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Abstract: This paper investigates the reliability of slopes in undrained soils by the random finite-element method (RFEM). 

The RFEM is an advanced numerical tool for geotechnical reliability analysis, which merges finite-element modelling with 

random field theory in a Monte-Carlo framework. The emphasis of this paper is on the “worst-case” spatial correlation length, 

at which the probability of slope failure reaches a maximum. The RFEM outcomes indicate that slopes in undrained soils 

with a relatively low mean factor of safety or a relatively high coefficient of variation of undrained strength, are most likely 

to display the “worst-case” phenomenon. Slopes with both isotropic and anisotropic spatial correlation structures are 

considered. In the absence of substantial soil field data, knowledge of the “worst-case” spatial correlation length is useful, 

because it can be adopted for conservative reliability-based design. 
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1 Introduction 

 

It has long been recognized that natural soil exhibits spatial variability, but it was not until the early 1990s that a 

computational tool called the random finite element method (RFEM) was developed to explicitly account for this 

variability (Griffiths and Fenton 1993; Fenton and Griffiths 1993). Since then, the method continues to be used 

by research groups worldwide, and applied to a wide range of geotechnical problems. The development of the 

method and many examples of its use in geotechnical engineering can be found in Fenton and Griffiths (2008). 

In some of the applications to reliability-based design, a maximum of “worst case” probability of failure has 

been observed at intermediate spatial correlation lengths. Baecher and Ingra (1981) noted the phenomenon in a 

footing settlement problem, and it has been further demonstrated using RFEM in several applications, including 

seepage, bearing capacity, earth pressures and settlement problems (Fenton and Griffiths 2008). Further work by 

Ching et al. (2017) has also shown the effect. In reliability-based design, the worst-case spatial correlation length 

is important (Fenton and Griffiths 2003), because in the absence of high quality and plentiful field data, it can be 

used in preliminary studies to ensure a conservative design.  

Paice and Griffiths (1997) first applied RFEM to slope stability analysis, while Griffiths et al. (2007) first 

reported the worst-case phenomenon in it. This paper will extend the work of Griffiths et al. (2007), to achieve a 

more systematic understanding of the conditions under which a worst-case spatial correlation length occurs in 

probabilistic stability analysis of clay slopes. In this paper, RFEM will be applied to the stability analysis of 2D 

undrained slopes with both isotropic and anisotropic spatial correlation lengths. In the latter case, slopes will be 

assumed to have been excavated in layered soil where the horizontal spatial correlation length is significantly 

higher than that in the vertical direction typical of stratified deposits (Phoon and Kulhawy 1999). For the 

anisotropic case, only spatial variability in the vertical direction is considered, with the horizontal spatial 

correlation length assumed infinite (Griffiths et al. 2009; Allahverdizadeh et al. 2015).  

 

2 RFEM Model 

 

Figure 1 shows a typical FE mesh employed in stability analysis of a clay slope by RFEM. The RFEM merges 

elastic-plastic finite-element analysis with random field theory (Vanmarcke 1984; Fenton and Vanmarcke 1990). 

This methodology performs Monte-Carlo analysis, where each simulation involves generation of a random field 

of undrained strength over the mesh, followed by the application of gravity loading. If the algorithm is not able 

to converge within 500 iterations, the slope is deemed to have failed. Non-convergence indicates no stress 

redistribution can be found which simultaneously satisfies the Tresca failure criterion and global equilibrium. 

Preliminary studies have indicated that 500 iterations are enough to indicate failure, and 2000 Monte-Carlo 

Proceedings of the 7th International Symposium on Geotechnical Safety and Risk (ISGSR)

Editors: Jianye Ching, Dian-Qing Li and Jie Zhang

Copyright c© ISGSR 2019 Editors. All rights reserved.

Published by Research Publishing, Singapore.

ISBN: 978-981-11-2725-0; doi:10.3850/978-981-11-2725-0 IS9-15-cd 273



274 Proceedings of the 7th International Symposium on Geotechnical Safety and Risk (ISGSR)

simulations are enough to give statistically reproducible results. The probability of slope failure fp  is simply the 

proportion of those 2000 RFEM analyses which failed. 

 

 
 

Figure 1.   Typical mesh employed in stability analysis of a clay slope by RFEM. 

 

The spatial correlation length q  is a measure of the distance over which properties are essentially similar, 

i.e. small correlation lengths result in rapid spatial variability, while large correlation lengths result in slow 

spatial variability. In this study, for an isotropic random field, an exponentially decaying correlation function is 

assumed as follows 
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where r  is the correlation coefficient and t  is the absolute distance between two points in the random field.  

The undrained shear strength uc  is modelled as a random variable characterized by a lognormal distribution. 

The variability of uc  can be expressed in the form of coefficient of variation 
uc
v , given by 
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where 
uc

s  and 
uc

m  are the standard deviation and mean of uc  respectively. It has been suggested that 
uc
v  

typically lies in the range 0.1 to 0.5 (e.g., Lee et al. 1983). In this study, the deterministic parameters include the 

saturated unit weight 20g =  kN/m3, the undrained friction angle u 0f = , the slope height 10H =  m and the 

slope angle b , which is varied in the parametric studies. 

 

3 Worst-Case Spatial Correlation Length 

 

In simple slope reliability analyses, the “single random variable” (SRV) approach, where spatial variability is 

ignored, has been widely used. The SRV approach assumes infinite horizontal and vertical spatial correlation 

lengths ( x yq q= ® ¥ ). For undrained slopes in such cases, the probability of failure can be derived analytically, 

as shown in Fig. 4 in Griffiths and Fenton (2004) based on the formula 
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where [ ].F  is the standard normal cumulative distribution function and FS  is the deterministic mean factor of 

safety of the slope assuming a uniform soil with its strength set equal to 
uc

m . 

Griffiths and Fenton (2004) warned about the dangers of using the SRV approach, because it can lead to an 

underestimation of fp  (i.e. unconservative) when the mean factor of safety is relatively low or the coefficient of 

variation is relatively high, i.e. the worst-case phenomenon may be observed under these conditions. To further 

investigate, a test slope with 26.6b = °  shown in Fig. 1 is first considered. For this test slope, the factor of safety 

with uniform properties, can be computed by traditional deterministic approaches (e.g. stability chart of Taylor 

1937), to give a factor of safety of FS 1=  when ( )u 0.17c Hg = . Since the factor of safety is proportional to the 

undrained strength in a uniform slope, the mean factor of safety FS  is given by 

( )
uFS
0.17

c
Hm g

=  (4) 



Proceedings of the 7th International Symposium on Geotechnical Safety and Risk (ISGSR) 275

3.1    Isotropic case 

In this subsection, a dimensionless spatial correlation length / HqQ =  is used for parametric analyses, with the 

following selected values: 0.01,  0.1, 0.2, 0.5, 1.0, 2.0, 5.0, 10.0, 100.0Q = . 

 

3.1.1    Influence of FS  and 
ucv  

Figure 2 shows the fp  versus Q  for the 26.6b = °  slope with different mean factors of safety when 
u

0.5cv = . 

When the mean factor of safety is FS 1.2= , a pronounced worst case occurs at a spatial correlation length of 

about 0.2Q = . As FS  is increased, the worst-case spatial correlation length also increases, but the worst-case 

effect becomes less pronounced, and is barely noticeable for FS 1.4= . When 0Q® , because the uc  is 

lognormal, the slope becomes essentially “deterministic” due to local averaging, with a uniform strength fixed at 

the median of uc  given by ( )
u u

1/2
2

1+c cvm . For the undrained slopes shown in Fig. 2, the median corresponds to 

FS 1> , so f 0p ® . When Q®¥ , as expected the RFEM solutions converge on the analytical solutions from 

Eq. (3) given as horizontal dotted lines. The reason for the worst-case phenomenon is that at extreme values of 

Q  the results of fp  are fixed as explained above, however intermediate spatial correlation lengths can facilitate 

the formation of additional failure mechanisms, leading to more failure simulations in the Monte-Carlo process, 

and a higher fp . Figure 2 also demonstrates that the SRV approach may be unconservative when FS  is 

relatively low ( FS 1.4< ) for undrained slopes with 
u

0.5cv = . 

 

 
 

Figure 2.  
fp  versus Q  with different mean factors of safety for isotropic case. 

 

Figure 3 shows the fp  versus Q  for the 26.6b = °  slope with different coefficients of variation when  

 

 
 

Figure 3.  
fp  versus Q  with different coefficients of variation for isotropic case. 
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FS 1.3= . The 
u

0.5cv =  result is the same as the middle plot in Fig. 2. As 
ucv  is decreased, the worst-case spatial 

correlation length increases, but the worst-case effect becomes less pronounced, and is not evident for 
u

0.3cv = . 

Figure 3 demonstrates that the SRV approach may be unconservative when 
ucv  is relatively high (

u
0.3cv > ) for 

undrained slopes with FS 1.3= . 

 

3.1.2    Influence of slope angle 

Figure 4 shows the fp  versus Q  for different slope angles with FS 1.3=  and 
u

0.5cv = . It can be seen from Fig. 

4 that a worst-case spatial correlation length was observed for all cases, however, the 60b = °  result gives the 

most pronounced worst case. Taylor (1948) indicated that 53° slopes represented the transition between deep and 

shallow critical failure mechanism for uniform undrained slopes. Apparently, for the undrained slopes under 

consideration, the 60° slope allows more paths than other slope angle cases. For large spatial correlation lengths 

(Q®¥ ), probabilities of failure in all cases approach the value given by Eq. (3) of f 0.375p = .  

 

 
 

Figure 4.  
fp  versus Q with different slope angles for isotropic case. 

 

3.2    Anisotropic case 

In this subsection, a dimensionless vertical spatial correlation length /y y HqQ =  ( xQ = ¥ ) is adopted, with the 

following selected values: 0.01,  0.1, 0.2, 0.5, 1.0, 2.0, 5.0, 10.0, 100.0yQ = . The horizontal correlation length is 

set to infinity. 

 

3.2.1    Influence of FS  and 
ucv  

Figure 5 shows the fp  versus 
y

Q  with different mean factors of safety when 26.6b = °  and 
u

0.5cv = . It can be  

 

 
 

Figure 5.  
fp  versus yQ  with different mean factors of safety for anisotropic case. 
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observed from Fig. 5 that there exists a pronounced worst case occurring at about 0.2yQ =  for FS 1.2= . For 

higher values of FS , the value of 
y

Q  corresponding to the maximum fp  increases, but the maximum also 

becomes less pronounced. For the case of FS 1.4= , the maximum is barely noticeable. Figure 6 shows the effect 

of 
y

Q  on fp  for different coefficients of variation with 26.6b = °  and FS 1.3= . The result for the case of 

u
0.5cv =  corresponds to the middle plot in Fig. 5. It can be observed that, with a decrease of 

ucv , the worst-case 

phenomenon becomes less noticeable. For the case of 
u

0.3cv = , the analytical solution is greater than all RFEM 

results and may be considered conservative. In summary the results shown in Figs. 5 and 6 indicate that: for 

layered excavated slopes with 
u

0.5cv = , the SRV approach gives unconservative solutions if the mean factor of 

safety is relatively low (i.e. FS 1.4< ); for layered excavated slopes with FS 1.3= , the SRV approach may give 

unconservative solutions, but only for relatively high coefficient of variation (
u

0.3cv > ). 

 

 
 

Figure 6.  
fp  versus yQ  with different coefficients of variation for anisotropic case. 

 

3.2.2    Influence of slope angle 

Figure 7 shows the effect of 
y

Q  on fp  for different slope angles with FS 1.3=  and 
u

0.5cv = . Similarly, the 

result for the case of 26.6b = °  is the same as those with circle symbols in Figs. 5 and 6. It can be observed that 

the critical 
y

Q  occurs at the same position for all cases, however, the 60b = °  result gives the most obvious 

maxima in fp . 

 

 
 

Figure 7.  
fp  versus yQ  with different coefficients of variation for anisotropic case. 
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4 Concluding Remarks 

 

The paper has investigated the worst-case spatial correlation length for 2D excavated clay slopes by RFEM. The 

worst-case effect has been studied for both isotropic and anisotropic cases. Apart from the location of the 

maximum fp  for FS 1.3=  in these two cases, other conclusions are similar. It was shown that the worst-case 

phenomenon is most pronounced when the mean factor of safety is relatively low (e.g. FS 1.4< ) and the 

coefficient of variation of the undrained strength is relatively high (e.g. 
u

0.3cv > ). It should be noted that, a 

worst-case slope angle close to 60° was also observed (with all other parameters held constant) in both isotropic 

and anisotropic cases, which has implications for reliability-based design of excavated clay slopes. 
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