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Abstract 
 

The stability of a trapdoor has long been an important benchmark solution in theoretical soil 
mechanics, and it is also of considerable practical interest in many geotechnical applications. It is well 
known that natural soils always exhibit spatial variability with the properties varying from point to 
point. This paper uses the Random Finite Element Method (RFEM) to investigate the influence of 
spatial variability on the limit loads for a shallow passive trapdoor embedded in a purely cohesive soil. 
RFEM is an advanced numerical tool for probabilistic geotechnical analysis which merges 
finite-element methodologies with random field theory in a Monto-Carlo framework. In the current 
parametric study, the mean undrained shear strength has been held constant while the coefficient of 
variation and spatial correlation length have been varied systematically. As might be expected, for 
trapdoors with low values of the coefficient of variation, the mean limit loads agree well with the 
results from deterministic analysis. For higher values of the coefficient of variation, the mean limit 
loads fall quite steeply. Failure is defined as occuring when the computed limit load is less than the 
deterministic solution based on the mean strength, reduced by an appropriate factor of safety. By 
interpreting the Monte-Carlo simulations in a probabilistic context, the probability of failure is 
assessed as a function of the factor of safety and the spatial variability of the soil. It is found, for 
example, that a factor of safety of 2.5 is required to avoid the probability of failure exceeding 5% for 
soils with strength variability within typical ranges. 
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1. Introduction 
 
The trapdoor problem, originally studied by Terzaghi [1], has become an important benchmark 

solution in theoretical soil mechanics. This problem has two kinds of displacement pattern, depending 
on whether the movement of the trapdoor is upward (passive) or downward (active). The passive 
mode corresponds to the uplift problem of anchors (e.g. Merifield et al. [2]), while the active mode 
can be applied to analyze the gravitational flow of granular material between vertical walls, which has 
been used to design tunnels (e.g. Koutsabeloulis and Griffiths [3]). In the past, the trapdoor problem 
has received considerable attention deterministically [3-8]. This paper will investigate the influence of 
soil strength variability on the limit load for a rough rigid strip trapdoor embedded in an undrained 
clay by the Random Finite Element Method (RFEM). The program merges finite-element 
methodologies [9] with random field theory [10] within a Monte-Carlo framework. In this study, the 
undrained shear strength uc  is supposed to be characterized by a lognormal distribution with four 
parameters given in Table 1. 

With the purpose of nondimensionalizing the input parameters, the variability of the undrained 
shear strength can be expressed by the coefficient of variation /

u u uc c cv σ µ= . For the random field 
modeling, a dimensionless and isotropic (i.e. hθ  is assumed to be vθ ) spatial correlation length 

/ BθΘ =  is used, where B  is the width of the strip trapdoor. 
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In the present study, the mean strength ucµ  is fixed at a value of 100 kN/m2, and the other two 
input parameters the coefficient of variation ucv  and the spatial correlation length Θ  vary 

systematically.  
Table 1 Undrained shear strength properties 

Statistical property Symbol Units 

Mean ucµ  Stress 
Standard deviation ucσ  Stress 

Horizontal and vertical 
spatial correlation length hθ  and vθ  Length 

 
2. Results 

 
2.1 Finite element method 
 

The stability analysis of a shallow passive trapdoor is performed by the elastic-perfectly plastic 
finite element method (Smith and Griffiths [9]). With the assumption that the soil is weightless and no 
surcharge pressure acts on the surface, the behavior of a trapdoor is affected by undrained shear 
strength ( uc ), Young’s modulus ( E ) and Poisson’s ratio (ν ). The RFEM can model random 

distributions of these three parameters however, for simplifying the analyses, only the undrained shear 
strength is considered to be randomised in the present study. 

As shown in Fig. 1, a typical mesh used in FE analysis includes 1200 eight-noded square element,  
 

  
 

Fig. 1. Mesh used in probabilistic stability analysis of a shallow passive trapdoor 
 

with 60 columns and 20 rows. The side length of each element is 0.05 m and the width of the strip 
trapdoor B  is equal to 1 m. The height H  is assumed to equal B . Since the trapdoor is rigid and 
rough, displacement control is employed. The trapdoor is incrementally displaced vertically into the 
soil, while the horizontal movement of the nodes which represent the trapdoor is fixed at zero. The 
average vertical stress yσ  in the row of Gauss points just above the displaced nodes can be 
calculated after each increment. Failure of the trapdoor is said to have occurred if the calculated yσ  

levels out within a strict tolerance. Finally, the limit load is given by 
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p yF Bσ=                                (1) 
 
2.2 Monte-Carlo simulations 
 

In the context of a Monte-Carlo analysis, each realization of an RFEM analysis of the problem 
shown in Fig. 1 involves generation of the uc  random field and the succeeding FE analysis of the 
trapdoor stability. In each realization, the underlying statistical properties 

ucv  and Θ  are the same 

however, the spatial pattern of undrained shear strength values over the region of the FE mesh is quite 
different, leading to a different value of limit load for the trapdoor. Following each suite of 1000 
simulations, the limit loads are subjected to statistical analysis.  

 
 2.3 Deterministic analysis 
 

Recent solutions of the deterministic shallow trapdoor stability problem shown in Fig. 1 (Martin 
[6]) represent the most accurate solutions. When the soil is weightless and there is no surcharge 
pressure, the limit load pF  for passive failure is given by  

p / c uF B N c=                                (2) 

where cN  is a dimensionless stability factor which is proportional to the cover ratio /H B  given 

by  
1.956 /cN H B=                                  (3) 

For cover ratio / 1H B =  and undrained strength 100uc =  kN/m2, Martin’s solution gives the 

limit load ( )( )( )( )p 1.956 1 100 1 195.6c uF N c B= = =  kN/m.  

The results of deterministic analysis by finite element method are shown in Fig. 2. The estimated  
 

 
 

Fig. 2. Deterministic stability analysis of the trapdoor 
 

limit load was 191.1 kN/m, which is 2.3% lower than the Martin’s analytical solution of p 195.6F =  

kN/m. The reason is attributed to the uniform and coarser mesh for simplifying the random field 
generation. In the discussion that follows, and for error consistency, the mean limit load from 
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statistical analysis will be standardized by the deterministic value from FE analysis. The influence of 
this slightly lower prediction is relatively inessential. In this study, the deterministic limit load will be 
referred to as 

dpF , i.e., 
dp 191.1F =  kN/m. 

 
2.4 Parametric study 
 

Parametric analyses were carried out with the following input parameters: 
0.01,  0.1, 0.2, 0.5, 1.0, 2.0, 5.0, 10.0Θ =  

0.1, 0.3, 0.5, 0.75, 1.0, 1.5
ucv =  

On completion of 1000 Monte-Carlo simulations, the mean and standard deviation of the limit load 
was obtained.  

Figure 3 shows how the mean limit load, standardized by the deterministic value from FE analysis, 
  

 
 

Fig. 3. Estimated mean limit load as a function of undrained shear strength statistic Θ  
 

changes with Θ  and 
ucv . For low values of 

ucv , the mean limit load 
pFµ  is apt to be the 

deterministic value. As the value of 
ucv  increases, the mean limit load falls quite sharply, particularly 

for spatial correlation length 0.1Θ ≈ . For example, for a highly variable soil with 0.1Θ =  and 
1.5

ucv = , the mean limit load is just approximate 50% of the deterministic value. For the 

recommended upper limit of 0.5
ucv =  (e.g. Lee et al. [11]) with 1.0Θ = , the 

pFµ  is about 90% of 

the deterministic value. The horizontal line included in Fig. 3 represents the analytical solution for the 
limiting case of Θ = ∞ . This case implies that each Monte-Carlo realization generates an essentially 

homogeneous soil, although the properties are different from one realization to the next. For this 
limiting case, the distribution of the limit load pF  will be statistically analogous to the lognormal 

distribution of uc  but magnified by pdF , i.e., 
p dpF Fµ =  for all values of 

ucv . 
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As shown in Fig. 4, a minimum mean limit load is reached when 0.1Θ ≈ . At the next lower value 

of Θ , 
pFµ  starts to increase in all cases. It is inferred that for the limiting case of 0Θ→ , there are 

no “preferential” low strengths to attract the failure mechanism. As a result, the mean limit load will 
tend to the deterministic value based on the median of the undrained shear strength. Hence, as 

( )p

1/22
pd0 / 1

uF cF vµ
−

Θ→ → +  (Griffiths et al. [12]). The interested reader can refer to this paper for 

further discussion on this limiting case.  

 
 

Fig. 4. Estimated mean limit load as a function of undrained shear strength statistic 
ucv  

 
The effect of Θ  and 

ucv  on the sample coefficient of variation of the calculated limit load, 

p p p
/F F Fv σ µ=  is shown in Fig. 5. This figure indicates that 

pFv  is positively correlated with both 

ucv  and Θ . For the limiting case of Θ = ∞ , 
pFv  would be equal to 

ucv . 

Figure 6 shows two representative deformed meshes at failure above the trapdoor with parametric  
combinations indicated in the figure caption. Dark and light regions indicate higher and lower soil 
strengths, respectively. Due to the spatial variability of the soil, the failure mechanism is no longer 
symmetrical. 

 
2.5 Probabilistic interpretation 
 

Figure 7 can be used to choose a required factor of safety to satisfy the desired probability of 
failure. Failure is defined here as occurring if the computed limit load is smaller than the deterministic 
solution calculated using the mean undrained shear strength, reduced by an appropriate factor of 
safety. For example, if an objective probability of failure of 5% is desired for an undrained clay with 
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0.1

ucv =  (a recommended lower range of Lee et al [11]), a factor of safety of at least 1.2FS =  
would be required (Fig. 7(a)). For an intermediate value of 0.3

ucv = , the required factor of safety of 
at least 1.7FS =  is needed (Fig. 7(b)), and for an undrained clay with 0.5

ucv = , the required factor 

of safety would be at least 2.5, as shown in Fig. 7(c). 
 

 
 

Fig. 5. Estimated coefficient of variation of limit load (
pFv ) as function of undrained shear strength 

statistics Θ  and 
ucv  

 

 
 

Fig. 6. Two typical deformed meshes at failure with: (a) 0.5
ucv =  and 0.1Θ = ,  

(b) 0.5
ucv =  and 0.2Θ =  
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Fig. 7. Probability of design failure as a function of Θ  for different factor of safety: 
 (a) 0.1

ucv = , (b) 0.3
ucv = , (c) 0.5

ucv =   
 



15th IACMAG   www. 15iacmag.org 
19-23 October 2017, Wuhan, China 

 
3. Conclusions 

 
A probabilistic analysis of the limit load for a shallow passive trapdoor embedded in a spatially 

varying undrained clay has been performed. The minimum mean limit load is reached for higher 
values of 

ucv  and the spatial correlation length 0.1Θ ≈ . The results show that a factor of safety of 

2.5FS =  would be required to avoid the probability of design failure exceeding 5% for soils with 
0.5

ucv ≤ . 
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