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ABSTRACT: World-wide, geotechnical design codes-of-practice are increasingly 
targeting acceptable failure probabilities, rather than factors of safety, since the latter 
do not provide an accurate estimate of safety, despite their name. This trend requires 
an ever-increasing understanding of the probabilistic behaviour of geotechnical 
systems. As a result, probabilistic geotechnical models are becoming more complex, 
yet more realistic. In particular, models which consider the effects of the ground's 
spatial variability on failure probability of geotechnical systems are rapidly gaining 
popularity. This is because it is well known that spatial variability leads to weakest 
paths which are preferentially followed by geotechnical failure mechanisms. The 
paper begins by looking at the current state-of-the-art in probabilistic ground models. 
The effect of spatial variability on geotechnical system failure probability is 
discussed, followed by how the random finite element method (RFEM) has and can 
be used to aid in the calibration of geotechnical design codes-of-practice. The paper 
finally looks at what is needed in the future to further improve cost effective 
geotechnical design practices while increasing overall geotechnical system reliability. 
 
INTRODUCTION 

 
Most geotechnical design codes have been migrating towards reliability-based 

concepts for several decades now. From both the code development and the designer 
point of view, the problem becomes one of how to produce a design which achieves 
the code specified target reliability? In recent years, the solution to this design 
problem has been through the use of a methodology called Load and Resistance 
Factor Design (LRFD) embedded within a Limit States Design (LSD) framework. 
Essentially this means that load ( iα ) and resistance ( gϕ ) factors are calibrated so that 
the satisfaction of a design equation of the general form 
 ˆ ˆ

g i i
i

R Fϕ α≥∑   (1) 

leads to an acceptably safe geotechnical system for each limit state. In eq. 1, R̂  is the 
characteristic (nominal) geotechnical resistance and îF  is the i'th characteristic 
(nominal) load effect. In most civil engineering design codes, the load factors are 
specified in the structural part of the code, and so the challenge on the geotechnical 
"resistance" side is to find the values of the resistance factor, gϕ  which achieve the 
code specified target reliability. 
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There are many uncertainties that must be considered in order to calibrate the 
resistance factors. Perhaps one of the major questions that must be answered in order 
to develop a rational reliability-based geotechnical design code is how to properly 
account for the fact that the ground is a highly and spatially variable material. 

This paper concentrates on this last question. It starts by looking at the current 
state of the art in modeling the ground. In particular, how to best include spatial 
variability in the ground's properties, and what effect spatial variability has on the 
ground response and failure probability of geotechnical systems? If the spatial 
variability of the ground can be realistically modeled and failure probabilities 
reasonably estimated, the paper then discusses how this information can used be to 
calibrate the LRFD to achieve target levels of safety (or, equivalently, sufficiently 
small failure probabilities). Finally, the paper discusses future directions and 
requirements in the further development of reliability-based geotechnical design. 

 
MODELING THE GROUND 

 
Random fields are convenient mathematical models of the ground, representing 

the ground’s spatial variability in a simple way. A random field is basically a 
collection of random variables, one for each point in the field. If the field is one-
dimensional, then the points are arranged along a line. A CPT sounding is an example 
of a one-dimensional random field, as illustrated in Figure 1. Every point in the z 
direction (depth) can be represented by a random variable, 1 1 2 2( ), ( ),c cq q z q q z= = … . 
The set of random variables is characterized by a joint probability density function 
which, for a continuous random process, is infinite-dimensional. In practice, the depth 
direction in Figure 1 is discretized into n points and the random variables at the n 
points are used to approximate the continuous process. In this case the joint 
probability density function becomes n-dimensional. Unless n is very small (in which 
case the continuous process may be poorly approximated) specifying a complete n-
dimensional probability density function can still be very cumbersome, and in most 
cases impractical. In practice, a number of simplifying assumptions are made and this 
section briefly summarizes the resulting simplified random field models. 
 

 
Fig. 1. Tip resistance ( )cq z  measured over depth z by a cone penetrometer. 
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Simple Stationary Random Fields 
The random field will now be generically referred to as ( )X x



, which varies with 
spatial position x



. One major simplification is to assume that X is normally 
distributed – ( )X x



 is then commonly referred to as a Gaussian random field. The 
main advantage to this assumption is that a jointly normally distributed random field 
is completely specified by its first two moments: its mean and covariance structure. If 
it is further assumed that the field is statistically stationary, then its mean and 
variance are everywhere the same (spatially constant) and the correlation coefficient 
between any two points is dependent only on the distance (and possibly orientation) 
between the points. The correlation coefficient between two points ( )1X x



 and 

( )2X x


 is commonly expressed using a function such a 

 ( )
22 222 2exp yx z

x y z

ττ τρ τ
θ θ θ

      = − + +            


  (2)  

where 1 2x xτ = −
  

, the vector between the two points, has components ( ), ,x y zτ ττ τ=


 

in three-dimensional space. The parameters xθ , yθ , and zθ  are the directional 
correlation lengths, which basically govern how rapidly the random field varies. 
Small correlation lengths lead to rapidly varying random fields. In the limit, as the 
correlation lengths go to zero, all points in the field become independent – the field 
becomes infinitely rough (white noise). At the other extreme, as the correlation 
lengths go to infinity, the field becomes spatially constant – a single random variable. 

If z x yθ θ θ θ= = = , then the field is said to be isotropic, an assumption which 
might be made in non-site specific studies, i.e., where the actual relationship between 
horizontal and vertical correlation lengths is unknown, or when the correlation 
lengths are basically unknown and only the effect of their magnitude on probabilistic 
site response is being investigated. Figure 2 shows a possible realization of a two-
dimensional isotropic random field (contrast this to Figure 3 which is anisotropic). 

 
Fig. 2. Realization of a spatially variable isotropic two-dimensional random field 
with θ  equal to 1/10 of the field dimension. 
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Anisotropic Random Fields 
Most soil profiles exhibit some degree of layering, usually horizontally, so that the 

soil varies more rapidly in the vertical direction than in the horizontal directions. 
Assuming that z is the vertical direction, a more rapidly varying field in the vertical 
direction can be achieved simply by taking zθ  to be smaller than xθ  or yθ , the latter 
of which are often taken to be equal. In this case, the random field is said to be 
anisotropic – the rate that the correlation function decays with distance now depends 
on direction. 

Another way to achieve an anisotropic random field is simply to simulate an 
isotropic random field and then either stretch it in the direction(s) of the longer 
correlation length, or compress it in the direction(s) of the shorter correlation length. 
For example, if a random field of dimension x y zL L L× ×  is desired where 1x yθ θ= =  
and 0.25zθ = , then simulating an isotropic random field, with 1θ = , of dimension 

4x y zL L L× ×  and then compressing it to dimension x y zL L L× ×  will yield a field with 
the proper statistics. 

Figure 3 illustrates a realization of an anisotropic random field having a horizontal 
correlation length equal to 10 times the vertical correlation length.  

 
Fig. 3. Realization of a spatially variable two-dimensional random field with the 
horizontal correlation length equal to 10 times the vertical correlation length. 
 
Non-Stationary Random Fields 

On occasion the ground parameters do show a spatial trend in the mean, e.g., when 
the mean shear strength increases with depth. Very rarely would the standard 
deviation be assumed to vary with position, although it might be assumed that the 
coefficient of variation remains constant, so that if the mean changes, the standard 
deviation changes accordingly. In the event that the mean and/or standard deviation 
do change with position, the random field can be expressed in the form 

 ( ) ( ) ( ) ( )X x x x G xµ σ= +
   

  (3) 

where ( )G x


 is a stationary zero mean, unit variance, Gaussian random field. What 
Eq. 3 implies is that a random field which is non-stationary in the mean and/or 
standard deviation is easily derived from a stationary random field. If the correlation 
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function (e.g., Eq. 2) is non-stationary, then simulation of the random field becomes 
more complicated and direct techniques, such as Covariance Matrix Decomposition 
(see, e.g., Fenton and Griffiths, 2008), may be required. 
 
Non-Gaussian Random Fields 

Most ground properties are non-negative and so cannot be truly modeled by the 
normal (Gaussian) distribution whose range is ( ),−∞ +∞ .  These properties are better 
modeled by a non-negative distribution, and possibilities include the exponential, 
Weibull, Chi-square, Gamma, and lognormal. One significant advantage to using the 
lognormal distribution to model non-negative engineering properties is that it arises 
from a simple transformation of the normal distribution: 

 ( ) ( ) ( ) ( ){ }expX x x x G xµ σ= +
   

  (4) 
and so is still fully characterized by only the first two moments: the mean and 
covariance structure of ( )G x



. Because of this advantage, one rarely sees the other 
distributions (e.g., Weibull, etc) employed for random fields.  Some ground properties 
are also bounded above. For example, porosity, degree of saturation, and friction 
angle are all bounded both below and above. Possible bounded distributions include 
the uniform (which assumes equilikely possible outcomes), Beta, and Tanh. The last 
is also a transformation of a Gaussian random field 

 ( ) ( ) ( )tanh
2

0.5 1
m s

x a
x

b
G

X a
π

+ 
 

 
= + − + 

   



  (5) 

where a and b are the lower and upper bounds and m and s are location and scale 
parameters. See Fenton and Griffiths (2008) for more details. 
 
Multiple Random Fields 

When the ground is made up of distinct geologic units and the geometry of these 
units is relatively well known, then modeling the ground generally just involves using 
a separate random field for each geologic unit. For example, suppose that a site 
consists of a 5 m thick sand layer overlying a 20 m thick clay layer. Two random 
fields would probably be used to represent the site, one 5 m thick random field having 
the mean, variance, and correlation structure appropriate for the sand layer, and one 
20 m thick random field having the clay layer statistics. 

If the geometry of the geologic units is unknown and therefore random, then the 
model becomes more complicated. The simplest case would be when the number and 
type of layers is known, just their thicknesses are unknown. This then might involve 
simulating random layer thicknesses as a sequence of single random variables and 
then generating the random fields within each layer thickness realization. If, more 
realistically, the layer thickness varies randomly over the ( ),x y  plane, then each layer 
thickness can be simulated using a two-dimensional random field. The simulation of 
properties within each layer would then proceed as follows; 
1. for each layer, simulate the layer thickness as a two-dimensional  random field, 
2. simulate a three-dimensional random field of the layer ground  properties having 

thickness equal to the maximum thickness of the  layer simulated in step 1, 
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3. extract the elements of the three-dimensional random field, simulated  in step 2, 
which lie within the simulated layer thickness. These elements then form the final 
layer property field. 

More complex variations are possible to simulate more complex ground 
stratifications, for example, clay lenses embedded in a sandy soil. In these cases, an 
“indicator” random field can be used to simulate the boundaries of the “lenses”. For 
example, the following algorithm might be used; 
1. simulate a standard Gaussian random field, ( )G x



, having zero mean  and unit 
variance, with some prescribed correlation structure  (correlation lengths). 

2. denote as “clay” all regions where ( )   G cx >


 , where c is some  threshold, and as 
“non-clay” all regions where ( )G x c≤



. If  the ground has more than two ground 
types, then multiple disjoint  and collectively exhaustive ranges can be used to 
simulate the random  boundaries of each material. 

3. once the boundaries of each material have been simulated, simulate the  material 
properties within each “lense” using an appropriately  specified random field(s). 

Multiple random fields in which the geometric aspects are unknown are rarely used in 
practice. This is because the distribution(s) of the geometric uncertainties can be very 
difficult to estimate. For example, even specifying the mean and variance of a layer's 
thickness implies that the layer thickness has been sampled at a reasonable number of 
locations. If that is the case, then it makes more sense to simply assume the layer 
thickness is known at the sampled locations. This motivates the final type of random 
field model to be considered here, as discussed next. 
 
Conditioned Random Fields 

When the objective is to simulate spatially varying ground conditions at a site 
where some samples have been taken, then it makes sense to assume that the ground 
conditions are (at least approximately) known at the locations where the ground was 
sampled. This can be done using a combination of random fields and best linear 
unbiased estimated fields. In particular 

 [ ]( ) ( ) ( ) ( )c u k sX x X x X x X x= + −
   

  (6) 
where ( )cX x =



desired conditional simulation, ( )uX x =


unconditional simulation, 

( )kX x =


best linear unbiased estimate of the field based on the known (measured) 
values at the sample locations, and ( )sX x =



best linear unbiased estimate of the field 
based on the values of ( )uX x



 at the sample locations. Further details can be found in 
Fenton and Griffiths (2008). 

 
THE RANDOM FINITE ELEMENT METHOD 
 

Once a more realistic model of the ground, including its spatial variability, has 
been developed, the next major challenge is to model the response of the ground to 
external or internal loads. When the ground is spatially variable, its failure 
mechanisms become more complex. For example, the traditional symmetric double 
log-spiral failure mechanism found in most textbooks to predict bearing failure under 
a spread footing assumes that the ground is spatially constant. 
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When the ground properties vary spatially, the bearing failure mechanism is no 
long symmetric and is attracted to weaker zones. Figure 4 shows what the failure 
mechanism might look like in a real soil. The lighter (weaker) region to the right of 
the footing attracts the failure mechanism, which is now non-symmetric. The failure 
mechanism is following the path of least resistance through the ground. What this 
means is that the traditionally assumed symmetric failure mechanism is 
unconservative -- it gives a higher strength than actually provided by the ground 
along its weakest path. 

A natural approach to finding the weakest failure mechanism is to employ a finite 
element model of the ground (see, e.g., Smith and Griffiths, 2004). The basic idea is 
to simulate a random field of ground properties, map these properties to a finite 
element mesh and use the finite element method to predict the ground response. 
Figure 5 shows a cross-section through a finite element model of the ground under a 
stiff footing for a typical realization of the ground's effective elastic modulus field in 
a probabilistic settlement analysis. 

 
Fig. 4. Non-symmetric “weakest path” failure mechanism for spatially variable 
ground. 
 

Some discussion of the relative merits of various methods of representing random 
fields in finite element analysis has been carried out over the years (see, for example, 
Li and Der Kiureghian, 1993). While using a spatially averaged discretization of the 
random field is just one approach to the problem, it is appealing in the sense that it 
reflects the simplest idea of the finite element representation of a continuum as well 
as the way that soil samples are typically taken and tested in practice, ie. as local 
averages. Regarding the discretization of random fields for use in finite element 
analysis, Matthies et al. (1997) makes the comment that “One way of making sure 
that the stochastic field has the required structure is to assume that it is a local 
averaging process.”, referring to the conversion of a nondifferentiable to a 
differentiable (smooth) stochastic process. Matthie further goes on to say that the 
advantage of the local average representation of a random field is that it yields 
accurate results even for rather coarse meshes. 

Following this reasoning, realizations of the ground property random field are 
produced using the Local Average Subdivision (LAS) method (Fenton and 
Vanmarcke, 1990).  Specifically, LAS produces a discrete grid of local averages, 

( )e iG x


, of a standard Gaussian random field, having correlation structure given by, 
for example, Eq. 2, where ix



 are the coordinates of the centroid of the i’th grid cell. 
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In detail, ( )e iG x


 is the local arithmetic average of a continuous standard Gaussian 
random field, ( )G x



, over the element having centroid ix


. 

 
Fig. 5. Cross-section through a realization of the spatially random elastic 
modulus underlying a footing. Lighter soils are less stiff. 
 

If the ground property in question is assumed to be lognormally distributed, as is 
commonly the case, these local averages are then mapped to finite element properties 
according to 

 { }ln ln( ) exp ( )e i X X e iX x G xµ σ= +
 

  (7) 
where eX  is the property assigned to the i’th finite element, ln Xµ  is the mean of 
ln ,X  and ln Xσ  is the point standard deviation of ln X . 

One of the features of using local arithmetic averaging is that the variance of the 
average reduces as the element size (averaging dimension) increases. Since a finite 
element generally employs low-order shape functions to approximate the behaviour 
of a continuum, the finite element is essentially modeling the average behaviour of 
the material within the domain of the element. Thus, it makes sense to use an average 
of the material properties within the element, which implies that the variance of the 
material property assigned to the element should reduce as the element becomes 
coarser (more averaging). In other words, the wedding of a local average random 
field with the (low-order shape function) finite element method is natural and 
consistent. 

 
EFFECT OF SPATIAL VARIABILITY 
 

To illustrate the effect that spatial variability has on the response of the ground to 
external or internal loads, two examples will be considered below. 
 
Shallow Foundation Settlement 

The RFEM can be used to estimate distribution of settlements of a single footing, 
as shown in Figure 5, and estimate the probability density function governing total 
settlement of the footing as a function of footing width for various statistics of the 
underlying soil. In this example, only the soil elasticity is considered to be spatially 
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random. In addition, the soil is assumed to be isotropic – that is, the correlation 
structure is assumed to be the same in both the horizontal and vertical directions.  
Although soils generally exhibit a stronger correlation in the horizontal direction, due 
to their layered nature, the degree of anisotropy is site specific. In that this example is 
demonstrating the basic probabilistic behaviour of settlement, anisotropy is left as a 
refinement for the reader. The program used to perform the study presented in this 
example is RSETL2D (Fenton and Griffiths 2002, Griffiths and Fenton 2007; see also 
http://www.engmath.dal.ca/rfem). 

Assuming that the settlement, δ  of a single footing is lognormally distributed, as 
was found to be reasonable by Fenton and Griffiths (2002), having probability density 
function 

 
2

ln

lnln

ln1 1( ) exp ,            0
22

xf x x
x

δ
δ

δδ

µ
σpσ

  − = − ≤ < ∞  
   

  (8) 

the task is to estimate the parameters lnδµ  and lnδσ  as functions of the footing width, 
B, elastic modulus standard deviation, Eσ , and correlation length ln Eθ . Figure 6 
shows how the estimator of lnδµ , denoted lnm δ , varies with 2

ln Eσ  for   0.1B H= . All 
correlation lengths are drawn in the plot, but are not individually labeled since they 
lie so close together.  This observation implies that the mean log-settlement is largely 
independent of the correlation length, ln Eθ . This is as expected since the correlation 
length does not affect the mean of a local average of a normally distributed process. 
Figure 6 suggests that the mean of log-settlement can be closely estimated by a 
straight line of the form, 

 2
ln lnln( ) 1

2det Edµ d σ= +   (9) 

where detd  is the `deterministic' settlement obtained from a single finite element 
analysis (or appropriate approximate calculation) of the problem using EE µ=  
everywhere. This equation is also shown in Figure 6 and it can be seen that the 
agreement is very good. Even closer results were found for other footing widths. 
 

 
Fig. 6. Estimated mean of log-settlement along with that predicted by Eq. 9. 
 

Estimates of the standard deviation of log-settlement, lns δ , are plotted in Figure 7 
(as symbols) for two different footing widths. Intermediate footing widths give 
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similar results. In all cases, lns δ increases to ln Eσ  as ln Eθ increases. The reduction in 
variance as ln Eθ  decreases is due to the local averaging variance reduction of the log-
elastic modulus field under the footing (for smaller ln Eθ , there are more ‘independent’ 
random field values, so that the variance reduces faster under averaging). 

Following this reasoning, and assuming that local averaging of the area under the 
footing accounts for all of the variance reduction seen in Figure 7, the standard 
deviation of log-settlement is 

 ln ln( , ) EB Hδσ γ σ=   (10) 
where ( , )B Hγ  is the variance reduction function, which depends on the averaging 
region, B H× as well as on the correlation length, ln Eθ . Since ln Eσ  is constant for 
each value of   /E Eσ µ , Figure 7 is essentially a plot of the variance function,

( , )B Hγ , illustrating how the variance of a local average decreases as the correlation 
length decreases. Predictions of lnδσ using Eq. 10 are superimposed on Figure 7 using 
lines. The agreement is remarkable. 

 
Fig. 7. Comparison of simulated sample standard deviation of log-settlement, 
shown with symbols, with theoretical estimate via Eq. 10, shown with lines. 
 

An alternative physical interpretation of Eq's 9 and 10 comes by generalizing the 
settlement prediction to the form 

 det E

gE
d µd =   (11) 

where gE is the geometric average of the elastic modulus values over the region of 
influence, 

 
0 0

1exp ln ( , )
H B

gE E x y dxdy
BH

 =  
 ∫ ∫   (12) 

Taking the logarithm of Eq. 11 and then computing its mean and variance leads to 
Eq's 9 and 10. The geometric mean is dominated by small values of elastic modulus, 
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which means that the total settlement is dominated by low elastic modulus regions 
underlying the footing, as would be expected. 

These results can be extended to the serviceability limit state design of a single 
footing. If a square footing of dimension B B× is considered, the design requirement 
is to find B and the ratio of the load to resistance factors, / gα ϕ , such that 

 1

ˆ
ˆmax

g

Fu
B E
aδ
ϕ

 
=   

 
  (13) 

and 

 1 1P ˆ 
ˆ

m
eff g

Fu u p
BE B E

F α
ϕ

 
 >
  

 
=  

 
  (14) 

where maxδ is the maximum tolerable settlement (serviceability limit state), 1u is an 
influence factor (see Fenton et al., 2005, for more details), F is the actual load, effE is 

the equivalent elastic modulus as seen by the footing, F̂ is the characteristic 
(nominal) load, Ê is the characteristic (nominal) elastic modulus, and mp is the 
maximum tolerable failure probability.  In the above, we are assuming that the soil’s 
elastic modulus is the ‘resistance’ to the load and that it is to be factored due to its 
high uncertainty. 

Five different sampling schemes will be considered in this example, as illustrated 
in Figure 8. The outer solid line denotes the edge of the soil model, which is 9.6 x 9.6 
m in plan and 4.8 m in depth as in Figure 5, and the interior dashed line the location 
of the footing.  The small black squares show the plan locations where the site is 
virtually sampled.  It is expected that the quality of the estimate of effE will improve 
for higher numbered sampling schemes. That is, the probability of design failure will 
decrease for higher numbered sampling schemes, everything else being held constant. 

 
Fig. 8. Sampling schemes considered in this example. 
 

For fixed resistance factor, gϕ , the soil samples allow an estimate of the 

characteristic elastic modulus, Ê  and Eq. 13 can then be used to design the footing. 
Repeating the design for many realizations of the soil allows the probability that a 
footing design using gϕ will result in excessive settlement to be estimated. Figure 9 
illustrates the effect of correlation length on the probability of excessive settlement,

fp , for sampling scheme #1. It is evident that a) spatial variability of the ground has 
a strong influence on fp , and b) that there is a worst case correlation length, in this 
case around 10 m – which is of the order of the distance from the footing to the 
sampling point (6.8 m). 
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Fig. 9. Effect of correlation length lnEθ on probability of excessive settlement

[ ] Pf maxp δ δ= > . 

 
Fig. 10. Effect of resistance factor gϕ  on probability of failure 

[ ] Pf maxp δ δ= >  for   0.5Ev =   and ln 10Eθ =  m. 
 
Figure 10 shows the failure probability for the various sampling schemes at a 

coefficient of variation,   0.5Ev = , and ln 10Eθ =  m. Improved sampling (i.e. 
improved understanding of the site) makes a significant difference to the required 
value of gϕ , which ranges from 0.46gϕ ≈ for sampling scheme #1 to 0.65gϕ ≈ for 
sampling scheme #5, assuming a target probability of   0.05mp = . Note that if a 
distance-weighted or trend estimate were used, sampling scheme #4 would have been 
better than #5. In general, more samples are preferable – however, only a simple 
average was used in this study to estimate the soil properties so that the four samples 
not taken directly under the footing in sampling scheme #4 actually just “muddy the 
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waters”, decreasing the accuracy of the sample taken under the footing. The overall 
implications of Figure 10 are that when soil variability is significant, considerable 
design/construction savings can be achieved when the sampling scheme is improved. 
 
Bearing Capacity 

The design of a shallow footing typically begins with a site investigation aimed at 
determining the strength of the founding soil or rock. Once this information has been 
gathered, the geotechnical engineer is in a position to determine the footing 
dimensions required to avoid entering various limit states. In so doing, it will be 
assumed here that the geotechnical engineer is in close communication with the 
structural engineer(s) and is aware of the loads that the footings are being designed to 
support. The limit states that are usually considered in the footing design are 
serviceability limit states (typically deformation – see example above) and ultimate 
limit states. The latter is concerned with safety and includes the load-carrying 
capacity, or bearing capacity, of the footing. 

This example illustrates an LRFD approach for shallow foundations designed 
against bearing capacity failure. The design goal is to determine the footing 
dimensions such that the ultimate geotechnical resistance based on characteristic soil 
properties, ˆ

uR , satisfies 
 ˆ ˆ

g u i i
i

R Fϕ α≥∑   (15) 

where gϕ is the geotechnical resistance factor, iα  is the i’th load factor, and îF  is the 
i’th characteristic load effect. The relationship between gϕ and the probability that the 
designed footing will experience a bearing capacity failure will be summarized below 
(from Fenton et al., 2007) followed by some results on resistance factors required to 
achieve certain target maximum acceptable failure probabilities for the particular case 
of a strip footing (from Fenton et al., 2008). 

The characteristic ultimate geotechnical resistance ˆ
uR is determined using 

characteristic soil properties, in this case characteristic values of the soil's cohesion, c, 
and friction angle, φ (note that although the primes are omitted from these quantities 
it should be recognized that the theoretical developments described in this example 
are applicable to either total or effective strength parameters). 

The characteristic value of the cohesion, ĉ , is defined here as the median of the 
sampled observations, o

ic , which, assuming c is lognormally distributed, can be 
computed using the geometric average, 

 
1/

11

1ˆ exp ln
mm m

o o
i i

ii

c c c
m ==

   = =   
  
∑∏   (16) 

The geometric average is used here because if c is lognormally distributed, as 
assumed, then ĉ  will also be lognormally distributed. The characteristic value of the 
friction angle is computed as an arithmetic average 

 
1

1ˆ
m

o
i

im
φ φ

=

= ∑   (17) 
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The arithmetic average is used here because φ  is assumed to follow a symmetric 
bounded distribution and the arithmetic average preserves the mean. That is, the mean 
of φ̂  is the same as the mean ofφ . 

To determine the characteristic ultimate geotechnical resistance ˆ
uR , it will first be 

assumed that the soil is weightless (and thus cohesive). This simplifies the calculation 
of the ultimate bearing stress uq  to 

    u cq c N=   (18) 
The assumption of weightlessness is conservative since the soil weight contributes to 
the overall bearing capacity.  This assumption also allows the analysis to explicitly 
concentrate on the role of  cc N  on ultimate bearing capacity, since this is the only 
term that includes the effects of spatial variability relating to both shear strength 
parameters c and φ . 

Bearing capacity predictions, involving specification of the cN  factor in this case, 
are generally based on plasticity theories (see, e.g., Prandtl, 1921; Terzaghi, 1943; 
and Sokolovski, 1965) in which a rigid base is punched into a softer material. These 
theories assume that the soil underlying the footing has properties which are spatially 
constant (everywhere the same). This type of ideal soil will be referred to as a 
uniform soil henceforth.  Under this assumption, most bearing capacity theories (e.g., 
Prandtl, 1921; Meyerhof, 1951, 1963) assume that the failure slip surface takes on a 
logarithmic spiral shape to give 

 

tan 2tan 1
4 2

tanc

e
N

π φ π φ

φ

 + − 
 =   (19) 

The theory is derived for the general case of a c φ−  soil. One can always set 0φ =  to 
obtain results for an undrained clay. 

Consistent with the theoretical results presented by Fenton et al. (2008), this 
example will concentrate on the design of a strip footing.  In this case, the 
characteristic ultimate geotechnical resistance ˆ

uR  becomes 
 ˆ ˆu uR Bq=   (20) 

where B is the footing width and ˆ
uR  has units of load per unit length out-of-plane, 

that is, in the direction of the strip footing. The characteristic ultimate bearing stress 
ˆuq  is defined by 

 ˆˆ ˆu cq cN=   (21) 
where the characteristic cN  factor is determined using the characteristic friction angle 
in Eq. 19, 

 

ˆtan 2
ˆ

tan 1
4 2ˆ
ˆtanc

e
N

π φ π φ

φ

 
+ − 

 =   (22) 

For the strip footing and just the dead and live load combination, the LRFD equation 
becomes 
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To determine the resistance factor gϕ  required to achieve a certain acceptable 
reliability of the constructed footing, it is necessary to estimate the probability of 
bearing capacity failure of a footing designed using Eq. 23. Once the probability of 
failure fp  for a certain design using a specific value for gϕ  is known, this probability 
can be compared to the maximum acceptable failure probability mp  . If fp  exceeds

mp , then the resistance factor must be reduced and the footing redesigned. Similarly, 
if fp  is less than mp , then the design is overconservative and the value of gϕ  can be 
increased. Using either simulation or theory, design curves can then be developed 
from which the value of gϕ  required to achieve a maximum acceptable failure 
probability can be determined. 

Figure 11 shows the resistance factors required for the case where the soil is 
sampled at a distance of 4.5r =  m from the footing centerline for the target failure 

probability,   0.001mp = . In the figure, cv  is the coefficient of variation of cohesion. 

 
Fig. 11. Resistance factors required to achieve acceptable failure probability mp  
when soil is sampled at   4.5r =  m from footing centerline and 0.001mp = . 

The worst-case correlation length is evidently about 5 m. This worst-case 
correlation length is of the same magnitude as the mean footing width which can be 
explained as follows: If the random soil fields are stationary, then soil samples yield 
perfect information, regardless of their location, if the correlation length is either zero 
(assuming soil sampling involves some local averaging) or infinity. When the 
information is perfect, the probability of a bearing capacity failure goes to zero and 

1.0gϕ →  (or possibly greater than 1.0 to compensate for the load bias factors). When 
the correlation length is zero, the soil sample will consist of an infinite number of 
independent “observations” whose average is equal to the true mean (or true median, 
if the average is a geometric average). Since the footing also averages the soil 
properties, the footing ‘sees’ the same true mean (or true median) value predicted by 
the soil sample. When the correlation length goes to infinity, the soil becomes 
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uniform, having the same value everywhere. In this case, any soil sample also 
perfectly predicts conditions under the footing. 

At intermediate correlation lengths soil samples become imperfect estimators of 
conditions under the footing, and so the probability of bearing capacity failure 
increases, or equivalently, the required resistance factor decreases. Thus, the 
minimum required resistance factor will occur at some correlation length between 0 
and infinity. The precise value depends on the geometric characteristics of the 
problem under consideration, such as the footing width, depth to bedrock, length of 
soil sample, and/or the distance to the sample point. 
 
RELIABILITY-BASED GEOTECHNICAL DESIGN CODE DEVELOPMENT 
 

A report by Littlejohn (1991) entitled Inadequate Site Investigation made the 
statement “You pay for a site investigation whether you have one or not”, which quite 
clearly points out the cost of geotechnical uncertainty. Essentially, if one does not 
bother with a sufficient geotechnical investigation, one either pays the cost 
immediately by requiring a more conservative design or is going to pay the cost later 
due to some level of performance failure of the designed system. Since performance 
failure at some future date is generally very expensive, there is a real desire in the 
geotechnical community to account for the level of uncertainty during the design 
phase. That is, the level of site and modeling understanding should be balanced 
against the conservatism of the design – the greater the understanding, the less 
conservative, and thus less expensive, the design. Site understanding refers to how 
well the ground providing the geotechnical resistance is known and model 
understanding means the degree of confidence that a designer has in the (usually 
mathematical) model used to predict the geotechnical resistance. 

To provide for designs that account for degree of understanding, it makes sense to 
have a resistance factor which is adjusted as a function of site and model 
understanding. There are at least two advantages to such an approach: 1) overall 
safety can be maintained at a common target maximum failure probability, and 2) the 
direct economic advantage related to increasing site and model understanding can be 
demonstrated. For example, the pre-2014 Canadian design codes specify a single 
resistance factor for bearing capacity design (0.5). It doesn't matter how confident one 
is in one’s prediction of the bearing capacity of a foundation, the same resistance 
factor must be used. Thus, there is no direct advantage to improving the geotechnical 
response prediction. If only a single resistance factor can be used, one might as well 
spend the least amount of time one can on the site investigation and modeling.  

The resulting desire for a resistance factor which depends on site and model 
understanding is not new. The Australian Standard for Bridge Design, Part 3: 
Foundations and Soil-Supporting Structures (AS 5100.3, Standards Australia, 2004) 
provides a range in “geotechnical strength reduction factors” accompanied by 
guidance as to which end of the scale should be used. For example, AS 5100.3 
suggests that the lower end of the resistance factor range (more conservative) should 
be used for limited site investigations, simple methods of calculation, severe failure 
consequences, and so on. It is of interest to note that the Australian Standard 
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recommendations for the resistance factor considers both site and model 
understanding along with failure consequence in their single factor. 

As is well known, the overall safety level of any design should depend on at least 
three things: 1) uncertainty in the loads, 2) uncertainty in the resistance, and 3) the 
severity of the failure consequences. These three items are all usually deemed to be 
independent of one another and in most modern codes are thus treated separately. 
Uncertainties in the loads are handled by load and load combination factors, failure 
consequences are handled by applying a multiplicative importance factor to the more 
site-specific and highly uncertain loads (e.g. earthquake, snow, and wind), and 
uncertainties in resistance are handled by material specific resistance factors (e.g. cϕ  
for concrete, sϕ  for steel, etc).  

Because the ground is also site specific and highly uncertain, it makes sense to 
apply a partial safety factor that depends on both the resistance uncertainty and 
consequence of failure of the ground. This would be analogous to how wind load, for 
example, in the NBCC (NRC, 2010) has both a load factor associated with wind 
speed uncertainty as well as an importance factor associated with failure 
consequences. Figure 12 illustrates the basic idea, where the overall partial factor 
applied to the geotechnical resistance varies with both site and model understanding 
and failure consequence level. The numbers in the figure are relative to the default 
central partial factor (i.e. relative to 1.0) and it is assumed that current geotechnical 
design approaches in Canada lead to typical or default levels of site and model 
understanding so that, for typical failure consequence geotechnical systems, the 
central value is what is currently used in design.  From this value, increased site 
investigation and/or modeling effort leads to higher understanding and a higher 
geotechnical resistance factor (and so a more economical design). Similarly, for 
geotechnical systems with high failure consequences, e.g. failure of the foundation of 
a major multi-lane highway bridge in a large city, the resistance factor is decreased to 
provide a decreased maximum acceptable failure probability. Of particular note in 
Figure 12 is the fact that if a geotechnical system with high failure consequence is 
designed with low site and model understanding, the designer is penalized by a low 
geotechnical resistance factor. 

 
Fig. 12. Floating partial safety factor, relative to the default, applied to 
geotechnical resistance (numbers are for illustration only). 
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Rather than introducing a 3 x 3 matrix of resistance factors for each limit state, the 
multiplicative approach taken in structural engineering (where the load is multiplied 
by both a load factor and an importance factor) is adopted for geotechnical resistance 
as well in the 2014 CHBDC (CSA, 2014). 
     In other words, the overall safety factor applied to geotechnical resistance is 
broken into two parts; 
1. a resistance factor, guϕ  or gsϕ , which accounts  for resistance uncertainty. This 

factor basically aims to achieve a target maximum acceptable failure probability 
equal to that used currently for geotechnical designs for typical failure 
consequences (e.g. lifetime failure probability of 1/5,000 or less). The subscript g 
refers to ‘geotechnical’ (or ‘ground’), while the subscripts u and s refer to ultimate 
and serviceability limit states, respectively. 

2. a consequence factor, Ψ , which accounts for failure consequences.  Essentially, 
1Ψ >  if failure consequences are low and 1Ψ <   if failure consequence exceeds 

that of typical geotechnical systems.  The basic idea of the consequence factor is 
to adjust the maximum acceptable failure probability of the design down (e.g. to 
1/10,000) for high failure consequences, or up (e.g. to 1/1,000) for low failure 
consequences. 

The geotechnical design would then proceed by ensuring that the factored 
characteristic geotechnical resistance at least equals the effect of factored 
characteristic loads. For example, for ultimate limit states, this means that in the 2014 
CHBDC the geotechnical design will need to satisfy an equation of the form 

 ˆ ˆ
gu ui ui

i
R Fϕ αΨ ≥∑   (24) 

which is almost identical to Eq. 1, with the exception that the overall geotechnical 
resistance factor is expressed as the product of the consequence factor, Ψ , and the 
ultimate geotechnical resistance factor, guϕ , and the loads and load factors appearing 
on the right-hand-side are also those specific for the ultimate limit state under 
consideration (and, hence, the subscript u). An entirely similar equation must be 
satisfied for serviceability limit states, with the subscript u replaced by s. The 
serviceability geotechnical resistance factors, gsϕ , will be closer to 1.0 than guϕ  , 
since serviceability limit states can have larger maximum acceptable probabilities of 
occurrence. 

The geotechnical resistance factor, guϕ  or gsϕ , depends on the degree of site and 
prediction model understanding. Three levels are considered in the 2014 CHBDC;  
• High understanding: extensive project-specific investigation  procedures and/or 

knowledge are combined with prediction models of  demonstrated quality to 
achieve a high level of confidence  with performance predictions, 

• Typical understanding: typical project-specific investigation  procedures and/or 
knowledge are combined with conventional prediction  models to achieve a 
typical level of confidence with performance  predictions, 

• Low understanding: limited representative information (e.g. previous experience, 
extrapolation from nearby and/or similar sites, etc.) combined with conventional 
prediction models to achieve a lower level of confidence with performance 
predictions. 
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The resulting table for ULS and SLS geotechnical resistance factors appearing in the 
2014 CHBDC is shown in Table 1. How the geotechnical resistance factor values 
appearing in Table 1 were obtained is explained in the following sections on 
calibration. 

The consequence factor, Ψ , appearing in Eq. 24, adjusts the maximum acceptable 
failure probability of the geotechnical system being designed to a value which is 
appropriate for the magnitude of the failure consequences. Three failure consequence 
levels are considered in the 2014 CHBDC; 
• High consequence: the foundations and/or geotechnical systems are designed for 

applications, including bridges, essential to post-disaster recovery (e.g. lifeline) 
and/or having large societal or economic impacts. 

• Typical consequence: the foundations and/or geotechnical systems are designed 
for applications, including bridges, carrying medium to large volumes of traffic 
and/or having potential impacts on alternative transportation corridors or 
structures. 

• Low consequence: the foundations and/or geotechnical systems are designed for 
applications carrying low volumes of traffic and having limited impacts on 
alternative transportation corridors. 
 

Table 1. Some of the geotechnical resistance factors for ULS and SLS appearing 
in Table 6.2 of the 2014 CHBDC (numbers are for illustration only). 

Application Limit State Test 
Method/Model 

Degree of understanding 
Low Typical High 

Shallow 
foundations 

Bearing, guϕ   Analysis 0.45 0.50 0.60 
Scale model test 0.50 0.55 0.65 

Sliding frictional, guϕ  Analysis 0.70 0.80 0.90 
Scale model test 0.75 0.85 0.95 

Sliding cohesive, guϕ  Analysis 0.55 0.60 0.65 
Scale model test 0.60 0.65 0.70 

Passive resistance, guϕ  Analysis 0.40 0.50 0.55 

Settlement or lateral 
movement, gsϕ   

Analysis 0.7 0.8 0.9 
Scale model test 0.8 0.9 1.0 

 
Table 2. ULS and SLS consequence factors, Ψ , appearing in Table 6.1 of the 
2014 CHBDC. 

Consequence level Consequence factor, Ψ  
High 0.9 
Typical 1.0 
Low 1.15 

 
     The consequence factors specified in the 2014 CHBDC for the three consequence 
levels are shown in Table 2. This table is very similar to Table B-3 in Eurocode 0 
(British Standard BS EN 1990, 2002) which specifies three multiplicative factors, 0.9, 
1.0, and 1.1, to be applied to loads (actions) for low, medium, and high failure 
consequences, respectively (these factors are approximately the inverse of the factors 
seen in Table 2 because they appear on the load side of the LRFD equation). In other 
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words, the concept of shifting the target failure probability to account for severity of 
failure consequences is not new, although the application of the consequence factor to 
the resistance side, rather than the load side, of the LRFD equation appears to be new. 

Calibration of Geotechnical Resistance Factors 
The geotechnical resistance factor calibration must start with a review of the 

factors currently used in Canadian geotechnical design codes, as well as those used in 
other codes from around the world. Table 3 is a small subset of a much more 
extensive table that was prepared to compare the load and geotechnical resistance 
factors between a variety of codes, reports, and manuals from various jurisdictions 
(Fenton et al., 2016). In the calibration process, Table 3, and its more extensive 
counterpart, is used to suggest the ‘best’ currently acceptable estimates of ‘typical’ 
resistance factors. These are the guϕ factors that have been found to lead to societally 
acceptable failure probabilities under current design practice. The factor /D LR  is the 
dead to live load ratio which was assumed in the code calibration process. 
 
Table 3. Table of design factors used for geotechnical design as specified in 
various codes of practice.  

Source RD/L αL αD αT φgu Fs 
NBCC (2010) 3.0 1.5 1.25 1.31 0.5 2.88 
CHBDC 
(2006) 

3.0 1.7 1.2 1.33 0.5 2.92 

CFEM (1992) 3.0 1.5 1.25 1.31 • Cohesion (foundations) 0.5 
• Cohesion (stability, earth pressure) 0.65 
• Friction 0.8 

2.88 
2.22 
1.80 

AASHTO 
(2002) 

3.7 2.86 1.3 1.65 a. Sand 
• Semi-empirical procedure using SPT data 0.45 
• Semi-empirical procedure using CPT data 0.55 
• Rational method 
• using φf estimated from SPT data 0.35 
• using φf estimated from CPT data 0.45 
b. Clay 
• Semi-empirical procedure using CPT 0.50 
• Rational method 
• using shear strength measured in lab tests0.60 
• using shear strength measured in field vane tests 

0.60 
• using shear strength estimated from CPT data 0.50 
c. Rock 
• Semi-empirical procedure(Carter and Kulhawy) 

0.60 

 
4.04 
3.30 
 
5.19 
4.04 
 
3.63 
 
3.03 
 
3.03 
 
3.63 
 
 
3.03 

AASHTO 
(2007 and 
2012) 

3.7 1.75 1.25 1.35 • Theoretical method(Munfakh et al., 2001), in clay 
0.50 

• Theoretical method(Munfakh et al., 2001), in sand, 
using CPT 0.50 

• Theoretical method(Munfakh et al., 2001), in sand, 
using SPT 0.45 

• Semi-empirical methods(Meyerhof, 1957), all soils 
0.45 

• Footings on rock 0.45 
• Plate Load Test 0.55 

 
2.97 
 
2.97 
 
3.30 
 
3.30 
3.30 
2.70 

For example, Table 3 suggests that the geotechnical resistance factor for the 
bearing capacity of a shallow foundation ranges from about 0.35 to about 0.60, 
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depending on the confidence of the geotechnical performance prediction, with a 
typical value of about 0.50. This ‘typical’ value forms the starting point for the 
‘typical understanding’ values appearing in Table 1. The range suggested in Table 3 
provides some insight into the range that might be appropriate for the three levels of 
site and model understanding considered in the 2014 CHBDC. 

Once the typical geotechnical resistance factor values have been established, the 
next two steps are to look at how these values should change as a result of changes in 
the level of site and model understanding, and how the consequence factor should be 
set to reflect changes in the failure consequence severity. 

The question of how the geotechnical resistance factor should be adjusted as the 
level of site and model understanding changes brings up the question of how the 
reliability of a geotechnical design can be estimated in the first place, for any given 
level of site and model understanding. The approach used here is essentially to use 
Monte Carlo simulations, modeling the ground as a spatially varying random field, 
and carry out a virtual site investigation, design, and construction of the geotechnical 
system. The geotechnical system is then subjected to random maximum lifetime loads 
and checked to see if the particular limit state under investigation is exceeded. If so, a 
failure is recorded and the process is repeated. The failure probability of the design is 
then estimated as the number of failures divided by the number of trials – if the 
failure probability is too high, the design factors are suitably adjusted, and so on. The 
detailed steps are as follows; 
1. for a particular geotechnical system (e.g., shallow foundation)  and limit state 

(e.g., bearing capacity), choose a geotechnical resistance factor  to be used in the 
design, 

2. simulate a random field of ground properties, having a specified  variance and 
correlation structure, 

3. virtually sample the ground at some location to obtain  ‘observations’ of the 
ground properties. The distance  between the sample and the geotechnical system 
acts as a proxy for  site and model understanding – the farther the sample is from 
the  geotechnical system, the more the uncertainty about the system  performance 
(decreased site and model understanding), 

4. design the geotechnical system using the characteristic geotechnical  parameters 
determined from the sample taken in step 3. The definition of ‘characteristic’ 
depends on the design code being used. For example, in Europe, the characteristic 
values would be a lower 5-percentile. In North America, a ‘cautious estimate of 
the mean’ is probably a more common definition, as discussed previously. In most 
of the calibration exercises undertaken for the CHBDC, the characteristic values 
were taken as the geometric average of the sampled ‘observations’. The geometric 
average is always at least slightly  lower (more so for higher variability) than the 
arithmetic average,  and so can be viewed as a ‘cautious estimate of the mean’, 

5. virtually construct the geotechnical system according to the  design in the 
previous step and place it on (or in) the random field  generated in step 2, 

6. employ a sophisticated numerical model (e.g., the finite element  method) to 
determine if the geotechnical system exceeds the limit  state being designed 
against (this is a failure), 

7. repeat from step 2 a large number of times, recording the number of  failures. 
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8. the probability of failure is then estimated as the number of failures  divided by 
the number of trials. If this probability is too high, the geotechnical resistance 
factor needs to be decreased, if too low, the geotechnical resistance factor should 
be increased. After adjusting the geotechnical resistance factor appropriately, the 
entire procedure can be repeated from step 1 using the new geotechnical 
resistance factor. 

For example, Figure 11 presents the theoretically determined geotechnical resistance 
factors for the bearing capacity design of a shallow foundation where the target 
maximum lifetime failure probability is 0.001mp = , corresponding to a reliability 
index of about 3.1β = .  If the worst case resistance factor for a reasonable coefficient 
of variation of the ground shear strength, 0.3cv = , is examined, it can be seen from 
Figure 11 that the typical `understanding' (assumed to be 4.5r =  m) geotechnical 
resistance factor is about 0.45. For ‘high’ understanding ( 0r =  m), a similar plot (not 
shown) suggests a geotechnical resistance factor of about 0.65 when 0.3cv = . At the 
other extreme, for `low' understanding ( 9r =  m), the theory suggests a geotechnical 
resistance factor of about 0.4. These theoretical results seem to be in reasonable 
agreement with the range suggested by other codes. 

 
Calibration of the Geotechnical Consequence Factor 

The basic idea of the consequence factor is to adjust the target maximum lifetime 
failure probability, mp , to a value which is appropriate for the failure consequences. 
For example, if the geotechnical system supports a storage warehouse which is rarely 
visited, the failure consequences are slight and its failure probability should be higher 
than that for typically supported structures. If, on the other hand, the geotechnical 
system supports a hospital or lifeline bridge, then the failure probability should 
probably be lower than that for typically supported structures. 

Using the random finite element method (RFEM), which includes modeling of the 
ground's spatial variability, Fenton et al. (2011) produced Figure 13, which illustrates 
how the probability of bearing capacity failure changes with the consequence factor 
for the typical site understanding case ( 4.5r =  m), correlation length 6θ =  m, and 
using a design resistance factor of 0.5gϕ = . It can be seen that fairly small changes in 
the consequence factor, Ψ , can make large differences in the failure probability, fp . 
As expected, the soil variability ( cv ), also has a very significant effect on fp . The two 
horizontal lines in Figure 13 bound failure consequence acceptable probabilities, 

1/1000mp =   to 1/10,000mp = . 
To illustrate how Figure 13 works, one additional curve was produced for 

0.23cv = . When 1.0Ψ =  (typical consequence), the 0.23cv =  case has failure 
probability 42 10 1/ 5000fp −× =≈  , which is the maximum acceptable failure 
probability for typical consequences ( 3.5β = ). To adjust this case to have failure 
probability 41 10 1/10,000fp −= × =  (high consequence), a consequence factor of 
about 0.93Ψ =  should be used – the required Ψ  value occurs where the 0.23cv =  
curve intersects the horizontal 1/10,000mp =  line. The recommended consequence 
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factor for this case has been rounded down to 0.90, as discussed shortly.  Similarly, to 
adjust the 0.23cv =  case for a low consequence design ( 1/1000mp = ), the 
consequence factor is obtained at the intersection of the 0.23cv =  curve and the upper 
horizontal line. This occurs at about 1.13Ψ =  (which will be rounded to 1.15Ψ =  
shortly). 

 
Fig. 13. Failure probability versus consequence factor for 6θ =   m, 4.5r =  m, 
and 0.5gϕ = . 

For the high consequence level case, Fenton et al. (2011) found that the range in 
Ψ  values (for r ranging from 0 to 9 m, θ  ranging from 0 to 50 m, and cv  ranging 
from 0.1 to 0.5) is from 0.91 to 0.976. For the low consequence level case, Fenton et 
al. (2011) found the range in Ψ  to be from 1.06 to 1.28.  However, when the 
resistance factor is held fixed with respect to θ  and cv , the range in the consequence 
factor is increased considerably. For example, when the resistance factor is fixed at 

0.40gϕ =  for low site and model understanding ( 9r =  m), the consequence factor for 
the high consequence case varies from 0.38 to 2.47. The equivalent range for the low 
consequence case is 0.52 to 2.69. More details can be found in Fenton et al. (2011). 

Figure 14 shows how the consequence factor varies with correlation length, θ , for 
4.5r =  m (typical understanding) and 0.5gϕ = . The upper Figure 14a is for the high 

failure consequence case ( 1/10,000mp = ) and the lower Figure 14b is for the low 
failure consequence case ( 1/1000mp = ). Considering Figure 14a, the task is to 
choose a factor for the high consequence case which is sufficiently conservative and 
yet not excessively so. Reducing the consequence factor results in more conservative 
designs (lower failure probability). A solid horizontal line has been drawn across the 
plot at 0.9Ψ =  and it can be seen that this value is conservative for all 0.25cv ≤  
(approximately), in that the curves for 0.1cv =  and 0.2 lie entirely above 0.9Ψ = . 
What this means is that if cv  is known to be 0.1, for example, then using 0.9Ψ =  in 
the design would result in a failure probability well below the target of 

1/10,000mp = . On the other hand, if cv  is not clearly known, then 0.9Ψ =  is 
reasonably conservative for all but sites with large soil variability (e.g. 0.3cv ≥ ). If 
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site investigation is sufficient to keep the residual variability below this level, then 
0.9Ψ =  is a reasonable design value for the high failure consequence case which will 

almost always lead to a failure probability well below 1/10,000mp =  ( 3.7β = ). 
A similar argument can be applied to Figure 14b for the low consequence case, 

where a solid line at 1.15Ψ =  has been drawn across the plot. It can be seen that this 
value is not quite as conservative as the high consequence factor (selected above) in 
that the 0.2cv =  curve comes somewhat closer to 1.15Ψ = . The authors feel, 
however, that conservatism is not quite as important for the low failure consequence 
case, and so selected the somewhat less conservative value of 1.15. 

 

 
Fig. 14. Consequence factor versus correlation length for 4.5r =  m and 

0.5guϕ =  at high consequence level ( 1 / 10,000mp = ) in (a), where 0.9Ψ =  is 
proposed, and at low consequence level ( 1 / 1000mp = ) in (b), where 1.15Ψ =  is 
proposed. 

 
Research into the consequence values for deep foundation design (Naghibi et al., 

2013) yields similar consequence factors for both ULS and SLS design. Thus, it 
appears that the consequence factors selected for the 2014 CHBDC are reasonably 
appropriate for other limit states of geotechnical system. 

 
FUTURE DIRECTIONS 
 

Previous sections illustrated how spatial variability models can be used both to 
more realistically represent the ground and its failure mechanism as well as to serve 
as a mathematical proxy for site understanding. Although computers are becoming 
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fast enough to bring random field models into the design office, there are still a 
number of impediments to their widespread use; 
1. While the mean values of the ground properties may be reasonably well known, 

estimating their variances requires significantly more samples of the ground 
throughout the site. In many cases, such intensive sampling will not have been 
done, and so variance estimates commonly come from the literature. The entire 
issue of specifying the  variance of the random ground model is complicated by a 
number of  factors; 
a. it is really the uncertainty between sample locations (e.g.,  between CPT 

soundings) whose variance needs to be estimated, and this  variance will be a 
function of distance from the sampling points.  This level of variance 
characterization is best accomplished by using  conditioned random fields 
which take on the sample values at the  sample locations (possibly with an 
added measurement error component)  and which are increasingly random 
with distance from the sample  locations. 

b. the specified ground property variance is often scale dependent. For example, 
if one is trying to specify the variance of the ground's permeability field, it is 
necessary to consider the scale at which the model is to be applied. At the 
micro-scale in, say, a sandy soil, one point could be within a particle of 
granite, having virtually zero permeability, and in a void at another point, 
having virtually infinite permeability. At that scale, the permeability variance 
will be extremely large. In practice, however, interest is usually in the 
permeability of some representative volume representing the property 
averaged over that representative volume. This variance will be much reduced 
from the “point” variance – how much reduced depends on the size of the 
representative volume. Similar scale, or local averaging, effects are present in 
most geotechnical problems. For example, the stability failure of a slope 
involves the average shear strength along the weakest failure path through the 
soil. The ultimate capacity of a pile involves the average of  the shear strength 
over the pile surface along with the bearing  capacity at the pile tip, which 
itself involves an average of ground  shear strength below and around the pile. 

2. At most sites, it is unlikely that sufficient investigation will have been done in all 
three spatial directions to clearly estimate the directional correlation lengths. If the 
correlation lengths are unknown, the design can conservatively be carried out at 
the “worst case” correlation length, which is typically approximately equal to 
some dimension of the geotechnical system being designed (e.g., distance to 
nearest sample, width of the footing, etc). However, using the worst case 
correlation lengths can incur a significant design penalty. For example, Figure 11 
suggests that if 0.3cv =  and the worst case correlation length is used, the 
geotechnical resistance factor is 0.45gϕ ≈ . On the other hand, if the correlation is 
actually known to be about 20 m, the resistance factor required in design rises to 
about 0.60 – a fairly significant increase. 

As mentioned previously, the current edition of the Canadian Highway Bridge Design 
Code includes a geotechnical consequence factor to account for the severity of failure 
consequences. This idea is not new. The so-called importance factor, which is applied 
to site specific and highly variable loads (e.g., snow, wind, and earthquake) does 
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exactly the same thing – modifies the target system reliability depending on failure 
consequences. 

Adjusting the target reliability, depending on failure consequence severity, is one 
way of accomplishing a risk-based design. The perhaps more precise way is to 
actually perform a risk assessment of the design, where risk is defined as the product 
of failure probability times the cost of failure and choose the design having the lowest 
risk. Such an approach is not commonly taken in civil engineering for the simple fact 
that failure often involves loss of life and assigning a cost to loss of human life (or 
any lives, for that matter) is a difficult and sensitive issue. 

Nevertheless, there are many geotechnical design issues that do not involve loss of 
lives which would definitely benefit from a risk assessment (cost-benefit) approach to 
design. Serviceability limit states, for example, have fairly well defined limits (e.g., 
excessive settlement) and entering such a state will have a cost which can be 
estimated (e.g., the cost of improving/stiffening a foundation). 

For example, Figures 8 and 10 can be used to perform a risk assessed design of a 
shallow foundation against entering a serviceability limit state. For a fixed failure 
probability, 0.05,fp = the various sampling schemes shown in Figure 8 result in 
different resistance factors, which in turn directly influence the cost of constructing 
the foundation. This construction cost can then be balanced against the cost of 
sampling and the optimum sampling scheme determined. For example, assuming an 
unsophisticated sample average is used to estimate the soil properties, it appears from 
Figure 10 that the best sampling scheme (highest resistance factor, lowest 
construction cost) is #5, where a single sample is taken directly under the footing. It 
must be remembered, however, that in order to achieve maximum construction 
savings, a sample would have to be obtained under every footing, which is often not 
practical. The system level cost-benefit analysis is a relatively straightforward 
extension of a single footing cost-benefit analysis. 

 
CONCLUSIONS 
 

Geotechnical design has advanced considerably in the last decade or so. 
Reliability-based concepts are common in modern geotechnical design codes – most 
codes now have acknowledged target reliabilities and have implemented load and 
resistance factors to achieve those targets.  

There is still much to be improved. For example, the direct consideration of spatial 
variability in geotechnical response predictions and design methodologies is still 
relatively rare. Modern computers are fast enough that random field representations 
of the ground, combined with advanced finite element models, in a Monte Carlo 
simulation framework can be done relatively easily. Such analyses would augment 
more traditional geotechnical engineering, allowing for improved design decisions to 
be made in the face of uncertainty. 

Design codes which allow the resistance factors to change depending on the level 
of uncertainty (e.g., the Canadian Highway Bridge Design Code and the Australian 
Standard 5100 Bridge Design) are indirectly using a risk assessment to carry out the 
design. Increased site and model understanding generally involves additional cost, but 
these codes allow this cost to be offset by construction savings through an increased 
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resistance factor. The next logical step is to routinely perform such risk assessments 
for individual designs in order to optimize overall savings while maintaining system 
reliability. 

Design codes of the future will increasingly allow, and promote, flexibility in the 
design process if rigorous probabilistic and risk (cost-benefit) assessments have been 
performed. 
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NOTATION 
 

,a b   lower and upper bounds of tanh distribution 
B   footing width 
c   cohesion or threshold 
ĉ   characteristic cohesion = geometric average of observations 

o
ic   i’th observed soil cohesion measurement 

E   elastic modulus field 
Ê   estimate of effective elastic modulus, derived from soil samples 

effE   effective uniform elastic modulus giving same settlement as actual settlement 

gE   local geometric average of elastic modulus field 
fδ   probability density function of foundation settlement 
F   actual (random) load effect 
F̂   characteristic (nominal) load effect 
ˆ

DF   characteristic dead load 
ˆ

LF   characteristic live load 
sF   effective total factor of safety, accounting for resistance, load, and bias factors 

G   standard normal (Gaussian) random field 
eG   the random field G  averaged over each finite element 

H   depth to bedrock 
xL   random field dimension, similarly for  and y zL L   

m   location parameter of tanh distribution or sample mean of subscripted variable 
 or number of samples 

n   number of simulations or points 
cN   bearing capacity factor 

ˆ
cN   characteristic bearing capacity factor based on characteristic soil properties 
fp   failure probability 

mp   maximum tolerable failure probability 
cq   CPT tip resistance 
uq   ultimate bearing resistance stress 

ˆuq   characteristic ultimate bearing resistance stress 
r   distance from foundation to sample location 

/D LR   ratio of dead to live load 
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R̂   characteristic geotechnical resistance (based on characteristic soil properties) 
ˆ

uR   ultimate characteristic geotechnical resistance 
s   scale parameter of tanh distribution or sample standard deviation of 

subscripted variable 
1u   influence factor for settlement prediction 

v   coefficient of variation ( )/σ µ=  of subscripted variable 
x   variable or horizontal component of  spatial position 
x


  spatial coordinate or position 
X   random variable or random field 

cX   random field conditioned on a set of observations 
eX   random field formed by averaging X  over each finite element 
kX   best linear unbiased estimate field based on observations 
sX   best linear unbiased estimate field based on uX  at observation locations 
uX   unconditional random field 

y   horizontal component of spatial position 
z   vertical component of spatial position 
α   load factor ( iα =  i’th load factor) 

Dα   dead load factor 
Lα   live load factor 
Tα   effective total load factor 
β   reliability index 
γ   variance reduction function 
δ   foundation settlement 

detd   deterministic foundation settlement using mean elastic modulus 
maxδ   maximum acceptable foundation settlement 

θ   correlation length of subscripted random field (if present), having directional 
components ,  and,  x y zθ θ θ   

µ   mean, or mean of the subscripted variable 
φ   angle of internal friction 
φ̂   characteristic angle of internal friction = arithmetic average of friction angle 

 observations 
o
iφ   i’th observed friction angle measurement 
ϕ   resistance factor (subscript g for geotechnical, u for ULS, s for SLS) 

cϕ   resistance factor for concrete 
sϕ   resistance factor for steel 
ρ   correlation coefficient 
σ   standard deviation, or standard deviation of the subscripted variable 
τ


  spatial lag vector, having directional components ,  and,  x y zτ τ τ  
Ψ   consequence factor 


