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ABSTRACT 
Designs of geotechnical systems are typically aimed at specific lifetime reliability index targets corresponding to 
serviceability and ultimate limit states. The lifetime reliability targets for extreme limit states, such as earthquakes, should 
be consistent with ultimate limit state reliability targets.  However, current design practice of structural and geotechnical 
systems against extreme limit states do not necessarily result in lifetime reliability indices which agree with those aimed 
at for static conditions. This paper investigates some possible approaches to calibrating an agreement between static 
and seismic design code target reliability indices for geotechnical systems. The total probability theorem is used to 
estimate the reliability of a geotechnical seismic design according to the performance-based design specifications of the 
Canadian Highway Bridge Design Code and to determine the required target reliabilities associated with each return 
period design check. The results are preliminary but suggest that seismic design may have a higher failure probability 
than current static designs. 
 
RÉSUMÉ 
Les conceptions des systèmes géotechniques visent généralement des cibles spécifiques d'indice de fiabilité à vie 
correspondant à la facilité d'utilisation et aux états limite ultimes. Les cibles de fiabilité à vie pour les états limites 
extrêmes, comme les tremblements de terre, devraient être compatibles avec les cibles de fiabilité de l'état limite. 
Cependant, la pratique de conception actuelle des systèmes structurels et géotechniques contre les états limites 
extrêmes n'entraîne pas nécessairement des indices de fiabilité à vie qui concordent avec ceux destinés à des 
conditions statiques. Cet article étudie certaines approches possibles pour étalonner un accord entre les codes de code 
statique et sismique cible des indices de fiabilité pour les systèmes géotechniques. Le théorème de probabilité totale est 
utilisé pour estimer la fiabilité d'une conception sismique géotechnique selon les spécifications de conception basées sur 
la performance du Code de conception du pont routier canadien et pour déterminer les fiabilités cibles requises 
associées à chaque vérification de la conception de la période de retour. Les résultats sont préliminaires mais suggèrent 
que la conception sismique peut avoir une probabilité d'échec plus élevée que les conceptions statiques actuelles. 
 
 
 
1 INTRODUCTION 
 
The performance-based seismic design provisions of the 
2014 edition of the Canadian Highway Bridge Design 
Code (CHBDC, CSA 2015) now specifies required 
performance levels for each of three levels of seismic 
ground motion. Table 1 is an extract from the CHBDC for 
the middle importance level of bridges referred to as 
Major-route bridges. The table states that if the bridge is 
subjected to seismic ground motion corresponding to 
earthquakes having at least a 475 year return period, the 
bridge “must” remain in service and damage “must” be 
minimal. If the bridge is subjected to an earthquake 
having return period in excess of 2475 years, we accept 
that service may be disrupted and that damage may be 
extensive. We put the word “must” in quotes above, since 
of course there is always a non-zero probability that even 
if only the 475 year return period earthquake takes place 
that service is nevertheless delayed. 

Modern design codes are concerned with producing 
engineered systems having societally acceptable failure 
probabilities. The challenge, of course, is to determine the 
failure probabilities of our designed systems and to adjust 
our design requirements accordingly. 

At the moment, the Canadian design codes of 
practice do not specify target failure probabilities 
associated with each of the required performance levels. 
 

 
Table 1: Bridge performance levels required by the 2014 
CHBDC. 

Seismic ground 
motion probability 
of exceedance in 
50 years 
(return period) 

Major-route bridges 

Service  Damage 

10% 
(475 years) 

Immediate  Minimal 

5% 
(975 years) 

Service limited* Repairable* 

2% 
(2475 years) 

Service disruption Extensive 

 
It is thus difficult to know whether current seismic 

design practice is safer or less safe than current static 
design practice (the latter of which is typically associated 
with target failure probabilities). 

This paper takes a preliminary, theory-based, look at 
how the three performance level specification approach 
currently adopted by the CHBDC for seismic design 
compares, in terms of overall failure probability, to that 
predicted by the total probability theorem (see, e.g., 



 

Cornell 1968).  The goal of the paper is to arrive at 
reasonable target failure probabilities to assign to the 
words “Immediate”, “Service limited”, etc., in the 
performance requirements of Table 1. These probabilities 
should lead to a total lifetime failure probability which is 
approximately equal to the maximum acceptable failure 
probabilities aimed at in static design. It is assumed, for 
example, that the “Immediate” service requirement 
actually corresponds to a low probability of failure (where 
failure is defined as loss of service), perhaps something 
like 0.0001 in the event that a 475 year return period 
earthquake is the largest earthquake experienced by the 
geotechnical system over its design lifetime. Similarly, 
“Service disruption” under a 2475 year return period might 
correspond to a probability of failure which is well above 
50%. 

Once reasonable target failure probabilities are 
assigned to each of the three return-period performance 
targets, the geotechnical resistance factors required to 
achieve all of the desired performance requirements can 
be estimated. 

Probabilistic seismic design is dependent on many 
issues. The occurrences of earthquakes are generally 
assumed to follow a Poisson model, so in any design 
lifetime, l , there could be any number of earthquakes, 
especially if one starts at earthquakes of magnitude 0. We 
will assume in this paper that there is some minimum 
earthquake magnitude, 0m , below which the probability of 
geotechnical failure is negligible. A Poisson model can 
then be used to characterize the number of earthquakes 
that may occur at a site having magnitude in excess of 

0m over the lifetime of the designed system. Of course, 
each of these earthquakes can have random magnitudes, 
so the question becomes one of how system failure is 
defined. Each earthquake which may occur during the 
design lifetime has some potential to cause damage. 
Presumably, if damage is incurred, it will be repaired and 
how that affects the probability of damage during the next 
earthquake is difficult to estimate. We will assume in this 
paper that the design should be aimed at achieving a 
target maximum acceptable probability against failure due 
to the largest earthquake experienced by the geotechnical 
system during its lifetime. In other words, we will only 
consider the maximum earthquake occurring during the 
system lifetime and assume that failure may only occur 
during that maximum earthquake ground motion – all 
other earthquakes experienced by the system are 
assumed to not cause failure. 

We start by looking at the probability of failure due to 
the occurrence of a single future earthquake. Since the 
magnitude of that earthquake is random, the failure 
probability can be expressed as a function of all possible 
return periods using the total probability theorem as 
follows: 
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where mp  is the maximum acceptable failure, R  is the 
random return period of the earthquake, and ir  is a 
specific realization of R . Larger values of ir  imply 
stronger earthquakes. The above probability could be 
written directly in terms of earthquake magnitude, M , of 
the earthquake having return period R , as follows: 
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The relationship between earthquake magnitude and 
mean recurrence rate has been well established by the 
Gutenberg-Richter recurrence law (Gutenberg and 
Richter, 1944) to be,  
 10a bm m

m ea bλ − −= =   [3] 
where m is the earthquake magnitude, and 1 /m irλ =  is the 
mean annual rate of exceeding m . The parameters a  
and b  are site specific values obtained by regression of 
the seismicity data from the region of interest (see, e.g., 
Kaila and Narain, 1971). To convert to natural logarithms 
at the right hand side of Eq. [3],  
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Solving Eq. [3] for m  allows directly calculating 
earthquake magnitude, m , for a given mean annual rate 
of exceedance, mλ , as follows: 
 

 ( )ln mm
a λ

b
−

=   [5]  

 
In general, in the seismic design process, we are 
interested in determining the probability of system failure 
over some lifetime, l . During that lifetime, there may be 
more than a single earthquake and the magnitudes of 
those earthquakes will be random. We are thus interested 
in the distribution of the magnitude of the maximum 
earthquake occurring during lifetime, l .  Let lN  be the 
number of earthquakes occurring over lifetime l having 
magnitude 0M m≥ , where 0m  is a lower threshold 
magnitude below which damage will be insignificant. 0m is  
normally selected to have a value between 4.0 and 5.0. 

According to Cornell (1968), lN follows a Poisson 

distribution with arrival rate 0mea bλ −= . Of these 
earthquakes, some fraction, mr , have magnitude 

0M m m> ≥ . If lmN  denotes the number of earthquakes 
over time l  having magnitude 0M m m> ≥  then lmN  has 
mean rate m mrλ λ=  and distribution  
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Note that the fraction mr  is the ratio of mean rates,  
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Now let ( )maxM l  be the maximum earthquake magnitude 

experienced over lifetime l . The distribution of ( )maxM l  

can be determined as follows. If  ( )maxM l m≤  then this 
must mean that 0lmN =  so that    
 
 ( ) ( ) [ ] { }

max maxP P 0 expM lm mF m M l m N lλ=  ≤  = = = −    [8] 
 
Substituting Eq.[3] in Eq. [7] gives 
 
 ( ) { }

max
exp m

MF m lea b−= −   [9] 

 
which is a Type 1 extreme value distribution, also referred 
to as a Gumbel distribution. 

Differentiating the CDF in Eq. [9] with respect to 
earthquake magnitude, m , leads to the following 
probability density function (PDF):  
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Note that the extreme value distribution of maximum 
earthquake magnitude is purely a function of lifetime 
period, l , and site specific constants a  and b  obtained 
by regression in the Gutenberg-Richter Law. 
 
 
2 SEISMIC FAILURE PROBABILITY 
 
In this section, a methodology is developed to assess the 
failure probability of a system due to earthquakes 
occurring having magnitudes exceeding 0m . Using the 
Total Probability Theorem, the failure probability of such a 
system is defined as  

 [ ] ( ) ( )
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0

maxP P | M
m

F F M l m f m dm
∞

=  =  ∫   [11] 

where ( )maxP |F M l m =    is the conditional probability of 
system failure due to the largest earthquake, having 
magnitude m , to occur over lifetime l  and ( )

maxMf m dm  is 
the probability of that earthquake event.  

The main problem at this point is determining the 
conditional probability of failure in Eq. [11] for each given 
earthquake magnitude. Clearly, the system failure 
probability increases from zero, for earthquake 
magnitudes below 0m , to one as the earthquake 
magnitude increases. A possible approximation to this 
increasing conditional failure probability is to simply use a 
cumulative distribution function (CDF) which also 
increases from zero to one. In this paper a lognormal 
distribution is selected as a preliminary choice for the 
conditional failure probability. The lognormal distribution 
has two parameters µ  and σ which can be obtained by 

fitting the lognormal CDF to the failure probabilities 
corresponding to the lowest and highest of the three 
typical return periods considered in design codes, that is, 
to the 475 and 2475 return period earthquakes. Using the 
target failure probabilities mentioned above, this 
corresponds to matching the CDF to    
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where 

475fp and 
2475fp are the target probabilities that we 

will select for these two return period performance 
specifications and where the conditional probability is 
expressed in terms of the lognormal CDF as:  
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where 0m m m∆ = − . The terms 475m  and 2475m  in Eq. [12] 
are the earthquake magnitudes obtained via Eq. [3] 
corresponding to return periods 475 and 2475:  
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Solving for the mean and standard deviation of the 
lognormal distribution gives us     
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where 
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and 

475 475 0m m m∆ −=  , 
2475 2475 0m m m∆ −= .  

Further substituting Eq. [13] into Eq. [11] leads to the 
following expression for the failure probability of a system 
due to seismic loading: 
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If the conditional failure probabilities given by Eq. [13] are 
correct, then Eq. [17] gives an accurate estimate of the 
overall lifetime failure probability. The numerical 
evaluation of Eq. [17] is performed using Gaussian 
quadrature with 16 Gauss points from 0 4m =  to 10m = . 
 
 
3 CURRENT DESIGN PRACTICE 
 
In CHBDC’s current seismic design practice, only three 
return periods 475-, 975-, and 2475-years are considered. 



 

If failure probabilities are assigned to each return period 
scenario then it becomes possible to estimate the failure 
probability of a system using the total probability theoem: 
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where the conditional probabilities [ ]475P |F E , etc., 
appearing on the right-hand side are the target design 
probabilities, 

475fp  , 
975fp  , and 

2475fp , which are yet to be 
determined. In Eq. [18], rE are the events that the 
maximum earthquake over lifetime l  has return period r . 
In fact, the probability that the maximum earthquake has 
return period exactly equal to r is zero. In other words, in 
order to use Eq. [18] according to the total probability 
theorem, the events rE  must be defined over ranges in 
return period (or equivalently in ranges over magnitude). 
We have arbitrarily selected ranges that are 
approximately centered on CHBDC’s selected return 
periods of 475, 975, and 2475 years. The resulting 
probabilities appearing in Eq. [18] are as follows:  
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4 COMPARISON OF CONTINUOUS AND DISCRETE 

FAILURE PROBABILITIES 
 
It is of interest to investigate how well the three return 
period discrete approximation to the failure given by Eq. 
[18] compares to the continuous failure probability 
approximation given by Eq. [17]. To do so, we need to 
decide on values for the target design probabilities,

475fp , 

975fp  , and 
2475fp . Table 2  provides the parameters 

selected for this comparison.  
 
Table 2. Values Considered in this paper 
 
Parameter Value 

1a   5.05 

1b   1.09 

0m  4 

1Kaila and Narain (1971) for Western Canada obtained by 
regression for shallow earthquakes during a time interval of 14 
years 
 
The values of a  and b  provided in Table 2 are derived 
from earthquake records over a period of 14 years. The 
constants a  and b  in Eq. [4], which are used in the 
calculation of the mean annual rate mλ  in Eq. [3], need to 
be adjusted to shift to an annual basis as follows: 
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Table 3 presents the comparison between the more exact 
continuous approximation to the failure probability, Eq. 
[17], with the discrete approximation in Eq. [18], which is 
developed based on current CHBDC practice. 
 
Table 3. Comparison of failure probability estimates 
 from Eq.’s [17] and [18]  

475fp  
975fp  

2475fp  fp (Eq. [17]) fp (Eq. [18]) 

0.001 0.01 0.1 0.012 0.0062 
0.001 0.05 0.1 0.012 0.0084 
0.001 0.1 0.1 0.012 0.011 
0.0001 0.001 0.01 0.0025 0.00062 
0.0001 0.005 0.01 0.0025 0.00084 
0.0001 0.01 0.01 0.0025 0.0011 
0.00001 0.0001 0.001 0.00044 0.000062 
0.00001 0.0005 0.001 0.00044 0.000084 
0.00001 0.001 0.001 0.00044 0.00011 

 
The results presented in Table 3 suggest that the discrete 
approximation of Eq. [18] consistently underestimates the 
failure probability predicted by the more accurate Eq. [17]. 
However, the two probabilities are well within the same 
order of magnitude so that the discrete approximation 
appears to be reasonable. 
 
 
5 DETERMINATION OF TARGET PROBABILITIES 
 
At this point, target probabilities can be assigned to the 
three design return periods used in the CHBDC by 
computing the total failure probability of seismic design 
and comparing that to the target failure probability under 
static design. The CHBDC specifies an annual target 
reliability index of 3.75 for ultimate limit states (ULS). 
Fenton et al. (2016) use a 75-year lifetime reliability index 
of 3.5 which corresponds to an annual reliability index of 
4.5 if years are assumed independent. Thus the lifetime 
reliability index of 3.5 is considered to be conservative 
and will be adopted here as the target system reliability. 
This means that both seismic and static designs should 
target a failure probability of ( )1 3.5 0.00023φ− − = . To 
achieve this target failure probability using the discrete 
three return period approximation employed by the 
CHBDC, we must investigate trial values of 

475fp , 
975fp  , 

and 
2475fp . Possible values which lead to failure 

probabilities of approximately 0.00023 are shown in Table 
4.  

One immediate observation from Table 4 is that all 
three probabilities must be small in order to achieve a 
reliability index of 3.5. In practice, this implies that even 
though a performance of “Service disruption” is specified 
for the 2475 year return period earthquake, its probability 
of occurrence must be small in order to achieve overall 
small target probability of failure. This is true even if the 



 

values of 
475fp and 

975fp are set to zero. In other words, the 

product [ ] [ ]2475 2475P | PF E E governs the failure probability 
at these low probability levels. The problem may be that 
we are assuming that the occurrence of a “2475 year 
return period earthquake” actually corresponds to the 
occurrence of a maximum earthquake having return 
period in excess of 1300 years. We note that choosing 
ranges which correspond to exceedance probabilities of 
10%, 5%, and 2% may make more sense but the 
calibration of the lognormal CDF must be done for a 
specific return period, not for a range. As a result, we 
attempted to match the discrete and continuous 
probability estimates using return period ranges centered 
on the return periods specified in the CHBDC. These 
ranges result in required failure probabilities that appear 
to be lower than suggested by current practice. In other 
words, if the current probabilistic analysis is correct, then 
current practice is unsafe. However, the probabilistic 
model suggested here is still very preliminary and needs 
further work.  
 
Table 4. Target failure probability estimates to achieve 
lifetime failure probability of ( )1 3.5 0.00023φ− − =  

475fp  
975fp  

2475fp  fp (Eq. [17]) fp (Eq. [18]) 

0.001 0.01 0.1 0.012 0.0062 
0.0001 0.001 0.01 0.0025 0.00062 
0.00001 0.0001 0.001 0.00044 0.000062 

 
 
6 CONCLUSION AND FUTURE WORK 
 
A methodology is developed in this work to 
probabilistically assess the reliability of a geotechnical 
system due to the earthquake excitations over a 75-year 
lifetime by the means of the total probability theorem in 
two ways; one by looking at all possible return periods 
over the lifetime, and two by looking at just three 
representative return periods as is done by the CHBDC. 
The latter “three-return-period” approximation assumes 
that the maximum earthquake to occur over the design 
lifetime has return periods somewhere in ranges centered 
on 475, 975, and 2475 years. This assumption leads to 
required target design probabilities which are much 
smaller than expected for performance specifications 
such as “Service disruption”. The implication of these 
results is that the performance-based design criteria, if set 
to probabilities which are reasonable with respect to the 
definitions of the performance critera, will lead to lifetime 
failure probabilities which are greater than those assumed 
for static loading design. In other words, these results 
suggest that seismic design is less safe than static 
design. This conclusion needs significantly more study, 
especially since seismic design appears to be quite safe 
in practice. 

The results of this paper depend on the assumptions 
made regarding the ranges in return periods for the three-
return-period approximation. In particular, it probably 
makes more sense to use earthquake return period 
ranges with lower bounds as given in the CHBDC (475, 

975, and 2475 years). Unfortunately, this leads to 
problems with the calibration of the so called improved 
accuracy model of Eq. [17] and needs further study. 
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