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Abstract

Employing the simple iterative technique of adjusting the element positions using computed po-

tentials to locate the free surface can lead to finite elements with large aspect ratios as the free

surface drops towards the base of the mesh. In particular, free surface modeling of earth dams

with base drains suffer from this problem. The paper suggests a number of steps which can be

taken to alleviate mesh distortion problems and improve thenumerical stability of the iterative

finite element analysis. This leads to a mesh deformation algorithm which adjusts element widths

in a simple fashion depending on the free surface height as the iterations proceed. The algorithm

is specialized to the sloped earth dam problem, but may find application to other geometries.

1. Introduction

In the finite element analysis of free surface flow, there are two main approaches; 1) fixed mesh

algorithms (see e.g. Bathe and Khoshgoftaar, 1979, Rank andWerner, 1986, and Lacy and Prevost,

1987) in which the element properties are iteratively adjusted within a fixed mesh to reflect the

location of the free surface, and 2) adaptive mesh algorithms (see e.g. Finn, 1967, Chung and

Kikuchi, 1987, Cividini and Gioda, 1990, and Smith and Griffiths, 1988) in which the element

properties are held constant while the mesh is iteratively deformed to match the free surface profile.

In this approach, the determination of the free surface in anearth dam, as illustrated in Figure 1,

proceeds by iteratively adjusting the element heights to equal their computed potential above a fixed

datum (Smith and Griffiths, 1988). In that the adaptive mesh algorithm is very simple, requiring

only the finite element implementation of Darcy’s Law and an add-on mesh deformation procedure,
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it was selected for use in a number of earth dam studies performed by the authors (Fenton and

Griffiths, 1996). However, it soon became apparent, in the presence of sloped boundaries and/or

drains at the base of the dam, that the elements could become severely distorted during the iterations,

leading to numerical instabilities and slow convergence. This motivated a search for techniques

of improving stability and reducing element distortion while still obtaining accurate results with

reasonable efficiency and without resorting to more generaladaptive mesh generators.

Figure 2 illustrates how the mesh can be distorted in the casewhere the original undeformed mesh

(prior to the free surface iterations) is as shown in Figure 1. Since some of the elements achieve very

large aspect ratios and interior angles close to 180o, the analysis becomes numerically unstable

leading to the convergence failure seen in the sequence of Figure 2. The free surface problem

illustrated in Figure 2 arises from a random permeability field, the randomness serving to aggravate

the problem by changing a relatively smoothly varying free surface into a rougher profile.

A number of possible approaches to reducing the numerical error suggest themselves;

1) increase the number of elements, particularly in the horizontal direction,

2) insist that the free surface be strictly non-increasing in the downstream direction.

3) adjust the spacing of the elements so that aspect ratios donot become so large as the free

surface drops,

4) smooth, damp, or average the results of previous iterations to avoid wild swings in the predicted

response,

The first approach, while valid, may entail a very large number of elements in cases where the free

surface descends significantly. It is an approach more suited to the case where the approximate

free surface location is knowna-priori, but otherwise results in a significant computational penalty

(which, in a stochastic framework, is to be avoided). Although this is the simplest solution, this

paper addresses the other approaches primarily to avoid theinefficiency associated with a large

number of elements.
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The second suggestion, insisting that the free surface be strictly non-increasing and adjusting its

location if not, may be a reasonable stipulation in the case where the permeability through the dam

is everywhere constant. However, it suffers from a number ofdisadvantages; first, by arbitrarily

adjusting the free surface location so that it is strictly non-increasing may result in convergence

to an incorrect location if numerical errors are persistent. Second, the free surface may show

local increases in the case where the permeability field is spatially random, so that the stipulation

is not correct in this case. However, this is a quick and simple fix that usually results in a fast

convergence to a reasonable approximation, and, for example, eliminates the non-convergence

observed in Figure 2.

The third approach is reported in greater detail in the following sections of the paper. If the spacing

adjustment is properly implemented, the fourth suggestion, which serves primarily to accelerate

convergence in pathological cases, is not usually necessary but suggestions as to its implementation,

based on empirical observations, will be made.

2. Free Surface Iterations

The advantage of the iterative mesh deformation algorithm,where the elevation of the upper surface

of the mesh is equated to the potential (both measured from some fixed elevation) computed in

the previous iteration, is that it clearly converges to the correct result when the implementation

of Darcy’s Law is accurate. This is both in the sense of iterations using a fixed mesh and in the

usual sense of the finite element discretization where the error reduces as the mesh is refined to

some lower round-off error floor. The quadrilateral Darcy element is accurate so long as it does

not become too severely distorted, thus the overall algorithm’s success is ensured if the elements

shapes are adjusted to avoid severe distortion or large aspect ratio.

The first task is to properly adjust nodal positions, given a computed potential field from the

previous iteration. When the domain is rectangular and nodes lie along vertical lines, this is simply

a matter of adjusting the vertical position of the nodes. It is, however, somewhat more complicated
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when the flow domain is bounded by sloped lines. In the following, it will be assumed that nodes

lie along non-intersecting straight lines connecting the top and bottom surfaces of the domain.

This geometry implies that the dam must be a truncated pyramid unless triangular elements are

employed. Since, in the case of earth dams, one need only model at and below the free surface, the

truncation is not usually a restriction and quadrilateral elements can be used.

Consider the geometry shown in Figure 3, where the domain is discretized intonxe elements

horizontally bynye elements vertically. The variablesbi andti give thex-coordinates of the base

and top nodes, respectively, fori = 1, 2, . . . , nxe + 1. The overall domain height isyh, base width is

xbot, and top width isxtop. For simplicity, it will be assumed that the top is centered over the base.

Each nodal pair having coordinates (bi, 0) and (ti, yh) is connected by a straight line. Along this

line,nye + 1 nodes are distributed with elevations to be determined asfollows. If si is the potential

computed in the current finite element iteration at thei’th node along the top surface, and hence

the target elevation of thei’th node in the next iteration, then thex-coordinate of thei’th node is

given by

ci = bi +

�
si

yh

�
(ti � bi)

so that the free surface nodal position, obtained by slidingalong the line connecting (bi, 0) and

(ti, yh), has coordinates (ci, si).

If the computed potentialsi is sufficiently small, then the elements may achieve very large aspect

ratios since they are compressed into a small elevation. Ideally, the width of the element should

be adjusted to become approximately the same as its height. In general, this can only be done

properly by changing the number of elements in the mesh. Changing the number of elements ‘on

the fly’ involves a much more complicated bookkeeping algorithm, mapping degrees-of-freedom to

boundary conditions, etc., which would have to be implemented and re-invoked on each iteration.

To avoid this additional complexity and overhead it was decided to maintain a fixed number of

elements and adjust their spacing more simply – gradually increasing in the upstream direction.

A number of spacing algorithms were considered;
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1) element width proportional to the free surface elevationabove the element (at the top of the

column of elements, which may be sloped). The proportionality constant is determined by

requiring that the sum of element widths equal the dam width;

r =
xbotPnxe

i=1 (si + si+1)

bi = bi−1 + r(si−1 + si) i = 2, 3, . . . , nxe

The top nodes are shifted analogously, usingxtop andti instead ofxbot andbi.

2) linearly increasing element widths with narrowest element at downstream face having width

determined by the downstream free surface elevation, as follows;

r =

�
s1

yh

�2

d =
xbot

nxe

e =
2d(1� r)
nxe � 1

bi = b1 + (i� 1)
�
rd + 1

2(i� 2)e
�
, i = 2, 3, . . . , nxe

Smaller values ofr decrease the width of the downstream element. For a fixed freesurface

elevation ratio,s1/yh, empirical testing showed that the reduction inr needed to be amplified

to get reasonable results which is why the ratio is squared above. The top nodes are shifted

analogously, usingxtop andti instead ofxbot andbi.

3) geometrically increasing element widths with narrowestelement at downstream face having

width determined by the amount of drawdown,s1/yh. This model shifts the base nodes as

follows;

a) computedbot = s1
nye

as the width of the downstream base element,

b) if dbot < xbot

nxe
then� computedtop = dbot

�
xtop

xbot

�� find root off (α) = α−1
αnxe

−1 � dbot

xbot
= 0
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� bi = b1 +
�

αi−1
−1

α−1

�
dbot, i = 2, 3, . . . , nxe� ti = t1 +

�
αi−1

−1
α−1

�
dtop, i = 2, 3, . . . , nxe

Since 1< α < (xbot/dbot)
1

nxe−1 , the root is conveniently found using bisection (for this function,

bisection is also more efficient than, say, Newton-Raphson).

Once the base and top nodes have been shifted according to theabove discussion, the final free

surface and, in fact, all the remaining nodes, must be transferred to the new set of lines joining

(bi, 0) and (ti, yh). To define the new free surface, that is to find the location ofeach nodei along

the free surface, the index 1� j � nxe is found so that the line segments between the points

[(bi, 0), (ti, yh)] and [(cj , sj), (cj+1, sj+1)] cross each other. This intersection becomes the locus of

the new free surface. All other nodes are distributed evenlybelow the new free surface. The

algorithm to find the free surface is as follows;

a) setj = 1

b) for i = 2, 3, . . . , nxe do

1) d = (sj � sj+1)(ti � bi) + yh(cj+1 � cj)

2) if d = 0 then ERROR: the lines do not intersect – convergence failure

3) ξ =
�
sj(ti � bi) + yh(bi � cj)

�
/d

4) if ξ < 0 or ξ > 1 then check next free surface line segment;

i) setj = j + 1

ii) if j > nxe then ERROR: unable to find free surface

iii) return to step (1)

else

i) xi = [(cj+1sj � cjsj+1)(ti � bi) + biyh(cj+1 � cj)]/d

ii) yi = yh[bi(sj+1 � sj) + (cj+1sj � cjsj+1)]/d

endif
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enddo

where (xi, yi) are the updated coordinates of the free surface. The boundξ > 1 may be changed

to ξ > (1 + ǫ), for suitably smallǫ, to avoid not finding an intersection due to round-off error.The

two error conditions noted above should never occur.

In the case of geometric or linear element spacing, one final check is applied by looking at the

overall aspect ratio of the uppermost downstream element. If this aspect ratio exceeds 5, then the

effective downstream free surface elevation is taken to bes1/2 and the spacing algorithm repeated.

This strategy was found to be necessary only occasionally but did further reduce the number of

divergent cases to be discussed later.

With a random permeability field, convergence is sometimes slow to occur due to the mapping of

permeabilities from the spatially fixed permeability field to the deforming finite element mesh. If

the permeability mapped to a given element flops back and forth as it shifts slightly (spatially), then

the free surface may continue to oscillate from iteration toiteration. To alleviate this situation, the

response computed on each iteration is damped to give an ‘averaged’ computed free surface of

id = max(k � 16, 1)

β =
p

1/id

si = (1� β)si + βφi

in which k is the iteration count andφi is the potential computed at thei’th node along the free

surface. In this formulation, the first 16 iterations are left undamped. The number 16 was selected

after some trial and error, considering overall average convergence rates. The use of a square

root in the calculation ofβ reduces the rate of increase of the damping. It was found thatusing,

for example,β = 1/id often resulted in non-convergence simply because the effect of successive

iterations became too rapidly negligible. For most permeability realizations, convergence is attained

before damping is necessary.

The various element spacing methods were tested on a suite of100 realizations of a random

permeability field applied to the earth dam geometry shown inall the figures. Divergence, due to
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excessive element distortion, is identified whenever the computed free surface exceeds 1.2 times

the dam height or dips below the dam baseline. Diverged flow profiles typically resemble that

shown in Figure 2 and yield unusable results.

The maximum number of iterations was set at 80, after which the analysis was discontinued and

considered to be an unconverged case. Convergence was attained when the max-norm relative error

on the entire free surface elevation became less than 0.5%. In general, unconverged flow profiles

were not found to differ much from those obtained by allowingmore iterations (with damping) so

that non-convergence is usually not a major concern.

Two cases were considered; 1) an earth dam with a drain running along the dam base from the

centerline to the downstream face, and 2) an earth dam without a drain. The free surface tends to

exit somewhere about half height of the dam in the second caseand typically results in elements

near the top downstream corner with interior angles approaching 180o since the free surface often

approaches the downstream face at a tangent. In the presenceof a drain, the free surface descends

rapidly, getting quite close to the base and potentially yielding very large element aspect ratios.

Table 1 tabulates the number of unconverged, divergent, andthe average number of iterations

(convergent cases) over the 100 realizations. Figure 4 illustrates the converged results obtained

using the geometric spacing algorithm for the drained and undrained earth dam. The undrained

case of Figure 4(a) corresponds to the same permeability field which led to the failure in Figure 2.

3. Conclusions

Of the various mesh shifting techniques considered in this study, the one which showed overall the

least divergence and best convergence rates was that of geometric shifting. Although not reported

here, the method has been used for a variety of dam side slopes, with and without base drains, for

a variety of discretizations, and under various random permeability field statistics. The average

convergence rate was about the same for all spacing methods,including the no spacing adjustment

case. The latter had by far the largest number of divergent results, motivating this study. For
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earth dams without drains, where the free surface remains relatively high, the linear or proportional

spacing algorithms showed the best results with geometric spacing having about 1% divergent

cases. In the presence of a drain, geometric spacing was superior. The proportional spacing gave

good results without a drain, but was significantly slower with a high number of unconverged

results in the presence of a drain.

The algorithms given in this paper can be used by those wishing to use quadrilateral elements in

an iterative free surface problem without having to resort to adaptive mesh generators. Since the

permeability fields which resulted in failure of the geometric spacing algorithm often differed from

those causing failure of the linear spacing algorithm, one possible application of these methods

is to use geometric spacing and switch over to linear spacingin the event of divergence. Finally,

convergence can be assured in all cases by restricting the free surface to be non-increasing in the

downstream direction. This, however, may result in convergence to an incorrect result unless it is

knowna-priori that the free-surface is non-increasing.
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NOTATION

The following symbols are used in this paper:

bi = x-coordinate of thei’th node along the dam base

ci = x-coordinate of thei’th node along the free surface

nxe = number of elements in thex (horizontal) direction

nye = number of elements in they (vertical) direction

si = vertical elevation of thei’th node along the free surface

ti = x-coordinate of thei’th node along the dam top

x = horizontal coordinate axis

xbot = width of the dam base

xtop = width of the dam top

y = vertical coordinate axis

yh = vertical height of the dam, also upstream free surface elevation

10



Table 1. Convergence results over 100 random permeability field realizations for various

spacing algorithms.

Method Without Drain With Drain

Unconverged Diverged Ave. Number Unconverged Diverged Ave. Number
(%) (%) of Iterations (%) (%) of Iterations

None 0 8 12 0 16 15

Geometric 0 1 12 0 0 15

Linear 0 0 13 0 4 15

Proportional 0 0 12 13 0 29



Figure 1. Finite element mesh of earth dam (a) with example realization of permeability field

and free surface (b).

Figure 2. Divergent iteration sequence (a through d) due to excessiveelement distortion.

Figure 3. Earth dam dimensions illustrating top and bottom nodal x-coordinate labeling.

Figure 4. Converged free surface results obtained using geometric spacing for undrained, (a),

and drained, (b), earth dams.
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