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Salt induced concrete delamination is a problem often encountered in parking garage slabs in

northern climates where deicing salts are heavily used. A random field model of the delamination

process is investigated and compared against some field data. Delaminated regions of the slab

are modeled as excursions of a random field above a prescribed threshold and the growth of these

regions with time is obtained by allowing the threshold to fall as a function of time. Simulation

based excursion statistics are used to obtain the mean and variability of various aspects of the

delamination process using this model.
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1. Introduction

The delamination and spalling of concrete surfaces in parking structures in northern climates

is an ongoing and expensive problem. The Transportation Research Board [1] estimates that

between 50 and 150 parking structures in the Northeast and Midwest United States will need to be

rehabilitated each year for the next 10 years at an average cost of $1 million dollars per structure.

Without proper design and/or maintenance, deicing salts brought in by vehicles from the roadways

are deposited on the concrete surface along with water. Chloride ions gradually penetrate the

concrete and electrochemical processes lead to corrosion of the reinforcing steel. This results in

both a degradation of structural integrity and, since the corrosion products occupy considerably

more volume than the original steel, delamination or spalling of the concrete surface and loss of

utility.

This paper is aimed at developing a tool to aid in a rational probabilistic approach to the

rehabilitation of parking structures. Such an approach allows the optimal allocation of limited

resources to this ongoing and rather expensive maintenance issue. A simple stochastic model



involving only a few parameters is used herein to represent what is known to be a complex

phenomenon. The following factors are suggested by Public Works Canada [2] to have the largest

effect on the onset of concrete delamination;

 chloride ion input: quantities of deicing salts used,

 concrete permeability: influenced in turn by water/cement ratio, intensity and frequency of

cracking, surface coatings/sealers and construction practices,

 ambient temperature, humidity, precipitation

 concrete cover depth

 pH of local aggregates

 conductivity: wetness of concrete.

It is immediately recognized that virtually all of these factors are highly variable from structure

to structure and within a single structure from point to point. As well, on a practical basis for an

existing structure, some of the factors are unknowable except through extensive destructive testing.

Clearly a representative model should not require experimental validation on a per structure basis,

where the experimentation may be more expensive than the final repairs. This, in fact, is the

primary motivation for the use of stochastic models.

In a different approach to the same problem, Attwood et al. [3] develop a limit state function

for parking structures based on a critical fraction of floor area delamination, Dcr ,

m = Dcr � αS(t� tI), t > tI (1)

where m � 0 denotes the ‘failure’ state, S is the annual delamination rate, α is a correction factor

accounting for ambient temperature and crack widths, t is time in years, and tI is the time to

initiation of delamination (also in years). Note that the second term is taken to be zero for all

t � tI . Attwood et al. employ a FirstOrder Reliability Method (FORM) to estimate reliabilities

associated with the delamination of a parking garage structure. In their approach, all of the factors

appearing in Eq. (1) are expressed in terms of random variables having assumed distributions and

the joint cumulative probabilities are evaluated using FORM.

In this paper a 2dimensional random field model representing the spatial delamination process

over time is investigated. The random field may be loosely interpreted as the outofplane stress

field at the reinforcement level (which changes randomly from point to point over the area of the

slab). Delaminated regions are represented by excursions of the random field above some threshold
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which can be thought of as a critical concrete resistance to horizontal splitting. In fact the stress

field itself will not be considered in that it is unmeasurable in practice. Rather, the field excursions

will be used to represent the delaminated regions directly, since these regions are measurable to

some extent. A simple random field model is adopted whose primary motivation is to attempt to

shed light on the following questions;

1) what is the mean and variability of the total area of delamination as a function of time?

2) what is the average size of individual delaminated regions as a function of time?

3) how many delaminated regions can be expected in a slab?

These are essentially questions regarding the statistics of excursion regions and so some simulation

results regarding excursion statistics will be presented in the next section.

Figure 1 illustrates an example of excursions of a random field above some predefined threshold.

In the context of this paper, the dark regions can be viewed as areas where concrete delamination

has occurred at some fixed time. As time progresses, delaminated regions are expected to grow in

size, corresponding to a falling threshold level. A falling threshold is equivalent to a rising mean,

in the case of a homogeneous field. Since the excursion statistics in the next section are developed

as functions of the threshold, the falling threshold interpretation is used here rather than a rising

mean. In either case, a nonhomogeneous field could be employed, if the data so indicated, by

considerably extending the simulation based study (in the absence of analytical results). In this

preliminary investigation, only a homogeneous field is considered.
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Figure 1. Excursions of a twodimensional random field above threshold bσ.

To represent the delamination process, excursions of an isotropic Gaussian random field having

mean zero and unit variance will be used. Although other values of mean and variance are possible,

the excursion statistics are dependent purely on the distance between the mean and the threshold.

This distance can be expressed in units of σ, the standard deviation, so that there is no advantage

in choosing anything other than a mean zero, unit variance field. The quantity bσ will be referred

to henceforth as the physical threshold and b alone as the threshold. The choice of an isotropic

Gaussian process has been made largely for simplicity, there being little evidence available to

clearly justify other types of random functions.

2. Excursion Statistics in TwoDimensions

With respect to excursion statistics, such as the mean number and area of isolated excursions,

analytical results developed to date are asymptotic in nature, accurate only at very high thresholds

where the excursion process approaches a Poisson point process. Often in engineering problems

the interest is in thresholds which are quite a bit lower, such as the delamination process considered

herein. In order for the proposed random field model to be useful in this context, excursion statistics

should be available. This section summarizes a study in which excursion statistics are obtained
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through Monte Carlo simulation. Specifically, an ensemble of 2000 realizations of an isotropic

zero mean, unit variance Gaussian random field, Z(x
∼

), with Markovian covariance function,

B(τ
∼

) = σ2ρ(τ
∼

) = σ2 expf� 2
θ
jτ
∼

jg, (2)

are produced using the Local Average Subdivision (LAS) method [4, 5], where τ
∼

is the lag vector

and θ is the scale of fluctuation. The scale of fluctuation is loosely interpreted as the distance over

which correlation is significant. Since many of the statistics of interest depend strongly on the scale

of fluctuation, 2000 realizations were generated at each of 5 different scales of fluctuation.

Individual realizations are decomposed into excursion regions and ‘holes’, using a space

filling algorithm, over a range of thresholds b = [�4, 4]. The mean and variance statistics of the

excursions are estimated over the ensemble. It should again be emphasized that b is measured in

units of standard deviation, for example b = 2 implies a threshold at two standard deviations from

the mean. For a unit variance field there is no distinction between the value of b and the physical

threshold level. However the local averaging performed by the LAS method results in a slight

decrease of the variance of the discretized field, as dictated by local averaging theory. In that each

field is represented as a discrete lattice of 128� 128 ‘cells’, the variance of each cell varies from

0.971 at the smallest scale of fluctuation considered to 0.999 at the largest. The distinction between

cell variance and point variance will be ignored in this paper, although the results presented in the

various plots to follow are accurate in this respect. For a more rigorous treatment of this issue, see

Ref. [6].

Within a given domain V = [0, L1] � [0, L2] of area A
T

= L1L2, the total excursion area per

unit area, Db, where the process Z(x
∼

) exceeds some threshold, can be defined by

Db =
1

A
T

Z
V

I
�
Z(x

∼

)� bσ
�

dx
∼

, (3)

where bσ is the physical threshold of interest, σ2 being the variance of the process, and I(�) is the

indicator function defined on V (taken to be zero outside the domain V)

I(t) =

�
1 if t � 0

0 if t < 0
. (4)

For a homogeneous process, the expected value of Db is simply

E [Db] = P [Z � bσ] , (5)
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which, for a zeromean Gaussian process yields

E [Db] = 1� Φ(b), (6)

where Φ is the standard normal distribution function. The estimate of E [Db], denoted mDb
,

derived using the simulation results is shown in Fig. 2 and is in complete agreement with Eq. (6).

Figure 2 (b) shows the estimated standard deviation of Db, denoted sDb
. Note that while E [Db]

is independent of θ, its variance is not. In keeping with the practice of normalizing all results,

the scale of fluctuation has been normalized with respect to L =
p

A
T

in these plots. Note also

that the horizontal threshold axis values decrease to the right – this is because the threshold axis is

associated with time in the next section and time increases to the right as usual.
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Figure 2. Estimated statistics of total excursion area per unit area, Db: a) mean, b)

standard deviation.
Figure 3 shows the estimated mean and standard deviation of the number of isolated excursion

regions, Nb, denoted mNb
and sNb

respectively, as a function of scale and threshold. Although not

readily apparent from the plot, the limiting value of mNb
at the right edge of the plot (b ! �1)

is 1. In other words, a single excursion exists over the entire domain for very low thresholds. At

the other extreme (b ! 1), the limiting value is zero as expected. Although the roughness of

the estimate sNb
, as seen in Fig. 3(b), is as yet unexplained, it appears unlikely that it arises from

statistical uncertainty in the estimation procedure. Based on a sample size of 2000 realizations, a

90 percent confidence bound on the standard deviation of Nb is about �0.025sNb
which is smaller

than the size of most of the ‘bumps’ seen in Fig. 3(b).
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Figure 3. Estimated statistics of number of isolated excursions, Nb: a) mean, b)

standard deviation.

Within a given realization, the average area of an isolated excursion per unit domain area, De,

can be obtained using the number of excursions,

De =
Db

Nb

.

Since Db is the sum of the Nb isolated excursion areas, the expected value of De is just

E [De] =
E [Db]

E [Nb]

Figure 4(a) illustrates this result using the estimated mean value of Nb shown in Fig. 3(a). The

estimated standard deviation of De shown in Fig. 4(b) is derived using the assumption that the

sizes of isolated excursions are independent. While this is true from realization to realization, it is

clearly not true within a single realization. Thus Fig. 4(b) can only be considered to be a rough

indication of the true variability of the area of isolated excursions.
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Figure 4. Estimated statistics of isolated excursion areas per unit area, De: a) mean,

b) standard deviation.

3. Calibrating the Model

There are essentially only two parameters in the random field model considered in this study.

These are the scale of fluctuation, θ, and the threshold level, b. Although there is little published

experimental evidence to allow a clear statement of what these parameters should be for a given

structure, some preliminary estimates are possible. First the relationship between the threshold

level and the age of the structure can be obtained by fitting delamination versus age data collected

by Trow [7] and presented in Ref. [3] to the curve of Fig. 2(a). A good fit was obtained using

least squares regression (r2 = 0.93) on the linear relationship b = 3.17 � 0.225t. To obtain this

relationship, the total fraction of delaminated area observed by Trow, Db, was plotted against

b = Φ
−1(1 � Db) and a best fit line obtained. Figure 5(a) shows the regression results and Fig.

5(b) shows where the observed delamination results would appear on Fig. 2. To expand the scale,

only positive thresholds are shown in Fig. 5(b). The choice of function relating time and threshold

is largely arbitrary as long as b(t) is a decreasing function over all times of interest (assuming

delaminated areas cannot ‘heal’). While a quadratic gives a slightly better fit to the raw data, it

violates this principle and so cannot be used to extrapolate.
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Figure 5. Regression results using Trow’s delamination rate data: a) regression, b)

observed versus predicted Db.

Some additional unpublished data was made available to the author by Public Works Canada

based on a survey of a single parking garage structure in Ontario, Canada. Figure 6 illustrates this

data. The plusorminus 1 standard deviation curves are obtained using Fig. 2(b) with θ/L = 0.1.

Clearly, for such a choice in θ, the variability in Db predicted by the random field excursion model

underestimates the variability in the observations. The additional variance arises because the time

threshold relationship b(t) is itself a function of random coefficients, as implied by the regression

analysis. Alternatively and equivalently, the additional variability could be ascribed to the fact that

the delamination field is not homogeneous on such a scale. When considered at the scale of a

typical bay, some bays show much higher delamination rates than others, perhaps corresponding

to smaller mean cover depths and/or higher Cl− inputs. Note also that larger values of θ/L lead to

higher standard deviations in Db so that the variability seen in Fig. 6 could also be explained by

larger values of θ. However the choice of θ should not be based on the variability in Db, rather this

observation indicates that perhaps the GaussMarkov covariance model is not appropriate.
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Figure 6. Delamination rate data provided by Public Works Canada. The fitted line

is b = 3.61� 0.142t with r2 = 0.6.

In this study, b(t) will be treated as a deterministic function which corresponds to the choice of a

homogeneous random field. It is beyond the scope of this initial investigation to consider estimating

the parameters of a nonhomogeneous (or selfsimilar) field to represent the delamination process

generally, although this appears indicated. Since plan views of the delaminations are available from

Public Works for individual bays of approximately 5� 5 metres in extent (L = 5), attention will be

restricted to data on such a scale over which the field can be considered homogeneous. Choosing

one such area from the Public Works data, the measured delamination fraction as a function of time

is shown in Fig. 7. In this case the line of best fit was found to be

b = 4.13� 0.172t (7)

with r2 = 0.86. Notice that for such a case, the variability in the observations is substantially

reduced and that 2/3 of the observations lie on or within the plusorminus 1 standard deviation

curves for θ/L = 0.1 (see also Fig. 5). This result appears encouraging although it is recognized

that it could be due in part to the reduced number of samples, even though similar results were

found for most other bays.
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Figure 7. Delamination rate data provided by Public Works Canada over a single slab

region.

Before considering the estimation of θ, it is worth pointing out a further difference between

the random excursion model and the commonly accepted delamination model. Salt induced

reinforcement corrosion is generally believed to involve two stages (see Ref. [8]): 1) an initiation

phase during which the alkalinity of the concrete surrounding the reinforcement (which renders the

steel passive) is reduced by the migrating Cl−ions, and 2) an active phase during which corrosion

takes place. Attwood et al. [3] estimates the initial phase to last 4.7 years. During this phase no

corrosion is assumed to take place. Note that such a model can only be applied to points in the slab

where the concrete is in contact with the reinforcement.

In contrast with this two stage model, the random field excursion model admits some probability

of delamination even at time t = 0. Using Eq. (7), one obtains b = 4.13 at time t = 0, so that

the expected total delamination area per unit area is 1.7 � 10−5, or about 17 mm2 per square

metre of slab. At these levels the precise definition of delamination comes into question. If it

is strictly interpreted as a loss of bond between the concrete and reinforcement then this result is

not unreasonable given the presence of cracks, voids and the initial state of the reinforcement. At

time t = 5 years, the expected total delamination area is still only about 6 cm2 per square metre of

slab, a level which is probably still largely undetectable at the surface of the slab and presumably

would correspond to corrosion in the immediate neighborhood of surface cracks. Although it is

believed that cracks do not contribute significantly to the areal delamination process [8], it is not

unreasonable to expect that they can be initiators of the corrosion process at discrete points in

11



the slab. If this is the case, then the many year delay before the onset of observable levels of

delamination implies that the corrosion growth should be quite slow at first. The results predicted

by Fig. 2(a) are in basic agreement with this in that E [Db] grows very slowly for b decreasing to

about 2 (corresponding to t < 12 years using Eq. 7).

Turning now to the estimation of the scale of fluctuation, θ, it becomes apparent that this task

is complicated by the type and quality of data available. Ideally, one would take measurements

of the corrosion induced stress field over a number of structures, estimate a spatial covariance

structure and from this obtain θ. Even if this approach were possible, the nonhomogenieties

mentioned above would make it difficult. However, in general the stress field is unmeasurable and

what little data is available generally consists of surveys giving the spatial extent of delaminated

regions. Figure 8(a) illustrates such a survey while Fig. 8(b) is a realization of the random field

excursions using θ = 0.5 metres. Once the timethreshold relationship has been established, and for

the purposes of this argument Eq. (7) will be used, a possible technique of estimating θ would be to

count the average number of excursions and enter Fig. 3(a) at the appropriate threshold to estimate

θ/L. Purely on the basis of Fig. 8(a) this yields estimates of θ = 2 to 4 m (θ/L = 0.4 to 0.8).

However realizations at this scale yields excursions which are generally far too well connected as

shown in Fig. 9. Realizations at such large scales appear like large land masses with many small

islands close to shore. Figure 8(a) has ‘islands’ that are more uniform in size and distribution

implying a smaller scale of fluctuation. In Fig. 8(b), produced using θ = 0.5, the larger islands are

of similar size to the delaminations seen in Fig. 8(a). This along with arguments to follow supports

the choice of a smaller scale of fluctuation.
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(a) (b)

Figure 8. a) Observed delamination regions at ages t = 13 years (dark grey) and

t = 22 years (light grey) on a 5� 5 m portion of a parking garage slab. b)

Excursions of a random field above b = 0.34 (t = 13) and b = 1.9 (t = 22)

using θ = 0.5 and Eq. (7).

While one cannot expect the plots in Fig. 8 to be identical since they are both independent

realizations of a random process, any more than one could expect the pattern of delaminations in

another building to be identical, a number of points can be made about the two plots;

1) there is no apparent spatial orientation of the delamination regions in the observations of Fig.

8(a), indicating that the assumption of isotropy is acceptable, at least for this case.

2) about half of the excursions in the random field model (Fig. 8b) are of very small extent. This

fraction increases at larger scales. On the other hand, in Fig. 8(a) there are only very few

‘small’ areas appearing in the later survey. It seems reasonable to suspect that additional small

delamination regions are in fact occurring in the real slab but that the chaindrag surveying

technique is unable to resolve them. Operator bias will almost certainly also be present due to

the prior knowledge of existing delamination areas.

3) the random field model is much ‘rougher’ than the observed delamination plots. Again this is

likely a problem with the ability of the chaindrag survey to resolve detail.

The last two points illustrates the difficulty in estimating θ on the basis of delamination surveys.

The chaindrag method depends on setting up reverberations in the delaminated concrete. For
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delamination details below a certain size, the frequency shifts are undetectable to even the most

sensitive human ears, rendering them unnoticeable. Thus many of the delamination details on

which an estimation of θ depend are unavailable using current surveying techniques. To some

extent the deficiencies in the chaindrag procedure could be accommodated simply by introducing

more local averaging in the random field model – effectively smoothing the field. While such a

‘correction’ would not likely result in an improved delamination model, it may allow improved

estimates of θ. For the purposes of this investigation, the realization based estimate of θ = 0.5

metres is used.

Figure 9. A realization of excursions at t = 13 years (dark grey) and at t = 22 years

(light grey) using θ = 4 metres on a 5� 5 metre field.

4. Discussion

Conceptually the model proposed herein is quite attractive in that the delamination process is

indeed a threshold excursion process in two dimensions. Once the details of the model have been

established (type of distribution, timethreshold relationship and scale of fluctuation) and some of

the properties of threshold excursions in two dimensions have been determined analytically or via

simulation, the model can be used in a reliability context. For example, using Eq. (7), at time

t = 12 years (b = 2.07) Fig. 2 along with Eq. (6) indicates that mDb
= 0.0194 and sDb

= 0.0080,
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using θ = 0.5 metres. If Db is assumed to have a Beta distribution, which is properly bounded

between 0 and 1, then the probability that Db is less than 3% at 4 years is given by

P [Db � 0.03] = 0.90 (8)

In turn, if a target reliability of 0.9 were chosen against delamination in excess of 3%, then

inspection of the garage would be recommended at t = 12 years for this structure.

Because the model includes the spatial aspects of delamination, it can be used to evaluate

testing and mapping procedures. For example, at time t = 12 years one could expect about 42

isolated excursions on a 5�5 metre slab (θ = 0.5 metre) with a standard deviation of about 11. The

area of each isolated excursion would average about 0.011 m2 with a standard deviation of about

0.022 m2. Surveys which yield results considerably different than these may require verification

using other techniques. In addition, the spatial description of delamination could be used in a

structural reliability study. For this the simulation approach could be employed to yield a measure

of the degree of clustering of the delamination regions (see Ref. [6]).

One recognizes that the excursion model is attempting to predict the cracked state of a con

crete slab. In that internal cracks are exceedingly difficult to map, even in controlled laboratory

conditions, the model is to some extent intuitive and will likely remain so until improved surveying

techniques are developed. Nevertheless the model demonstrates some promising features and can

be used as a powerful reliability tool when its parameters are clearly defined in terms of additional

data and simulation studies. In particular, the data shown in Fig. 6 indicates that perhaps alternative

correlation functions (see Eq. 2) should be studied – multiplescale or selfsimilar type random

fields are suggested, showing the small scale behaviour over small regions while reflecting also the

large scale, slower variations over larger domains. Also the fact that the model allows delamination

to occur at time t = 0 (or before) implies that some thought should be given to the assumption of a

Gaussian random field and/or the timethreshold relationship. In the interim, however, the choice

of a Gaussian field and linear timethreshold relationship leads to results which appear reasonable

for any time t > 0.
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