
SIMULATION OF RANDOM FIELDS VIA LOCAL 

AVERAGE SUBDIVISION 

By Gordon A. Fenton1 and Erik H. Vanmarcke,2 Members, ASCE 

ABSTRACT: A fast and accurate method of generating realizations of a homoge­
neous Gaussian scalar random process in one, two, or three dimensions is pre­
sented. The resulting discrete process represents local averages of a homogeneous 
random function defined by its mean and covariance function, the averaging being 
performed over incremental domains formed by different levels of discretization 
of the field. The approach is motivated first by the need to represent engineering 
properties as local averages (since many properties are not well defined at a point 
and show significant scale effects), and second to be able to condition the real­
ization easily to incorporate known data or change resolution within sub-regions. 
The ability to condition the realization or increase the resolution in certain regions 
is an important contribution to finite element modeling of random phenomena. The 
Ornstein-Uhlenbeck and fractional Gaussian noise processes are used as illustra­
tions. 

INTRODUCTION 

Stochastic models of natural phenomena are rapidly gaining popularity within 
the scientific community for a variety of reasons, not the least of which is 
marked improvements in computer processing speeds and graphics capabil­
ities. From a predictive point of view, the major use of such models is in 
the quantification of system reliability and optimization of data acquisition. 
Many problems of practical interest to engineers remain unsolved by ana­
lytical means but are amenable to approximate solutions via Monte Carlo 
simulation. In the context of stochastic finite element analyses, Monte Carlo 
techniques are intuitively appealing and often given good results for other­
wise intractable problems. 

In this paper a fast and accurate method of producing realizations of a 
discrete "local average" random process is presented. The motivation for 
such an approach arose because most engineering measurements are only 
defined over some finite domain and thus represent a local average of the 
property. For example, soil porosity is ill-defined at the microscale—it is 
measured using samples of finite volume and the variability of the values 
obtained is often significantly effected by the volume tested. The same is 
true of strength measurements, say concrete cylinders, or radar measure­
ments of cloud or rainfall densities (see also Rodriguez-Iturbe 1986). A prop­
erly defined random local average process is therefore more easily related 
to actual measurements made at any scale and those measures are more eas­
ily incorporated. 

Another advantage to the proposed method is that it is ideally suited to 
stochastic finite element modeling using efficient, low-order, interpolation 
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functions. Each discrete local average given by a realization becomes the 
average property within each discrete element. In this context, the ability to 
easily change the resolution of a region of the domain while maintaining 
internal consistency will give finite element modelers the freedom of chang­
ing mesh resolution in regions of interest. 

The concept behind the local average subdivision (LAS) approach arose 
out of the stochastic subdivision algorithm described by Carpenter (1980) 
and Founder et al. (1982). Their method was limited to modeling power 
spectra having a co~p form and suffered from problems with aliasing and 
"creasing." Lewis (1987) generalized the approach to allow the modeling of 
arbitrary power spectra without eliminating the aliasing. Such midpoint dis­
placement algorithms involve recursively subdividing the domain by gen­
erating new midpoint values randomly selected according to some distri­
bution. Once chosen, the value at a point remains fixed and at each stage 
in the subdivision only half the points in the process are determined (the 
others having been created in previous iterations). Aliasing arises because 
the power spectral density is not modified at each stage to reflect the in­
creasing Nyquist frequency associated with each increase in resolution. Voss 
(Peitgen et al. 1988: ch. 1) attempted to eliminate this problem with con­
siderable success by adding randomness to all points at each stage in the 
subdivision in a method called "successive random additions." However, the 
internal consistency easily achieved by the midpoint displacement methods 
(their ability to return to previous states while decreasing resolution through 
decimation) is largely lost with the successive random additions technique. 
The property of internal consistency in the midpoint displacement ap­
proaches implies that certain points retain their value throughout the sub­
division and other points are created to remain consistent with them with 
respect to correlation. In the LAS approach, internal consistency implies that 
certain regions maintain a constant average throughout the subdivision. The 
property of internal consistency is important because it allows the process 
to be easily conditioned. 

The method proposed here solves the problems associated with the sto­
chastic subdivision methods and incorporates into it concepts of local av­
eraging theory. The general concept and procedure is presented first for a 
one-dimensional stationary process characterized by its second-order statis­
tics. The algorithm is illustrated by an Ornstein-Uhlenbeck process, having 
a simple exponential correlation function, as well as by a fractional Gaussian 
noise process as defined by Mandelbrot and van Ness (1968). The simulation 
procedure in two and three dimensions is then described. Finally, some com­
ments concerning the relative efficiency of the method are made. 

ONE-DIMENSIONAL LOCAL AVERAGE SUBDIVISION 

The construction of a local average process via LAS essentially proceeds 
in a top-down recursive fashion (Fenton 1990), as illustrated in Fig. 1. In 
stage 0, a global average is generated for the process. In stage 1, the domain 
is subdivided into two regions whose "local" averages must in turn average 
to the global (or parent) value. Subsequent stages are obtained by subdivid­
ing each "parent" cell and generating values for the resulting two regions 
while preserving upwards averaging. Note that the global average remains 
constant throughout the subdivision, a property that is ensured merely by 

1734 

 J. Eng. Mech., 1990, 116(8): 1733-1749 

D
ow

nl
oa

de
d 

fr
om

 a
sc

el
ib

ra
ry

.o
rg

 b
y 

D
A

L
H

O
U

SI
E

 U
N

IV
E

R
SI

T
Y

 o
n 

03
/1

8/
19

. C
op

yr
ig

ht
 A

SC
E

. F
or

 p
er

so
na

l u
se

 o
nl

y;
 a

ll 
ri

gh
ts

 r
es

er
ve

d.



Stage 0 

Stage 1 

Stage 2 

Stage 3 

Stage 4 

FIG. 1. Top-Down Approach to LAS Construction of Local Average Random Pro­
cess 

requiring that the average of each pair generated is equivalent to the parent 
cell value. This is also a property of any cell being subdivided—such in­
ternal consistency allows for simple conditioning of the process. Specifi­
cally, the algorithm proceeds as follows. 

1. Generate a normally distributed global average (labeled Z° in Fig. 1) with 
mean zero and variance obtained from local averaging theory. 

2. Subdivide the field into two equal parts. 
3. Generate two normally distributed values, Z\ and Z\, whose means and 

variances are selected so as to satisfy three criteria: (1) That they show the cor­
rect variance according to local averaging theory; (2) that they are properly cor­
related with one another; and (3) that they average to the parent value, 
(1/2)(Z{ + Z\) = Z\. That is, the distributions of Z\ and Z\ are conditioned on 
the value of Z\. 

4. Subdivide each cell in stage 1 into two equal parts. 
5. Generate two normally distributed values, ZJandZJ, whose means and 

variances are selected so as to satisfy four criteria: (1) That they show the correct 
variance according to local averaging theory; (2) that they are properly correlated 
with one another; (3) that they average to the parent value, (1/2)(Z? + Z\) = 
Z\; and (4) that they are properly correlated with Z\ andZj. The third criterion 
implies conditioning of the distributions of Z\ andZ | on the value of ZJ. The 
fourth criterion will only be satisfied approximately by conditioning their dis­
tributions also on Z\. 

The algorithm continues in this fashion. The approximations in the algorithm 
come about in two ways. First, the correlation with adjacent cells across 
parent boundaries is accomplished through the parent values (which are al­
ready known, having been previously generated). Second, the range of par­
ent cells on which to condition the distributions will be limited to some 
neighborhood. The remainder of this paper is devoted largely to the deter­
mination of these conditional Gaussian distributions at each stage in the sub­
division and to an estimation of the algorithmic errors. In the following, the 
term "parent cell" refers to the previous stage cell being subdivided and the 
term "within-cell" means within the region defined by the parent cell. 

To determine the mean and variance of the stage 0 value, Z\, consider 
first a continuous stationary scalar random function Z(t) in one dimension, 
a sample of which may appear as shown in Fig. 2, and define a domain of 
interest (0,D] within which a realization is to be produced. Two comments 
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FIG. 2. Realization of Continuous Random Function Z with Domain of Interest 
(0,0] Defined 

should be made at this point. First, as it is currently implemented the method 
is restricted to stationary processes fully described by their second-order sta­
tistics (mean, variance, and autocorrelation function, or, equivalently, spec­
tral density function). This is not a severe restriction, since it leaves a suf­
ficiently broad class of functions to model most natural phenomena (Lewis 
1987); also, there is often insufficient data to substantiate more complex 
probabilistic models. Second, the subdivision procedure depends on the 
physical size of the domain being defined, since the dimension over which 
local averaging is to be performed must be known. The process Z beyond 
the domain (0,£>] is ignored. 

The average of Z(t) over the domain (Q,D] is given by 

D Jo 
Z(QdZ (1) 

where Z° is a random variable whose statistics 

E[Z?] = E[Z] (2) 

E[(Z?)Z] = ( — | | I EtZ(©Z(r)]rf^r 

E[zy + (D - T)fl(T)rfT (3) 

can be found by making use of stationarity and the fact that 5 (T) , the co-
variance function of Z{t), is an even function of lag T. Without loss in gen­
erality, E[Z] will henceforth be taken as zero, where E[-] is the expectation 
operator. If Z(f) is a Gaussian random function, Eqs. 2 and 3 give sufficient 
information to generate a realization of Z° that becomes stage 0 in the LAS 
method. If Z(i) is not Gaussian, then the complete probability distribution 
function for Z\ must be determined and a realization generated according to 
such a distribution. This is beyond the scope of the present paper and so we 
restrict our attention to Gaussian processes. 

Consider now the general case where stage i is known and stage i + 1 is 
to be generated. In the following the superscript i denotes the stage under 
consideration. Define 

1736 

 J. Eng. Mech., 1990, 116(8): 1733-1749 

D
ow

nl
oa

de
d 

fr
om

 a
sc

el
ib

ra
ry

.o
rg

 b
y 

D
A

L
H

O
U

SI
E

 U
N

IV
E

R
SI

T
Y

 o
n 

03
/1

8/
19

. C
op

yr
ig

ht
 A

SC
E

. F
or

 p
er

so
na

l u
se

 o
nl

y;
 a

ll 
ri

gh
ts

 r
es

er
ve

d.



j+1 
2J-1 2j 2J+1 | 2J+2 

FIG. 3. One-Dimensional LAS Indexing for Stage i (Top) and Stage / + 1 (Bottom) 

D' 
D 

i = 0, 1, 2, ...,L (4) 

where the desired number of intevals in the realizations is N = 2L, and define 
Z'k to be the average of Z(t) over the interval (k — l)D' < t < kD' centered 
at tk= (k - 1/2)D', i.e. 

Z\ = - \ Z(i)dt, (5) 
DO' 

._ i r 
Vk = D< J , . 

where E[Z'k] = E[Z] = 0. The target covariance between local averages 
separated by lag mD' between centers is 

2 rkD< r(k+m)D' 

Z(©Z(£')d|d?' 
(k+m-l)Dl 

E[ZkZk+m] — E 

2 rD< Am+ 1)D' 

, 2 (.kD' Al 

P I J(k-V)D> J(k-

\p) I i B& - Z)di;dZ 

K - (m - l)D']fl(©rf£ 

+ F 

(m-l )D' 

2 r (m+l)D ' 

t(m+l)D ; - aB(©d€ (6) 

A much simpler formulation is possible by introducing the concept of a vari­
ance function defined as follows (Vanmarcke 1984) 

y(D'} = (^) l l *« ~ *'***' = 2 fe) l (|D1 " miT)dT (7) 
where a2 = B(0). Vanmarcke has determined this function for a variety of 
processes. In terms of the variance function, Eq. 6 becomes 

ElZiZk+m] =-[(m- D27((m - DD') - 2m27(m£>') 

(m + l)27((m + !)£>')] (8) 

With reference to Fig. 3, the construction of stage i + 1 given stage i is 
obtained by estimating a mean for Zy1 and adding a zero mean discrete 
white noise c'+1£/]+1 having variance (c'+1)2 

Z'2T = M'^ + c ,+1f/j+1 (9) 

The best linear estimate for the mean My1 can be determined by a linear 
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combination of stage i (parent) values in some neighborhood j - n, 
j + n 

M%1 
2J a'k-jZ'k (10) 

k=j-n 

Multiplying Eq. 9 through by Z'„„ taking expectations and using the fact that 
U'j 1 is uncorrelated with the stage (' values allows the determination of the 
coefficients a in terms of the desired covariances 

J+n 

E[Zy'z;„] = 2 ai-yE[ZiZij (11) 
k=j~ n 

a system of equations (m = j — n, ..., j + n) from which the coefficients 
a\, I = —n, ..., n, can be solved. The covariance matrix multiplying the 
vector {a',} is both symmetric and Toeplitz (elements along each diagonal are 
equal). For U)+i ~ N(0,1) the variance of the noise term is (c/+1)2 which 
can be obtained by squaring Eq. 9, taking expectations and employing the 
results of Eq. 11 

J+n 

(c'+1)2 = E[(Z£')2] - 2 d-filzPzti (12) 
k=j—n 

The adjacent cell, Z'y-i, is determined by ensuring that upwards averaging 
is preserved—that the average of each stage i + 1 pair equals the value of 
the stage i parent 

Z £ , = 2ZJ - Z £ ' (13) 

which incidentally gives a means of evaluating the cross-stage covariances 

1 .+1 /+1 1 
EfZy Z'2m-{[ + ~ EIZ^Z'J = £ EtZ^Z&L,] + ^ EtZ^'zg,1] (14) 

All the expectations in Eqs. 11-14 are evaluated using Eq. 6 or Eq. 8 at 
the appropriate stage. 

For stationary processes, the set of coefficients {a[} and c' are independent 
of position, since the expectations in Eqs. 11 and 12 are just dependent on 
lags. The generation procedure can be restated as follows. 

1. For i = 0, 1, 2, . . . , L compute the coefficients {aj}, / = —n, ..., n using 
Eq. 11 and ct+1 using Eq. 12. 

2. Starting with i = 0, generate a realization for the global mean using Eq. 
2 and Eq. 3. 

3. Subdivide the domain. 
4. For each j = 1, 2, . . . , 2', generate realizations for Zy1 and Z'yli using 

Eqs. 9 and 13. 
5. Increment i and, if it is not greater than L, return to step 3. 

Notice that subsequent realizations of the process need only start at step 2, 
and so the overhead involved with setting up the coefficients becomes rap­
idly negligible. 

Because the LAS procedure is recursive, obtaining stage ;' + 1 values 
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using the previous stage, it is relatively easy to condition the field simply 
by specifying the values of the local averages at a particular stage. So, for 
example, if the global mean of a process is known a priori, then the stage 
0 value can be set to this mean and the LAS procedure started at stage 1. 
Similarly if the resolution is to be refined in a certain region, then the values 
in that region become the starting values and the subdivision is resumed at 
the next stage. 

Although the LAS method yields a local average process, when the dis­
cretization size becomes small enough it is virtually indistinguishable from 
the limiting continuous process. Thus the method can be used to approximate 
continuous functions as well. 

Accuracy 
It is instructive to investigate how closely the algorithm approximates the 

target statistics of the process. Changing notation slightly, denote the stage 
i + 1 algorithmic values, given the stage i values, as 

j+n 

z £ ! = ci+I£/j+1 + ^ ot-jZi (15) 
k=j—n 

Z (+l A 7 I >y i+l 
2/-1 — ££*} & y (16) 

It is easy to see that the expectation of Z is still zero, as desired, while the 
variance is 

E[(Z£')2] = E 
j+n 

2 
k=j—n 

ci+1C/j+1 + 2 <&-jZl 

j+n j+n 

= (c'+1)2 + 2 4-j 2 ai_,E[ZiZJ] 
k=j—n l=j-n 

j+n j+n 

= E[(Z£')2] - 2 4-,E[Z^'zy + 2 4-;E[Z£'Zi] = E[(Z'^)2] (17) 
k~j—n k=j—n 

in which the coefficients c'+1 and a\ were calculated using Eqs. 11 and 12, 
as before. Similarly, the within-cell covariance at lag Z?'+1 is 

EtZ^ZSTl = E 
\ k=]-n I \ l=]~n I J 

= 2 2 aj_;E[Z|Zj] - E[(Z£')2] = 2E[Z£1Zj] - E[(Z£')2] 

= EtZSi.zS'] (18) 

using the results of Eq. 17 along with Eq. 14. Thus the covariance structure 
within a cell is preserved exactly by the subdivision algorithm. Some ap­
proximation does occur across cell boundaries as can be seen by considering 

E [ Z ^ ' Z ^ 1 ] = E \c'+lU';1 + 2 a^jZijhz)^ - cMV%\ [Continued] 
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5' 

Exact Correlation 

LAS Correlation 

FIG. 4. Comparison of Algorithmic and Exact Correlation between Adjacent Cells 
across Parent Cell Boundary for Varying Effective Cell Dimensions 2r/8 

J+n+l 

l=j~n+1 

j+n j+n+l j+n 

= 2 2 4-;E[ZiZ}+1] - 2 oi-y-i S ai-jE[Z!
kZn 

k=j—n l=j-n+1 k=j—n 

j+n+l 

= EtZ^'Z&d + E[Z£'z£2] - 2 <4-j-MZylZh 
l=j-n+l 

(19) 

The algorithmic error in this covariance comes from the last two terms. The 
discrepancy between Eq. 19 and the exact covariance is illustrated numer­
ically in Fig. 4 for a zero-mean Ornstein-Uhlenbeck process having covari­
ance and variance functions 

B(T) = <rz exp [ 

e2 

w + ^iM^! 

(20) 

(21) 

where T = the averaging dimension (in Fig. 4, T = D'+1); and 6 = the scale 
of fluctuation of the process. The exact covariance is determined by Eq. 8 
(for m = 1) using the variance function (Eq. 21). Although Fig. 4 shows a 
wide range in the effective cell sizes, 2T/8, the error is typically very small. 

To address the issue of errors at larger lags and the possibility of errors 
accumulating from stage to stage, it is useful to look at the exact versus 
estimated statistics of the entire process. Fig. 5 illustrates this comparison 
for the Ornstein-Uhlenbeck process. It can be seen from this example and 
from the fractional Gaussian noise example to come, that the errors are self-
correcting and the algorithmic correlation structure tends to the exact cor­
relation function when averaged over several realizations. Spectral analysis 
of realizations obtained from the LAS method shows equally good agreement 
between estimated and exact (Fenton 1990). The within-cell rate of conver­
gence of the estimated statistics to the exact is l/Nf, where Nf is the number 
of realizations. The overall rate of convergence is about the same. 
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- Estimated 

- Exact 

Lag 

FIG. 5. Comparison of Exact and Estimated (Averaged over 200 Realizations) 
Covariance Functions of Ornstein-Uhlenbeck Process (Eq. 20) with o- = 1 and Scale 
of Fluctuation 6 = 4 

Boundary Conditions and Neighborhood Size 
When the neighborhood size (2n 4- 1) is greater than 1 (n > 0), the con­

struction of values near the boundary may require values from the previous 
stage that lie outside the boundary. This problem is handled by assuming 
that what happens outside the domain (0,D] is of no interest and uncorrected 
with what happens within the domain. The generating relationship (Eq. 9) 
near either boundary becomes 

Z£! = ci+1£/j+1 + 2 <LA (22) 
k=i-p 

where p = min (n, j — 1); q = min (n, 2' - j)\ and the coefficients a\ need 
only be determined for / = —p, . . . , q. The periodic boundary conditions 
mentioned by Lewis (1987) are not appropriate if the target covariance struc­
ture is to be preserved, since they lead to a covariance that is symmetric 
about lag D/2 (unless the desired covariance is also symmetric about this 
lag). 

In the implementation described in this paper, a neighborhood size of 3 
was used (n = 1): the parent cell plus its two adjacent cells. Because of the 
top-down approach, there seems to be little justification to using a larger 
neighborhood for processes with covariance functions that decrease mono-
tonically or that are relatively smooth. When the covariance function is os­
cillatory, a larger neighborhood is required to approximate the function suc­
cessfully. In Fig. 6 the exact and estimated covariances are shown for a 
process with 

B(T) = ex2 cos (wT)e-2T/e (23) 

Considerable improvement in the model is obtained when a neighborhood 
size of 5 is used (n = 2). This improvement comes at the expense of taking 
about twice as long to generate the realizations. Many practical models of 
natural phenomena employ monotonically decreasing covariance functions, 
often for simplicity, and so the n = 1 implementation is usually preferable. 
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FIG. 6. Effect of Neighborhood Size for: (a) n = 1; and (b) n = 2 on Estimated 
Covariance of Damped Oscillatory Noise (Eq. 23) Produced by LAS Method 

Fractional Gaussian Noise 
As a further demonstration of the LAS method, a self-similar process called 

fractional Gaussian noise was simulated. Fractional Gaussian noise (fGri) is 
defined by Mandelbrot et al. (1968) to be the derivative of fractional Brown-
ian motion (fBm), obtained by averaging the fBm over a small interval 8. 
The resulting process has covariance and variance functions 

Bw = -S(iT + sr-2|T |M + | T - 8 n . 
28 

yen 
\T + 5 H 2 - 2\T\W+2 +\T- 8f 28a 

T\2H + l)(2H + 2)82' 

(24) 

(25) 

defined for 0 < H < 1. The case H = 0.5 corresponds to white noise and 
H —> 1 gives co_1 type noise. In practice 8 is taken to be equal to the smallest 
lag between field points (8 = D/2L) to ensure that when H = 0.5 (white 
noise), Z?(T) becomes zero for all T ^ D/2L. A sample function and its cor­
responding ensemble statistics are shown in Fig. 7 for &)~p type noise (H = 
0.95) where (J = 2H — 1 The self-similar type processes have been dem­
onstrated by Mandelbrot (1982), Voss (1985), and many others (Mohr 1981; 
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FIG. 7. (a) LAS-Generated Sample Function of w s Noise for H = 0.95; and (b) 
Corresponding Estimated (Averaged over 200 Realizations) versus Exact Covari-
ance Function 

Peitgen et al. 1988; Whittle 1956, to name a few) to be representative of a 
large variety of natural forms and patterns, for example music, terrains, crop 
yields, and chaotic systems. 

MULTI-DIMENSIONAL EXTENSIONS 

In two dimensions, a rectangular domain is defined and the subdivision 
proceeds by dividing rectangles into four equal areas at each stage. To pre­
serve the exact within-cell covariance structure, three random noises are added 
to three of the quadrants and the fourth quadrant is determined such that 
upwards averaging is preserved. Fig. 8 presents the 2-D LAS scheme for 
the first three stages in which the center of each local average is marked 
with a different symbol for each stage. The generating relationships are 

71+1 _ v ' + l — „ '+ l r r '+ l _i_ V J -7 •̂ 1 - ^2JM ~ cn Uljk + 2J anZ m(l)MD (26a) 
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o o o o 
4 2 4 2 

+ 4 

o o o o 
3 1 3 1 

H l 

o o o o 
4 2 4 2 

+ + 
3 1 

o o o o 
3 1 3 1 

FIG. 8. First Three Stages and Indexing Scheme of 2-D LAS Algorithm (Stage 0 
= |x], Stage 1 = +, and Stage 2 = O) 

"xy 

Z'2 = Z'2j,2k-1 = c2\ U\jk + C22 U'2jk + 2J a'tlZ'm<J),ntJ) (26fe) 
(=1 

nxy 

Z'3
+1 = Z2)1XM = c£lU$ + c&U^ + <&lU'£ + 2 ABZU-W (26c) 

(=1 

Z 4 = Zy-l,2k-l = ^Z'jk ~ Z2ji2k ~ Z2],2k-\ ~ Z2j-l,2k ( 2 6 a ) 

where U = a Gaussian variate with zero mean and unit variance; and m(l) 
and n(l) = indexing functions traversing (in a fixed pattern) the n^ = (2nx 

+ 1) X (2ny + 1 ) neighborhood of Z)k. In this implementation, nx = ny = 
1 and the boundary conditions are handled in the same fashion as for the 
1-D case. The coefficients {a'lr} can be calculated from the linear equations 

Itr/ 

1, 2, . . . , n^y (27a) 

"xy 

E[Z2y>2t_1Z!„(p)t„(p)] = 2_i a'(2E[ZJ„(,)i„(;)ZJ„(p),„(p)] p = 1, 2, . . . , Mjg, . . . . (21b) 
1=1 

"xy 

E[Z2/-i>2jrZm(P)i„(p)] = 2_t a'i3E[Zm(.D,n<.i)Zm(p)Mp)\ P = 1, 2, . . . , n^j, . . . . (27c) 
1=1 

in which the matrices on the right-hand sides are symmetric but no longer 
Toeplitz in general. The coefficient matrix c'+1 is assumed to be lower tri­
angular, satisfying 

c '+i. ( c /+y = R ( 2 8 ) 

where R is symmetric and given by 
nxy 

Rrs = E[Z'r
+1Zi+1] - 2) airE[ZL(l),„(0Zi+1] r,s = 1, 2, 3 (29) 

i=i 

using the indexing notation defined at the extreme left of Eq. 26. The as­
sumption of homogeneity vastly decreases the number of coefficients that 
need to be calculated and stored since {a\} and c'+1 become independent of 
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position. As in the 1-D case, the coefficients need only be calculated prior 
to the first realization—they can be reused in subsequent realizations, re­
ducing the effective cost of their calculation. 

The expectations used in Eqs. 27a-29 can be determined from the two-
dimensional variance function of the process 

1 ' ' 
E[ZJtZJ+m,i+„] = - o-2 E wp(m + P? X WM + 9fyKm + q)D'x, 

4 p = - l q=-\ 

(n + p)Di
y\ (30) 

where w, = — 2 when / = 0, and wt = 1 otherwise; and where D'x and D'y 

= the dimensions of the individual averaging rectangles at stage i. For a 
quadrant symmetric covariance structure, y(-) is defined by Vanmarcke (1984) 
to be 

l(Tl,T2) = \^YJ J J (\Tl\ ~ \TX\)(\T2\ - |T2|)B(T„T2)rfTWT2 (31) 

A sample function of a 5 X 5 first-order Markov process having isotropic 
covariance function 

(-.^ 
fl(T!,T2) = a2 exp I - - V i t + T| I (32) 

was generated using the two-dimensional LAS algorithm and is shown in 
Fig. 9. The field was subdivided eight times to obtain a 256 X 256 resolution 
giving relatively small cells of size (5/256) X (5/256). The estimated co-
variances along three different directions are seen in Fig. 10 to show very 
good agreement with the exact (Eq. 30). The agreement improves (as 1/Nf) 
when the statistics are averaged over a larger number of realizations. Notice 
that the horizontal axis on Fig. 10 extends beyond a lag of 5 to accommodate 
the estimation of the covariance along the diagonal (which has length 
5V2). 

In three dimensions, the LAS method involves recursively subdividing 
rectangular parallelepipeds into eight equal volumes at each stage. The gen­
erating relationships are essentially the same as in the 2-D case except now 
seven random noises are used in the subdivision of each parent volume at 
each stage 

Zs
 = 2^ C™ "•!/« + 2 J ai'Zmm,n(r),p(.t) s = 1, 2, ..., 7 (33) 

Z r = 8ZjH - 2 Z1;1 (34) 

in which Z's
+1 denotes a particular octant of the subdivided cell centered at 

Z'Jkl. For a neighborhood size, n^, of 3 X 3 X 3, Fig. 11 compares the 
estimated and exact covariance of a three-dimensional first-order Markov 
process having isotropic covariance 

B(TI,T 2 ,T 3 ) = a2 exp ( - - V T ? + T2
2 + i f ) (35) 
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FIG. 9. LAS-Generated Sample Function of Two-Dimensional First-Order Markov 
Process (Eq. 32) for 8 = 1/2 

<5° 

Vv 

Exact 
Horizontal Estimate 

Vertical Estimate 

. Diagonal Estimate 

r^f 

Lag 

FIG. 10. Comparison of Exact and Estimated (Averaged over 100 Realizations) 
Covariance Functions of Two-Dimensional First-Order Markov Process (Eq. 32) 
with a = 1 and 8 = 1/2 
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FIG. 11. Comparison of Exact and Estimated (Averaged over 50 Realizations) 
Covarlance Functions of Three-Dimensional First-Order Markov Process (Eq. 35) 
with o- = 1 and 6 = 4; Dashed Lines Show Estimates in Various Directions through 
Volume 

The physical field size of 5 X 5 X 5 was subdivided six times to obtain a 
resolution of 64 X 64 X 64 and the covariance estimates were averaged over 
50 realizations. 

IMPLEMENTATION AND EFFICIENCY 

To calculate stage i + 1 values, the values at stage i must be known. This 
implies that in the 1-D case, storage must be provided for at least \.5N 
values where N = 2L is the desired number of intervals of the process. The 
implementation described in this paper stores all the previous stages, a stor­
age requirement of (2N - 1) in 1-D, (4/3)(iV X N) in 2-D, and (8/7)(iV X 
N X N) in 3-D. This allows rapid "zooming out" of the field. The coeffi­
cients {a1} and c', which must also be stored, can be efficiently calculated 
using LU factorization (see Eq. 28) and successive back-substitutions (see 
Eq. 27). The Toeplitz property of the matrix in Eq. 11 was not taken ad­
vantage of for neighborhood sizes greater than 3. 

The LAS method is also very competitive with the popular fast Fourier 
transform method in its execution speed. Table 1 compares times of the two 
methods running on a Cyber 205 (CDC) supercomputer for one-, two-, and 

TABLE 1. 

Type 

(1) 

1-DFFT 
1-D LAS 
2-DFFT 
2-D LAS 
3-DFFT 
3-D LAS 

Comparison of Execution Times on 

Resolution 
(2) 

256 
256 

256 x 256 
256 x 256 

64 x 64 x 64 
64 x 64 x 64 

Number of 
realizations 

(3) 

200 
200 
100 
100 
50 
50 

Cyber 205 Super-Computer 

Time (seconds) 

Setup 
(4) 

0.0013 
0.0017 
0.1265 
0.1156 
0.1517 
6.1740 

Generation 
(5) 

0.18 
0.15 

15.20 
23.01 
48.77 

100.57 
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three-dimensional realizations. In one dimension, using a neighborhood size 
of 3, LAS runs slightly faster than the FFT approach. Both methods have 
negligible setup times for the coefficient calculations. In two and three di­
mensions, the LAS approach runs about 1.5 to 2 times slower than the FFT. 
One needs to be careful in making a direct comparison, however, since the 
FFT approach yields an observed covariance structure that is symmetric about 
D/2 due to assumed periodicity (Fenton 1990). Thus, to obtain a process 
with the correct statistics via FFT, the size of the field must be increased 
(and the excess ignored), in some cases by as much as a factor of 2. This 
means that execution times of a "corrected" FFT method could be as much 
as 2E times greater than those shown in Table 1, where E is the dimension 
of the process. 

CONCLUSIONS 

The LAS algorithm has been found to be an efficient and accurate means 
of producing realizations of homogeneous Gaussian random local average 
processes in one, two, or three dimensions. The primary advantages the method 
has over existing approaches are the following, 

1. It makes conditioning the realization using known local averages simple. 
2. It produces realizations that are scale dependent and show the proper co-

variance between local averages at any resolution. 
3. It is ideally suited to finite element models using efficient low-order in­

terpolation functions in which each local average becomes an element property. 
4. It avoids the aliasing, creasing, and symmetric covariance problems found 

with other, traditional, methods. 

As it is currently implemented, the method is restricted to isotropic covari­
ance functions in two and three dimensions. This is not a serious restriction, 
since anisotropic fields having ellipsoidal covariance functions can be simply 
produced by scaling the space coordinates of an isotropic process appropri­
ately. 
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APPENDIX II. NOTATION 

The following symbols are used in this paper: 

a'k 

B(-) 
c' 
D 
D' 

£[•] 
H 
L 

M 
N 
Nf 

n 
U 
z 

z'k 
z'k C

O
. 

7(0 
8 

e 
CT 

T 

0) 

= 
= 
= 
= 
= 
= 
= 
= 
= 
= 
= 
= 
= 
= 
= 
= 
= 
= 
= 

= 
= 
= 
= 

best linear estimate coefficient at stage i; 
covariance function of Z; 
coefficients of the noise U at stage ;'; 
physical length of process; 
physical length of a cell of the subdivided field at stage ;'; 
expectation operator; 
self-similarity parameter; 
desired number of subdivisions to perform; 
estimated mean; 
desired number of elements in the final process; 
number of realizations of the field; 
neighborhood range; 
unit variance, zero-mean discrete Gaussian white noise; 
scalar random function; 
average of Z over length D' centered at (k — 1/2)D'; 
algorithmic approximation to Z'k; 
2H - 1; 
variance function of the process Z; 
interval over which/Bm is averaged in order to define the de­
rivative; 
scale of fluctuation; 
standard deviation of the continuous point process Z; 
lag; and 
frequency, radians/s. 
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