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ABSTRACT; Methodology is presented for simulating properly correlated earth- 
quake ground motions at an arbitrary set of closely spaced points, compatible with 
known or prescribed motions at other locations. The input consists of the spectral 
density function and frequency-dependent spatial correlation function in several 
nonoverlapping ground-motion segments. Linear-prediction estimators are used to 
generate a set of statistically independent, frequency-specific, spatial random pro- 
cesses, based on which ground motions are composed by means of a fast-Fourier- 
transform algorithm. The method's advantage over existing linear-estimation tech- 
niques, known as kriging, is that it correctly reproduces the specified space-time 
correlation structure of the ground motion. Examples are given to illustrate the 
features of the simulation methodology; in particular, response spectra and dynamic 
response ratios are compared for recorded and simulated motions at the site of the 
SMART 1 strong-motion accelerograph array. 

INTRODUCTION 

Although simulating spatially correlated earthquake ground motion has 
become straightforward in principle, provided the space-time correlation 
structure of the ground motion is known or prescribed, it is only recently 
that the problem of conditional simulation has been addressed (Vanmarcke 
and Fenton 1989, 1991). In conditional simulation, motions have been re- 
corded, or specified for design purposes, at a number  of closely spaced 
points, and the aim is to generate compatible accelerograms at nearby lo- 
cations where motions are not available. For instance, ground motions may 
be given at one or more points at the site of  a multisupport structure; to 
provide input into structural response analysis, it is necessary to "predict" 
the ground motions at the location of the supports. In another important 
application, one may seek to predict the ground motion at the site of a 
damaged or collapsed structure after an earthquake, based on recorded 
ground motions nearby. Fenton and Vanmarcke (1989) proposed the use 
of linear-estimation techniques called kriging developed for regionalized 
random variables in geostatistics (Matheron 1967), for the conditional sim- 
ulation of stationary segments of earthquake ground motion, later extending 
the methodology to account for time-varying ground-motion intensity and 
frequency content. In this paper,  an improved methodology based on linear- 
prediction theory is presented; its advantage is that the covariance structure 
of the simulated process correctly reproduces the theoretical covariance 
structure under all circumstances expected to be encountered in engineering 
applications. In the context of  modeling local fields of earthquake ground 
motion, this is a significant improvement over the kriging techniques that 
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poorly preserve the covariance structure of the ground motion, and in par- 
ticular, its spectral density function and amplitudes at locations relatively 
far from the points where motions are prescribed (Heredia-Zavoni 1993). 

The simulation of phase-aligned earthquake ground motion using fast- 
Fourier-transform (FFT) techniques is first examined: phase alignment re- 
fers to the extraction of time delays associated with wave. travel along the 
path of seismic wave propagation. We then analyze the kriging and linear- 
prediction estimators for the case of a scalar or component spatial random 
process, assuming that a set of points the process has been observed, with 
interest focusing on how to predict values of the process at a set of target 
points. Next we discuss the use of kriging and linear-prediction estimators 
in a conditional simulation algorithm, and examine the conditions under 
which the simulated process reproduces the covariance structure of the true 
process. An improved methodology for the conditional simulation of a phase- 
aligned earthquake ground motion process, modeled as the sum of a series 
of uncorrelated frequency-specific spatial processes, is then presented. Fi- 
nally, some examples are presented to illustrate the features, capabilities, 
and uses of the simulation methodology�9 Results mimicking data from the 
Taiwan Strong Motion Array (SMART 1) are also given and serve to com- 
pare simulated and recorded ground motions. 

GROUND-MOTION SIMULATION 

Assume that a segment of the ground motion at a point x~ can be rep- 
resented by a nonergodic, zero-mean, homogeneous, mean-square contin- 
uous space time process Zs(t). The process Z~(t) can be expressed as a sum 
of independent frequency-specific spatial processes in consecutive constant- 
size frequency intervals, Am, as follows. 

K 

Zi(t) = E [Aik cos(c~ + Bik sin(cokt)] 
k = l  

. . . . . . . . . . . . . . . . . . . . . . . . .  (1) 

where the coefficients Aik and Bik = zero-mean random variables�9 For a 
discrete-time process, Zi(tj), defined at times tj = (j  - 1)At, j = 1, 2 . . . .  , 
K, the coefficients Aik and Big are related to Zi(tj) through the discrete direct 
fourier transform 

l j_~ [2 - r r (k -  1 ) ( j -  1)] . . . . . . . . . . . . . . . . . . . . . .  (2a) 
Aik = ~ = Z/(tj)cos K 

B~k = f2j~_llK Zi(t/)sin [2-rr(k - 1)(j - 1 ) ] K  . . . . . . . . . . . . . . . . . . . . . .  (2b) 

where At = t j ( K  - 1); tok = (k - 1)Ao~; Aco = 2,rr/(t I + At); k = 1, 2, 
�9 . . , K; and ty = the length of the process. The basic concepts pertinent 
to simulation using Fourier transforms can be found in Priestley (1981). The 
following symmetry conditions about the Nyquist frequency, ~0(1+K)/2 = 
~/At, apply to the Fourier coefficients Ai~ and Big, when the process Z~(tj) 
is real. 

I + K  
Aik = A i ( K - k + 2 ) ,  Big = --Bi(K-k+2) for k = 2, 3, . . . , ~ �9 (3) 
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Heredia-Zavoni  (1993) has shown that  by using (2), the covariance,  Gj(O~k) 
= EAikAjk, between coefficients at points x~ and xj can be written as follows. 

1 
C~j(tOk) = ~ ptok(rij)G(tok)~to, for k = 1 . . . . . . . . . . . . . . . . . . . . .  (4a) 

1 
Cq(O~k) = ~ {P~k(rii )G(c~ + p~K_~+z(rij)G(oJK_k+2I}Aco, 

K 
for k = 2 . . . . .  ~- . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  (4b) 

I + K  
Cij(OJk)  : p~k(rq)G(tok)ACo, for k - . . . . . . . . . . . . . . . . . . .  (4c) 

where rij = xi - xj = the relative position vector; G(e0) = the one-sided 
"point"  spectral-density function; and p,ok(rij) = the f requency-dependent  
spatial correlation function. EAikAjk = EBikBjk = Cij(Wk) for k = 2 . . . . .  
K/2. 

The spatially correlated ground motions are obtained by generating sets 
of Fourier coefficients Aik and BEg, for each frequency tok, k = 1, 2 . . . . .  
(1 + K)/2 [the remainder  obtained using the symmetry  conditions in (3)], 
then using an FFT algorithm to per form the inverse discrete transform. The 
technique of summing frequency-specific spatial processes to simulate local 
fields of ground motion makes  efficient use of available information about  
earthquake ground motion,  in the form of the spectral density function and 
the frequency-dependent  spatial correlation function in different segments,  
and of the mutual statistical independence of component  spatial fields (Van- 
marcke 1983). The focus in the next few sections is on the modeling of 
individual, frequency-specific contributions to the local field of phase-aligned 
ground motions. 

KRIGING ESTIMATION 

Consider a set of  n recording points x~ [e~ = (1, 2 . . . .  , n)], at which 
the values of a spatial random process Z(x)  is observed,  measured,  or 
specified [Z(x~)], and a set of m target points xe [13 = (n + 1, n + 2 . . . .  , 
n + m)], at which the process Z(x~) is unknown,  to be est imated using 
kriging (Journel and Huijbregts  1978; Matheron 1967). The kriging esti- 
mator of  the value of the process at a target point xa, denoted here by 
Z~x~) ,  is expressed as a linear combinat ion of the observed values at the 
recording points 

= xLZ(x ) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  (5) 

where Zr(x~) = [Z(xl),  Z(x=) . . . . .  Z(x,)]  = the set of known values; the 
elements in the vector  kg'~ = (h,1, h,2 . . . . .  k,n) are the so-called kriging 
weights; and the superscript T denotes matrix transposition. The vector  of 
kriging weights k~, is determined so that  the es t imator  is unbiased and the 
mean square error (MSE) minimized. Suppose that the mean of the process 
is constant but known, EZ(x)  = mo. The condition imposed on the kriging 
weights to ensure the lack of bias of the est imator,  EZ~(x~) = too, is 

~.~',~d= 1, 13 = n  + 1, n + 2 . . . . .  n + m . . . . . . . . . . . . . . . . . .  (6) 
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where J = an n-dimensional vector of ones. The MSE can be written as 
follows: 

E[Z~(x~) - Z(x~)] 2 = C ~  - 2 ~ L C ~  ~ + )%~C~X~r . . . . . . . . . . . . . .  (7) 

where C~B = var Z(x13); C,~ = cov[Z(x~), Z(x~)]; and C ~  = cov Z(x,~). 
Thus, obtaining the kriging weights involves minimizing the expression in 
(7) subject to the constraint in (6). Using a Lagrange multiplier, IX, a system 
of linear equations is obtained.  

X L C ~  = pJ  r + C ~  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  (8a) 

h ~ J  = 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  (8b) 

which has a unique solution if and only if the covariance matrix C ~  is 
positive definite. Solving the system of equations for the vector of kriging 
weights yields 

k~,~ = C ~,)C~ + 1 - J rC  ~ 2 C ~  C g l J  . . . . . . . . . . . . . . . . . . . . . . . . .  (9) 
J rC:-2J 

It then follows from (5) that Z~(x~) is given by 

-1  1 - J ~ C ~ x c ~  J ~ C : ~ Z ( x ~ )  . . . . . . . . . . . .  (10)  Z*r(x~) = C~C,~Z(x,~)  + jrC~_~j 

( J r C E 2 C ~  ) J rC  ~ - ~ Z ( x ~ ) . . . .  (11) 
Z*K(X~) = C~r~C~ ~ j r C E d j  JrCE~ Z(x~) + j r C E ~ j  

The second term in (11) is the part  of the est imator  that does not depend 
on the covariance matrix of the process between target and recording points; 
this term is the best linear unbiased est imator  (BLUE)  of the unknown 
mean, rho (Watson 1970) 

J~C~OZ(x~) 
rho - . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  (12) 

J r C E J J  

allowing the kriging est imator  to be expressed as 

Z*(x~) = C ~ C s d Z ( x ~ )  + (1 - J rCg2C~) rho  . . . . . . . . . . . . . . . . . .  (13) 

Using (11), the conditions under  which the kriging est imator is equal to the 
BLUE of the unknown mean,  rho, can be analyzed. The first te rm in (11) 
is zero when C ~  = 0; that is, when the values of the process at target and 
recording points are uncorrelated.  Interestingly, the first term in (11) is also 
zero when the matrix JC r is symmetric,  " r = 1.e., JC ~ C ~ J  r, which can be 
seen by rewriting it as follows. 

(C JTC ~ C ~  ) JrCE~ 
~C~-~ ~ - jTC~_j J J r C g 2  Z ( x ~ ) - - - j T C g ~ j  ( J C ~ -  C~J r )Cs  

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  (14) 

The symmetry condition is also satisfied when C ~  = 0, so that,  in fact, this 
term is zero if and only if JC r is symmetric.  Since J is a vector of ones, it 
can be shown that for any 13 = n + 1, n + 2 , . . .  , n  + m 

J C ~  = C ~ J r r  = Coo, Vi, i = 1 , 2 , . . .  , n ,  . . . . . . . . . . .  (15) 
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where CiB = cov[Z(xi), Z ( x B ) ] ;  and CoB = a constant. Therefore,  the sym- 
metry holds when the value of  the process at any target point is correlated 
equally with each value at the recording points. Therefore,  although dif- 
ferent target points may have different degrees of  correlation with the cor- 
responding values at the recording points, the kirging estimator will be equal 
to the B L U E  of the unknown mean, rho, as long as the correlations between 
the value of the process at each target and recording points are the same. 
Consider, for instance, the case in which Z*K(x~) is predicted based on 
observations at two recording points x~,, a = 1, 2. For simplicity of  the 
notation, let Z~ = Z(x~,) and Z~ = Z*K(XB). Eq. (5) reduces to 

Z~ = kr + kBzZ2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  (16)  

and from (9), kr and hr are 

C2r - CaB C12 - C22 (17a) 
)kt81 = 2 C 1 2  - C22 - C l l  + 2 C 1 2  - C22 - C l l  . . . . . . . . . . . . . . . . .  

C113 - C213 C12 - Cn . . . . . . . . . . . . . . . . .  (17b) 
~132 = 2C12 _ C22 __ C11 ~- 2C12 _ C22 - -  C11 

where C,j = cov(Z,-, Zj), i, j = 1, 2. Suppose that Z~ is equally correlated 
with Z~ and Z2, i.e., C1~ = C2~ = Co~; then 

C12 --  C22 

hi31 = 2 C 1 2  __ C22 _ C11 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  (18a) 

C12 - -  C l l  

k~2 = 2C12 - C22 - Cn . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  (18b) 

These weights correspond to the coefficients in (12) for the B L U E  of the 
mean, rho, and depend only on the covariances between values of the 
process at recording points. Eqs. (18a) and (18b) holds for any target point 
x~ as long as C~ B = C2B. It would be desirable to have instead an estimator 
that accounted for the degree of correlation among Z~, Z1, and Zz through 
Z2 through Co~. Notice that h~a = k~2 = 0.5 in case Cn  = C22, and one 
would always predict that Z~ equals the average of the observations Z~ and 
Z2 for all [3 = n + 1, n + 2 , . . .  , n  + m. 

MULTIVARIATE LINEAR PREDICTION 

Consider, as before, a set of n recording points x~[~x = (1, 2 . . . .  , n)], 
at which the values of a spatial random process is observed, measured, or 
specified [Z(x~)], and a set of m target points x~[13 = (n + 1, n + 2 . . . .  , 
n + m)], where the process to be estimated is Z(x~). The linear-prediction 
estimator, Z*Le(x~), is expressed as a linear combination of the values at 
the recording points as follows: 

Z[e(x~) = m~ + KL[Z(x~ ) - m~] . . . . . . . . . . . . . . . . . . . . . . . . . . . .  (19) 

where m~ = EZ(x~) -- the known mean of  the process at the target point; 
ZT(x~) = the set of known values; m~ = EZ(x~) = the known mean vector 
at the recording points; and K~ ---- a vector of coefficients. The estimator 
is unbiased, EZ*Le(x~) = rn~, and the MSE is given by 

E[Z[e(xB) - Z(xB)] 2 = CB~ - 2K~C~B + K~C~K~r . . . . . . . . . . . . .  (20) 

2 3 3 7  
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The vector of coefficients, Kay, minimizing the MSE is 

K~ r - ,  (21) = C ~ C ~  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  

Substituting (21) into (19) yields with the linear-prediction estimator of the 
process at a target point 

Z~p(x~) = m~ + C~CEJ[Z(x~) - m~] . . . . . . . . . . . . . . . . . . . . . . . . .  (22) 

If C ~  = 0 then K~ = 0, and one predicts for Z(x~) its mean; only variables 
that are correlated with Z(x~) are useful in linear prediction. If  the mean 
of the process is constant, say mo, (22) reduces to 

ZT_p(X~) : CT~CSJZ(x~) + (1 -- JrC~-JC~)mo . . . . . . . . . . . . . . . . . .  (23) 

Notice that (23) is of  the same form as (13) obtained for the case of kriging; 
however here the known mean mo enters the equation instead of  the B L U E  
of the unknown mean, tho. 

By introducing a zero-mean process Y(x)  = Z(x)  - EZ(x ) ,  from (22), 
the linear-prediction estimator of Y(xa) is given by 

Y~p(X~) : CT~CEJ[Z(x~) - m~] : CLCEJY(x,:,  ) = K~'~Y(x~) . . . . . .  (24) 

where C ~  = EY(xo,)Y(xf~) --- cov[Z(x~), Z(x~)]; C ~  = EY(x ,~)yT(x , )  = 
cov Z(x~); and Kr~ is given by (21). Without loss of generality, it is always 
possible to consider the zero-mean process Y(x)  instead of Z(x) .  In the 
following, it is assumed that the linear-prediction estimator of  any process 
can be written as in (24). For the set of estimators at the target points, 
[Y~e(X~)] r = [Y*Lp(Xn + 1), Y*Lp(X,, +2) . . . . .  Y*Lp(X,, +m)], (24) can be written 
a s  

r~p(x~) = C~CEJY(x~,)  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  (25) 

CONDITIONAL SIMULATION AND COVARIANCE STRUCTURE 

Let Z*(x~) denote, in general, an unbiased linear estimator, such as the 
kriging or the linear-prediction estimator, of the spatial random process 
Z(x~), expressed by 

Z*(x~) = -q~Z(x~) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  (26) 

where EZ*(x~) = EZ(x~) .  Consider now a simulated process Zs(X), with 
known cumulative distribution function, independent of  and isomorphic to 
Z(x)  in the sense that the two processes have the same first and second- 
order statistics. An  unbiased linear estimator such as the one in (26) can 
also be defined for the simulated process Zs(xa). The vector of weights ~ 
is the same for Z*(x~) and Z*s(X~3), since the two processes are isomorphic 
and provided that the set of  recording points, x~, is the same. At any target 
point x~, the simulated value Zs(x~) and the linear estimation based on the 
corresponding simulated values at the points x~ differ by a known amount  
that can be regarded as a simulated estimation error: Rs(x~) = Zs(x~) - 
Z*,(x~). From the nnbiasedness of the linear estimator it follows that ERs(xr~ ) 
= 0. The conditional simulation is accomplished by adding the simulated 
estimation error to the estimator Z*(xa) as follows (Journel and Huijbregts 
1978) 

Zsc(X~) = Z*(xl~) + [Zs(x~) - Zs*(X~)] . . . . . . . . . . . . . . . . . . . . . . . . .  (27) 
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The process Zsc(x) has the same mean  as Z(x) due to the lack of bias of  
Z*(xtO and the fact that Rs(xtO has zero mean.  The requirement  of the 
conditional simulation that  observed values be matched at the recording 
points is satisfied since Z*(x, 0 = Z(x~,) and [Zs(x~) - Z*~(x~)] = 0, which 
implies Zsc(x,~) = Z(x,O. To generate  Rs(x~), only the joint multivariate 
density function f[Z~(x~s), Zs(x~)] is required to be known. Thus,  an advan- 
tage of the proposed formulat ion is that  the conditional probabili ty density 
function f[Z,(x~)lZs(x~,)] does not have to be specified; this function may 
be difficult to obtain, and its statistics, i.e., the conditional mean and co- 
variance, may be cumbersome functions of  the observed values at the re- 
cording points. The  methodology based on the conditional simulation equa- 
tion, (27), allows the use of  any algorithm that  might already be available 
for the joint multivariate density function f[Zs(xtO, Z~(x~)] to generate [Z,(x~), 
Z~(x~)l.  

Consider the unknown value of the process at a target  point Z(xo,) and 
its estimator,  Z*(x~), and in particular the conditions under  which the un- 
known estimation error  R(x~) = Z(xt~ ) - Z*(xt~ ) is uncorrelated with the 
difference Z*(x.y) - Z*(x~) between est imated values at two target  points 
(say x~ and xv), or cov[Z*(x~) - Z*(x,,), R(x~)] = 0. From (26) the difference 
between estimated values can be expressed as 

T Z * ( x O  - z * ( x o )  = n ~ Z ( x ~ )  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  (28)  

where ~1~ = ( 'q~  - ~lv~). Thus 
T c o v [ Z * ( x 0  - Z*(x~), R ( x ~ ) ]  = n ~ c o v [ Z ( x ~ ) ,  Z ( x ~ ) ]  

T - ~ lr  r c o v  Z(x.)'%~ = ~ I ~ ( C ~  - C . ~ n ~ )  . . . . . . . . . . . . . . . . . . . . . .  ( 2 9 )  

If 11~ = C ~ C ~ ,  (29) becomes zero and 

c o v [ Z * ( x J  - z * ( x J ,  n ( x ~ ) ]  = 0 . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  (30)  

Therefore,  if the est imator in (26) is given by linear prediction, (30) holds. 
In the case of kriging estimators,  we have f rom (9) that 

1 - J r C E ~ C ~  
C~'qa~ = C ~  + j r C s  J . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  (31) 

Substituting (31) into (29), we obtain 

c o v [ Z * ( x 0  - Z*(x~), R ( x ~ ) ]  = - 1 - J ~ c : g c ~  jTCE1 J ~l~,J . . . . . . . . . . .  (32) 

The term 1 - J rC  ~C,,~ is zero only when the target  point x~ coincides with 
a recording point. Since this is not the case, the right-hand side of (32) is 
equal to zero if and only if . q r j  = 0, the so-called authorized linear com- 
binations (Journel and Huijbregts  1978). Given that f rom the unbiasedness 
condition in (6) we have that "q~J  = 1, then 

r ~ T (33) ~l~J 0 " q ~ J  = ~l-~,~J . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  

Thus for both kriging and linear-prediction estimators,  cov[Z*(x 0 - Z*(x.), 
R(x~)] = 0. Using this result it can be shown now that  the conditional 
simulation equation reproduces the var iogram of the true process Z(x) when 
either kriging or l inear-prediction estimators are used. The var iogram be- 
tween values at any two target  points, x~ and x .  denoted here by 2A(x~, 
x~), is equal to 
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2A(x~, x . )  = va r [Z(x~)  - Z (x . ) ]  = va r [Z*(x~)  + R ( x , )  - Z*(xv)  - e (xv) ]  

= var[Z*(x~) - Z*(x.)] + var[R(x~) - R(x.)] 

+ 2cov[Z*(x~) - Z*(x. ) ,  R(x,) - R(x.)]  

= var[Z*(xts ) - Z*(x.)]  + var[R(xts ) - R(x.)]  . . . . . . . . . . . . . . . . . .  (34) 

where the last equali ty follows from (30). In the same way the var iogram 
of the condit ional  simulation can be expressed as 

2Asc(x~, xv) = var[Z*(x~) - Z*(xv)] + var[Rs(x~) - Rs(x~)] . . . . . . .  (35) 

given that cov[Z*(x~) - Z*(x,), Rs(x~)] = 0, owing to independence  be- 
tween Z(x) and Zs(x). Since Zs(x) and Z(x) are isomorphic,  then var[R(x~) 
- R(x,)] = var[Rs(x~) - Rs(x,)], and 2A(x~,xv) = 2Asc(X~, xv). Therefore ,  
the conditional simulation equat ion ensures the reproduct ion of  the vario- 
gram of Z(x) whether  kriging or l inear  predict ion est imators  are used. 

The covariances for Z(x) and Z,~(x) between values at two target  points 
can be expressed in terms of the var iograms as follows. 

1 
cov[Z(x~), Z(x~)] = ~ [var Z(x~) + var Z(x.)]  - A(x~, x~) . . . . . . . .  (36) 

1 [var Z~,~(x~) + var Z~(x,)]  - A~(x~, x,)  (37) cov[Z~(x~) ,  zs~(x~)] = ~ . . .  

The covariance function of the condi t ional  s imulat ion will be equal  to the 
covariance function of the process Z(x) if var  Zs~(X,) = var Z(x,).  where 
var Z~(x,) is given by 

var Zsr = var Z*(xc3 + var  Z~(x,) + var Z*(x~) 

- 2 cov[Z~(x~), Z*(x~)] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  (38) 

The terms on the right side of (38) involving Z*(x~) and Z*(xts ) can be 
obtained from the expression for the l inear es t imator  in (26); thus, var  Zs(xts ) 

~ c ~ ,  z*,(x~)] = ~r C~ ,  var Z*(x~) = var Z*(x~) = r cov[Z~(x~), 
~q ~,C~,  and 

var Zsc(X~) = C~ + 2 ~ i ~ ( C ~ 1 ~  - C ~ )  . . . . . . . . . . . . . . . . . . . . . .  (39) 

Since ~1~ :k 0, var Zs~(x~) = C~ if and only if C ~  = C ~ ;  thus 

var Z,c(X~) = C ~  r ~1~ = C~-dC~ . . . . . . . . . . . . . . . . . . . . . . . . . . .  (40) 

Therefore,  it follows from (40) that  the condi t ional  s imulat ion equat ion 
reproduces exactly the covariance structure of the true process at any target  
point when a l inear-predict ion es t imator  is used. The use of kriging esti- 
mators in the condit ional  s imulat ion fails to reproduce  the covariance struc- 
ture of the process for any set of  target  points.  Consider  as an i l lustration 
of a kriging es t imator  the case in which there  is only one recording point  
x~, et = 1. F rom (5) and (6), Z*~(x~) = Z(x 0 ,  and Z*(x~) = Zs(X O. Then,  
var Z~(xf~) = C~, vat  Z*~(x~) = vat  Z*~(x~) = G1,  cov[Z~(x~), Z*~(x~)] = 
cov[Z~(x~), Zs(XO] = pl~x/C~f~C~, where p~ is the correlation between Z(x~) 
and Z(x~). The variance of Z~c is thus 

var Z~ = C~ + 2Cu - 2p~X/C~Cn . . . . . . . . . . . . . . . . . . . . . . . . .  (41) 
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and if Cpp = Cll = r 2 then 

varZs~ = 3~r 2 1 - ~p~p . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  (42) 

Eq. (42) shows that  when Z(x~) and Z(x 0 are perfect ly correla ted,  Pl~ = 
1, then var (Z~) -- cr 2. However ,  as the correla t ion between them decreases,  
the variance of the condi t ional  s imulat ion increases,  reaching 3~ 2 when there 
is no correlat ion at all and 5~ 2 when p ~  = - 1. Thus,  if kriging was used 
for the condit ional  simulation of f requency-dependent  components  of earth- 
quake ground motion,  it would be observed that  the ampl i tudes  of the 
motion (and the spectral  density)  at the target  points would become larger  
as the correlat ion be tween mot ions  at target  and recording points  decreased.  
An example of a condit ional  s imulat ion of  ear thquake  ground mot ion  using 
a kriging est imator  is shown in a la ter  section. 

CONDITIONAL SIMULATION OF GROUND MOTION 

In this section the procedure  just descr ibed (applicable to frequency- 
specific ground mot ion  components)  is now extended  for use in condi t ional  
simulation of ear thquake  ground motion.  Consider  the simulation of earth-  
quake ground motions at a set of m target  points x~, given that  some motions 
have been recorded at a set of n = N - m recording points,  where N is 
the total number  of points.  Using (4), the (N + N) covariance matr ix Ck 
= [Cij(tok)], i , j  = (1, 2 . . . . .  n, n + 1, n + 2, . . . , n + m), for each 
Fourier  frequency tOk, k 1, 2 . . . .  , (1 + K)/2, can be assembled and 
expressed as 

[C,.. C,:,~ ] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  (43) 
c,, : Lc & 

Let As = (As~, As~) denote  a set of  s imulated Four ie r  coefficients, where 

FIG. 1. 
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Known motion at recording point 

0 5 10 15 ~0 
Time (sec) 

Simulated motion at tar]get point; r = 10m 

0 5 lO 15 20 
Time (sec) 

Simulated motion at target point; r = 500m 

0 5 10 15 20 
Time (sec) 

FIG. 2. Conditional Simulations Using Kriging Estimators 

FIG. 3. 

Known motion at mco~cllng point 

0 5 I0 15 20 
Time (see) 

O 5 l0 15 20 
Time (scc) 

Simulated motion at target point; r = 500m 

0 5 10 15 20 
Time (see) 

Conditional Simulations Using Linear-Prediction Estimators 
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Known motion at x = 0 m 

o 

0 5 10 15 20 
Time (sec) 

Known motion at x = 40 m 

0 5 I0 15 20 
Time (sec) 

FIG. 4. Prescribed Motions at Recording Points 

Scale s - 0 . 5  

~ o  

0 5 10 15 20 

T in~  (sec) 
Scale sffi 1 

0 5 10 15 20 
Time (see) 

Scale s = 10 

0 5 10 15 21) 

Time (scc) 

FIG. 5. Conditional Simulations 

the subsets As~ = (Alk, A2~ . . . .  , A,~) and A,~ = [A(,§ . . . .  , A(n+m)k] 
correspond to coefficients at recording and target points, respectively. A 
set Bs can be defined similarly. To simulated As and Bs, the covariance 
matrix Ck is evaluated for frequencies up to ~o(~§ = w/At. For admissible 
spatial correlation and spectral density functions, C~ is positive definite and 
can be expressed as the product of a nonsingular lower triangular matrix, 
Lk, and its transpose by means of a Cholesky decomposition: 
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Ck : LkL  T . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  (44)  

I n  case the l imi ted-durat ion  s e g m e n t  of  the  ground  m o t i o n  can be  m o d e l e d  
as a Gaussian process, we simulate,  for each frequency, two sets of inde- 
pendent standard normal random variables, Uk = (Ulk, U2~ . . . . .  U N k )  
and Vk = ( V l k ,  V 2 k ,  �9 �9 �9 , V N k ) .  The sets As and Bs are then generated from 

As = LkU~ B,  = LkVk . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  (45 )  
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Response Spectra at target point x = 300 m 
= 2% 
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Response Spectra at target point x = 900 m 
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% 
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~=5% 

o 

FIG. 8. Response Spectra for 2% and 5% of Critical Damping; Full and Dashed 
Lines Correspond to Recorded and Simulated Motions, Respectively 

One can easily show that As and Bs, have the proper  covariance structure. 
Based on the subsets of simulated values at the recording points, A~ and 
B~, the linear prediction estimators at the target points are given by 

As*[?, T --1 T - - I  = C ~ C ~ A s ~  B*~ = C ~ C ~  Bs~ . . . . . . . . . . . . . . . . . . . . . .  . .  (46) 

The conditional simulation now involves generating for each infrequency 
t0k, sets of Fourier  coefficients As~,k = [A( ,+~)k ,  A(~+.2) . . . .  , A ( , + . ~ ) k ] ~ ,  
Bsc k = [B(n + 1)/~, B( ,+2)k ,  �9 �9 �9 , B n  +m)/c]sc, at target points x~ ,  according to 
the" conditional simulation algorithm in (27), written in vector  form as fol- 
lows. 

A,c,k = (A~ + A s s  - As*~)(k) B,c,~ = (B~ + B,~ - B*~)(k) . . . . . .  (47) 

where A~ and B~ = the linear prediction estimators based on the observed 
Fourier coefficients at the recording points, A~ and B~: 

A ~  T - 1  T --1 : C . ~ C ~  A.  B~ (48) = C ~ C ~ B ~  . . . . . . . . . . . . . . . . . . . . . . . . . .  

The remaining Fourier  coefficients at frequencies oJ~, k = [(2 + k ) / 2  . . . . .  
K], are then obtained using the symmetry  conditions in (3). Once coefficients 
have been generated for the entire frequency range, an inverse FFT is 
applied to yield a set of  ground motion time histories at the target points. 

Summarizing the procedure  as presented,  the conditional simulation of 
a limited-duration segment  of  "al igned" ear thquake ground motion consists 
of the following steps: 

1. For each frequency ok, k = 1, 2 . . . . .  (1 + K ) I 2  = arlAt: Obtain 
from the recorded motions the known Fourier  coefficients A~ and B,, by 
means of a direct FFT [(2)]; assemble the covariance matrix Ck [(43)]; 
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FiG. 9. Dynamic Response Ratio, Span of 30 m; Full and Dashed Lines Corre- 
spond to Recorded and Simulated Motions, Respectively 
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FIG. 10. Dynamic Response Ratio, Span of 300 m; Full and Dashed Lines Cor- 
respond to Recorded and Simulated Motions, Respectively 
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FIG. 11. Response Spectra at Stations 101 and M05, 2% of Critical Damping; Full 
and Dashed Lines Correspond to Recorded and Simulated Motions, Respectively 

simulate at target and recording points the sets of coefficients As and Bs 
[(45)]; compute the linear prediction estimators A~ and B~ based on the 
known coefficients A~ and B~ [(48)]; compute the linear-prediction esti- 
mators A]~ and B*~ based on the simulations at recording points As~ and 
Bs~ [(46)]; and generate the conditional simulations A~c,k and Bsc,k using the 
algorithm in (47). 

2. Generate Fourier coefficients for the entire frequency range using the 
symmetry conditions in (3). 
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3. Use an inverse FFT to construct the time-history segments at the target 
points. 

4. To account for nonstationarity, steps 1-3 can be repeated for different 
input spectral density and frequency-dependent correlation functions to gen- 
erate stationary segments of ground motion. These segments are then pieced 
together by means of a linear interpolation algorithm (Vanmarcke and Fen- 
ton 1991). 

5. The simulated motions may be postprocessed introducing partially 
predictable wave-propagation phase delays (e.g., Boissieres 1992). 

EXAMPLES 

In this section some results are presented to illustrate the capabilities and 
features of the simulation methodology based on linear-prediction theory 
introduced here. A FORTRAN computer program (SIMQUAKE II) has 
been written to perform the conditional simulation of earthquake ground 
motion. The basic inputs to the program are the locations of the points, the 
spectral density functions (SDFs), the frequency-dependent spatial corre- 
lation function, and the known ground motions at the recording points. For 
the first set of examples, the following isotropic frequency-dependent spatial 
correlation function has been used. 

p~ok(r0) = exp / \ -~176 I . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  (49) 

where rij = the relative position vector between points xi and xj; c = the 
shear wave velocity in the medium; and s = a distance-scale parameter. 
The degree of correlation can be controlled by varying s for a fixed distance, 
or by changing the distance for a fixed value of s. Although the exponential 
correlation in (49) resembles, within a limited range of separate distances, 
empirical correlation functions, it is used here solely for illustration pur- 
poses. A correlation function estimated from seismic array data is used in 
later examples. 

We first present the results of a comparison between the use of kriging 
and linear-prediction estimators in conditional simulations for the case of 
single recording and target points. The recorded ground motion has a sam- 
pling frequency of 1/100 s and a total of 2,048 values, and is divided into 
four successive time windows of 5.12 s each. Maximum entropy estimates 
of the spectral density function for each window are shown in Fig. 1. The 
scale parameter s is set at 0.5. Simulations were performed for two interpoint 
distances r, r = ]r12], of 10 m and 500 m; those shown in Fig. 2 were 
obtained using kriging estimators. Since the correlation decays with distance, 
the amplitudes of the motion tend to grow, indicating an increase in the 
spectral density and the variance of the ground motion, consistent with the 
prediction in (42) for the variance of the conditional simulation. The results 
obtained using linear-prediction estimators are shown in Fig. 3. The motions 
at both target point locations show a clear difference in the degree of cor- 
relation relative to the known motion. As the correlation decreases however 
there is no increase in the spectral power of the ground motion. Fig. 3 also 
shows that the use of four stationary-process windows accounts well for the 
evolution of the frequency content in this case. Each set of simulations in 
Figs. 2 and 3 took 12 s of computer processing time to run on a VAX 
machine. 

Consider now a conditional simulation where two recording points are at 
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40 m from each other, and one target point is located halfway between 
them. Fig. 4 shows the prescribed motions at the recording points. Four 
stationary time windows of 5.12 s each were selected with spectral density 
functions as shown in Fig. 1. Fig. 5 presents results for different degrees of 
correlation implied by values of the scale factor s equal to 0.5, 1, and 10. 
Fourier amplitude spectra (FAS) obtained from the simulations at the target 
point are shown in Fig. 6 for one window. The full lines correspond to FAS 
obtained from the simulated sets of coefficients A,~ and B,~, whereas the 
dashed lines correspond to the FAS using the linear-prediction estimators 
A,~ and B s~. For low degrees of correlation, s = 0.5, the main contribution 
to the conditional simulation comes from the simulated coefficients As~/B,a. 
In the extreme case of no correlation, knowing the recorded motions should 
have no effect on the simulation at the target points, the conditional sim- 
ulation being determined solely by the simulated Fourier coefficients, A,~ 
and Bs~. As the correlation increases, the contribution from the linear pre- 
diction estimates becomes larger, as shown in Fig. 6, and should eventually 
match the simulated As~ and B~ for the case of perfect correlation. In this 
case, the conditional simulation can be obtained from the recorded Fourier 
coefficients A~ and B~. 

Conditional simulations have also been performed using data recorded 
by the SMART 1 array (Abrahamson et al. 1987) during the event of 
December 17, 1982 (Mr --- 6.4, A = 79KM, azimuth of 99~ The array, 
located in Lotung, Taiwan, consists of 37 stations deployed in three con- 
centric rings of radii 200 m, 1,000 m and 2,000 m (see Fig. 7). Based on 
analysis of recorded data, Harichandran and Vanmarcke (1986) proposed 
the following model for the frequency-dependent spatial correlation function 
of phase-aligned ground accelerations: 

( -- 5"063 Irijl~ ( - 0'7441r~il ) . . . . .  (50) 
P~k(rij) = 0.736 exp O~ / + 0.294 exp O~ 

where 

[ ( to ~278l-1/2 
0o = 5,210 1 + \2.--s J . . . . . . . . . . . . . . . . . . . . . . . . . . . .  (51) 

is the frequency-dependent scale of fluctuation (Vanmarcke 1983). 
This model for the correlation function has been used in all the examples 

that follow. The first results correspond to a five-point conditional simulation 
where three recording points are located on a straight line and two target 
points are midway in between them. The distance between consecutive 
points, or the span, is constant and equal to 300 m. Assumed known ground 
motions at all five points were generated first by running the program once 
for the case of five target points. Then the simulated motions at the locations 
of the recording points were taken as the input known motions for the 
conditional simulations. The simulated motions at the target points were 
used as the known ground motions for comparison with the output from 
the conditional simulations. A time step of 0.01 s was used and two windows 
of 5.12 s each were considered. Fig. 8 shows response spectra plots for 2% 
and 5 % of critical damping; note that the spectra from the simulated motions 
agree well with those from the known motions. The point variance of the 
ground motion was obtained by integrating the input SDF, and estimated 
variances over an ensemble of realizations were within 5% of the specified 
input variance. 
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For both types of comparisons used- - the  response spectrum and the point 
variances--ground motions are taken one at a time and analyzed inde- 
pendently of the other motions, thus neglecting the actual spatial patterns. 
To verify that the algorithm is producing properly correlated motions in 
space we used the dynamic response ratio (DRR) developed by Loh et al. 
(1982), and later expanded by Abrahamson and Bolt (1985), for studying 
the seismic response of multiply supported structures. To obtain the DRR 
it is assumed that the normal modes of the structure are known and that 
for each mode, the participation factors corresponding to each input support 
displacement are also known. They all depend on the mass and stiffness 
properties of the structure. For each mode, and for each unconstrained 
degree of freedom of the structure, the D R R  is defined as the ratio of the 
maximum response of the structure due to the ground accelerations at the 
supports, to the average of the maximum response obtained using each 
individual support acceleration as a rigid base input. Consider the case of 
a single-degree-of-freedom shear building model consisting of a rigid mass 
and two columns supported at points A and B. The fundamental mode of 
the system is excited by the "in-phase" motion and the DRR is given by 

s~(~, 7) 
Iff~.)d(~, T) : SAA(~, T) -[- SBB(~, T) . . . . . . . . . . . . . . . . . . . . . . . . . . . .  (52) 

where SAB(~, 7) = the standard pseudo-acceleration response spectrum for 
an input motion equal to the sum of ground accelerations at supports A 
and B; SAA(r;, T) and S~B(~, 7) = the standard pseudo acceleration re- 
sponse spectra for the ground accelerations at supports A and B, respec- 
tively; ~ = the damping coefficient; and T = the natural period. 

Figs. 9 and 10 show plots of D R R  versus period for 2% damping for 
spans of 30 m and 300 m. The known and simulated ground motions were 
taken as the support motions. The full lines correspond to the DRR obtained 
from the known motion, and the dashed lines to ratios computed using the 
simulations. For the 30-m span, the DRR is virtually equal to 1.0 for most 
of the period range, implying a high degree of correlation between motions. 
The DRR computed from the simulated and known motions follow the 
same trend. In the case of the 300-m span, the DRR shows a trend toward 
one as period increases in the range of 1-1.5 s, and then decreases for the 
longer periods, indicating a lower degree of correlation compared to the 
30-m case. Again, it is seen here that the DRR obtained from the known 
and simulated motions tend to follow the same trend quite closely. 

Now consider a test of the simulation against reality, based on ground 
motions recorded by the SMART 1 array. Stations I01, I03, and I10 in the 
inner ring were taken as the recording points and motions in the epicentral 
direction were simulated at stations I02 and I12 (target points). The time 
step of the known ground motions is 0.01 s and two windows of 512 time 
steps were considered. For each window the spectral density functions were 
taken as the average of the estimated SDF from the known ground motions. 
A six-point simulation was performed to test the ability of the methodology 
to produce properly correlated ground motions at larger distances. In this 
case, the stations I12 and I02 in the inner ring and M04 and M06 in the 
middle ring were taken as the recording points. The target points were 
assumed to be the stations I01 and M05, located 1,070 m from each other. 
Several simulations were performed in the epicentral direction using two 
stationary segments of 5.12 s each. For each window the spectral density 
function was modeled by the average of the estimated SDF from the four 
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known ground motions. Fig. 11 shows the plots of response spectra for 2% 
of critical damping, for the recorded motions and four simulations. Note 
that the simulations lead to response spectra that are in very good agreement 
with those obtained from the recorded motions. The DRR for the simulated 
motions also follows the same trend as that for the known motions. 

CONCLUSIONS 

Improved methodology has been developed for conditional simulation of 
earthquake ground motion. Recorded motions may be known or specified 
for seismic design and analysis purposes at some surface points, and com- 
patible ground motions are to be generated at locations where they are not 
known. The simulation technique developed here is based on the theory of 
multivariate linear prediction, and ensures the unbiased reproduction of the 
covariance structure of the ground motion; in this respect, it is a significant 
improvement over existing kriging techniques. Also, the simulation is ac- 
complished by superposing statistically independent frequency-specific spa- 
tial field whose component variances and correlation distances are obtained, 
respectively, from the ground motion spectral density function and fre- 
quency-dependent spatial correlation function. 

A computer program (SIMQUAKE II) has been written for the condi- 
tional simulation of fields of earthquake ground motion; it uses FFT tech- 
niques which make the computations highly efficient. The input to the 
program consists of the location of the field points, the prescribed known 
motions, and the covariance structure expressed by the frequency-dependent 
spatial correlation and the point spectral density functions. Several examples 
have been presented to illustrate the features of the methodology. Response 
spectra, spectral density function, and dynamic-response ratios have been 
used to compare simulated and recorded ground motions, and the results 
indicate on the whole very good agreement. The methodology can easily 
be extended to the simulation of non-homogeneous earthquake ground 
motion, allowing incorporation of varying local site conditions through lo- 
cation-dependent spectral density functions. 
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A P P E N D I X  II. N O T A T I O N  

The following symbols are used in this paper: 

A;k, Bi~ 
A~,B~ 

Asc,k, B~,k 

Ac(~ B~t 
n~, B~ = 

Cij (O)k)  = 

Ck = 

co~, cov[Z(x~), Z(x.)] 
C~, covZ(x~) 

Ez(x) 
y[Z,(x~,), z,(x,j] 

G(,,,) 
J 

Lk 

n 
m = 

m o  

ffrl o = 

mot  

ml3 = 

R(x~) = 
R , ( x . )  = 

= Fourier coefficients at point x i for frequency Ok; 
= sets of simulated Fourier coefficients; 
= sets of conditional simulations of Fourier coef- 

ficients; 
sets of known Fourier coefficients; 
sets of linear-prediction estimators based on Am 
and B~; 
sets of linear-prediction estimators based on A~ 
and Bs; 
covariance of Aik and Aye; 
covariance matrix for Fourier coefficients at fre- 
quency tOk; 

= covariance matrix of Z(x~) and Z(x~); 
= covariance matrix of Z(x~); 
= expected value of Z(x); 
= joint multivariate probability density function of 

Zs(x~) and Zs(x~); 
= one-sided point spectral density function; 
= n-dimensional vector of ones; 
= lower triangular matrix from Cholesky decom- 

position of Ck; 
number of recording points; 
number of target points; 
constant mean; 
best linear unbiased estimator (BLUE) of too; 
mean of Z(x~); 
mean of Z(xa); 
relative position vector; 
unknown estimator error; 
simulated estimator error; 
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Re( ) 
so(~, r) 

s,~(~, r) 

S 

T 
t, tf 

varZ(x)  
X~ Xi~ Xj 

X,~ 

Xf3~ X w Xv 
Y(x) 
Z(x) 

Z(x~) 
Z(xo) 

Z*(x~) 
z~,(t) 

z*,,(x~) 
z*~p(x~) 

Zs(x) 
z~c(x) 

uk, v~ 

A(x~, x~) 
At, Aw 

K~c~ 

~wk(r~i) 

O-2 

O~ 
(.0~ t.O k 

-- real  part  of argument ;  
-- s t anda rd  pseudo-acce l e ra t i on  response  spec- 

trum; 
= s tandard  pseudo-acce lera t ion  response spectrum 

for input  I; 
= distance-scale pa rame te r  in pwk(rij); 
= natural  per iod;  
= t ime; 
= variance of Z(x) ;  
= point  in space; 
= recording point;  
= target  point ;  
= ze ro-mean  spatial  random process;  
= spatial  r andom process;  
= unknown value of Z(x) ;  
= set of  known values of Z(x);  
= general  unbiased l inear es t imator  of Z(x);  
= space t ime random process;  
= kriging es t imator  of Z(x)' 
= l inear-predic t ion es t imator  of Z(x);  
= s imulated random process;  
= condi t ional  s imulat ion of Z(x) ;  
= sets of  independent  s tandard  normal  r andom 

variables;  
= var iogram of Z(x~) Z(xv); 
= t ime and frequency steps; 
= vector  of l inear-predict ion coefficients; 
= vector  of kriging weights; 
= vector  of weights for Z*(x~); 

= damping coefficient;  
= dynamic response rat io;  
= f requency-dependent  spatial  correlat ion func- 

tion; 
= variance of homogeneous  process;  
= f requency-dependent  scale of fluctuation; and 
= frequency (rad/s).  
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