
a normal stress of 100 kPa. 
 



 

Figure 10 indicates that from 100 simulations, the number 
of simulations has little effect on the cumulative 
distribution of shear strength. Consequently, all the results 
of stochastic predictions in this paper are based on 100 
simulations. 
 
5.2 Effect of correlation length and variance of heights  
 
The key idea of this new method is that, in situ, one trace 
only may be visible but there might be enough information 
in the statistics of that “seed” trace to create 100 realistic 
synthetic surfaces and obtain a meaningful distribution of 
shear strength. It is anticipated that the predicted 
distribution may be affected by the trace visible in situ. 
Indeed, not all traces of a given surface are identical. Two 
different seed traces may yield two different distributions.  
The sensitivity of mean peak shear strength to the initial 
statistics used to create the synthetic surfaces was 
investigated by running systematic simulations. The 
correlation length θ and the variance of heights σh

2 were 
varied in order to obtain 25 combinations (represented by 
the black dots in Figure 11). For each combination, 100 
synthetic surfaces were created and sheared under a 
normal stress of 20 kPa.  
 

 
Figure 11: Values of mean peak shear strength <τp> 
(contours) for a normal stress of 20 kPa as a function of 
the correlation length θ   and the variance of heights σh

2. 
 
The result is a contour map of mean peak shear strength 
value <τp> as a function of θ and σh

2 (Figure 11). It is 
found that the higher the correlation length, the lower the 
shear strength but the higher the variance of heights, the 
higher the shear strength. This can be explained as 
follows: the variance of heights governs the deviation 
around the mean height value. In other words, a high 
variance translates into high asperities, i.e. a rough 
surface and a high shear strength. On the other hand, a 
larger correlation length results in a smoother surface and 
a lower shear strength.  
Over the whole domain of (θ, σh

2) tested, <τp> ranges 
from 15 to 100 kPa, which is quite significant. However, 
this is not a true representation of the actual variability of 
the shear strength. Indeed, Figure 12 shows the actual 

values of θ   and σh
2 of each trace of surface R 

(represented by a cross). When superimposing these (θ, 
σh

2) points to the contour map of Figure 11, it appears that 
only a small fraction of the domain (that defined by the 
crosses) is actually relevant for the surface tested. The 
figure further shows that the mean peak shear strength 
only ranges from about 24 kPa to about 36 kPa. 

 
Figure 12: values of correlation length θ  and variance of 
heights σh

2 of each trace (represented by a cross) of 
surface R superimposed to the contour map of <τp > 
represented in Figure 11. 
 

 
 
Figure 13: Comparison between experimental peak shear 
strength and predicted mean peak shear strength for 
surfaces S and R under 6 values normal stress.  
 
5.3 Results of stochastic predictions  
 
The predictive capability of the new approach was tested 
by creating 100 synthetic surfaces from the statistics of a 
seed trace, randomly selected on surfaces S and R. 
Figure 13 provides the comparison between the 



 

experimental value of peak shear strength and the mean 
peak shear strength resulting from the stochastic 
predictions. Except for few points at low normal stress, 
most of the results fall very close to the 1 to 1 line, 
suggesting that the new stochastic approach can yield 
meaningful predictions of shear strength.  
 
6 DISCUSSION AND CONCLUSIONS 
 
The idea proposed here is to predict the shear strength of 
a discontinuity whose full surface is not accessible. The 
only information available comes from one visible trace, 
the seed trace. The results presented in this paper clearly 
demonstrate that there is enough “roughness” information 
on the seed trace to create synthetic surfaces that are not 
too different from the real discontinuity. When creating 
and testing enough synthetic surfaces, a distribution of 
shear strength is obtained and the mean peak shear 
strength was found to be quite close to the experimental 
value. Although this idea was validated at laboratory 
scale, it is believed it can be applied at a large scale. 
Some consideration must be given to the accuracy of 
survey of the seed trace. The benefit of this approach is 
that the roughness information is directly captured at the 
intended scale and, if the prediction can be made without 
scale dependent parameter, then the scale effect can 
potentially be avoided. There are a number of challenges 
to be addressed before applying this method to real 
discontinuities. Indeed, the present study has not 
accounted for aspects such as discontinuity aperture, 
weathering, filling or even the possible presence of water 
in the discontinuity. Some research is still required to 
include these elements, or at least the most critical ones, 
in the current method. 
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