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Abstract

Employing the simple iterative technique of adjusting theareent positions using computed po-
tentials to locate the free surface can lead to finite elesnetith large aspect ratios as the free
surface drops towards the base of the mesh. In particute, durface modeling of earth dams
with base drains suffer from this problem. The paper suggestumber of steps which can be
taken to alleviate mesh distortion problems and improventiverical stability of the iterative

finite element analysis. This leads to a mesh deformatiocoriihgm which adjusts element widths
in a simple fashion depending on the free surface heighteagehations proceed. The algorithm

is specialized to the sloped earth dam problem, but may fipticgpion to other geometries.

1. Introduction

In the finite element analysis of free surface flow, there wae@main approaches; 1) fixed mesh
algorithms (see e.g. Bathe and Khoshgoftaar, 1979, RanWender, 1986, and Lacy and Prevost,
1987) in which the element properties are iteratively adjgisvithin a fixed mesh to reflect the

location of the free surface, and 2) adaptive mesh algostfsee e.g. Finn, 1967, Chung and
Kikuchi, 1987, Cividini and Gioda, 1990, and Smith and Giti, 1988) in which the element

properties are held constant while the mesh is iterativetgrined to match the free surface profile.
In this approach, the determination of the free surface ieath dam, as illustrated in Figure 1,
proceeds by iteratively adjusting the element heights taktyeir computed potential above a fixed
datum (Smith and Griffiths, 1988). In that the adaptive mdghrdahm is very simple, requiring

only the finite element implementation of Darcy’s Law and dd-an mesh deformation procedure,
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it was selected for use in a number of earth dam studies peefdiby the authors (Fenton and
Griffiths, 1996). However, it soon became apparent, in tlesgmce of sloped boundaries and/or
drains atthe base of the dam, that the elements could be@veiety distorted during the iterations,
leading to numerical instabilities and slow convergenchis Totivated a search for techniques
of improving stability and reducing element distortion ehstill obtaining accurate results with

reasonable efficiency and without resorting to more geragtaptive mesh generators.

Figure 2 illustrates how the mesh can be distorted in thewasee the original undeformed mesh
(prior to the free surface iterations) is as shown in FigurBibce some of the elements achieve very
large aspect ratios and interior angles close to 4.80e analysis becomes numerically unstable
leading to the convergence failure seen in the sequencegafd-2. The free surface problem
illustrated in Figure 2 arises from a random permeabilitigfithe randomness serving to aggravate

the problem by changing a relatively smoothly varying fredeace into a rougher profile.
A number of possible approaches to reducing the numerioal suggest themselves;

1) increase the number of elements, particularly in thezomtial direction,

2) insist that the free surface be strictly non-increasinthe downstream direction.

3) adjust the spacing of the elements so that aspect ratio®tdbecome so large as the free

surface drops,

4) smooth, damp, or average the results of previous iteratmavoid wild swings in the predicted

response,

The first approach, while valid, may entail a very large nundfelements in cases where the free
surface descends significantly. It is an approach moredtit¢he case where the approximate
free surface location is knowarpriori, but otherwise results in a significant computational pignal
(which, in a stochastic framework, is to be avoided). Altplouhis is the simplest solution, this
paper addresses the other approaches primarily to avoithéfffeciency associated with a large

number of elements.



The second suggestion, insisting that the free surfacerioflyshon-increasing and adjusting its
location if not, may be a reasonable stipulation in the cdsera/the permeability through the dam
is everywhere constant. However, it suffers from a numbetisddvantages; first, by arbitrarily
adjusting the free surface location so that it is strictlymecreasing may result in convergence
to an incorrect location if numerical errors are persisteBecond, the free surface may show
local increases in the case where the permeability fieldasialy random, so that the stipulation
is not correct in this case. However, this is a quick and sinfi that usually results in a fast
convergence to a reasonable approximation, and, for exampiinates the non-convergence

observed in Figure 2.

The third approach is reported in greater detail in the foithg sections of the paper. If the spacing
adjustment is properly implemented, the fourth suggestidnch serves primarily to accelerate
convergence in pathological cases, is not usually negelssbsuggestions as to its implementation,

based on empirical observations, will be made.

2. Free Surface lterations

The advantage of the iterative mesh deformation algoritiimere the elevation of the upper surface
of the mesh is equated to the potential (both measured frone sixed elevation) computed in
the previous iteration, is that it clearly converges to therect result when the implementation
of Darcy’s Law is accurate. This is both in the sense of iterat using a fixed mesh and in the
usual sense of the finite element discretization where tlor ezduces as the mesh is refined to
some lower round-off error floor. The quadrilateral Darogneént is accurate so long as it does
not become too severely distorted, thus the overall alyorg success is ensured if the elements

shapes are adjusted to avoid severe distortion or largeasio.

The first task is to properly adjust nodal positions, givenoanputed potential field from the
previous iteration. When the domain is rectangular and sbd@long vertical lines, this is simply
a matter of adjusting the vertical position of the nodess,Ihowever, somewhat more complicated
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when the flow domain is bounded by sloped lines. In the foltayyit will be assumed that nodes
lie along non-intersecting straight lines connecting the &nd bottom surfaces of the domain.
This geometry implies that the dam must be a truncated pyramiess triangular elements are
employed. Since, in the case of earth dams, one need onlyl mtcaied below the free surface, the

truncation is not usually a restriction and quadrilatelaireents can be used.

Consider the geometry shown in Figure 3, where the domainsizatized inton,. elements
horizontally byn,. elements vertically. The variablésandt, give thez-coordinates of the base
and top nodes, respectively, for 1,2, ...,n,. +1. The overall domain height ig,, base width is
Zpot, @nd top width ise,,,. For simplicity, it will be assumed that the top is centergdrdhe base.
Each nodal pair having coordinatés, Q) and (;, v;,) is connected by a straight line. Along this
line, n,. + 1 nodes are distributed with elevations to be determinddilasvs. If s; is the potential
computed in the current finite element iteration at ftie node along the top surface, and hence
the target elevation of thé&th node in the next iteration, then thecoordinate of the’th node is

given by

S.
¢ =bi+ | — |t -0
<yh>( )

so that the free surface nodal position, obtained by slidilogg the line connecting( 0) and

(t;, 1), has coordinates:; s;).

If the computed potential; is sufficiently small, then the elements may achieve verydaspect

ratios since they are compressed into a small elevatioralljdéhe width of the element should
be adjusted to become approximately the same as its heighgereral, this can only be done
properly by changing the number of elements in the mesh. §thgrihe number of elements ‘on
the fly’ involves a much more complicated bookkeeping alpon mapping degrees-of-freedom to
boundary conditions, etc., which would have to be impleré@ind re-invoked on each iteration.
To avoid this additional complexity and overhead it was dedito maintain a fixed number of

elements and adjust their spacing more simply — graduathgasing in the upstream direction.

A number of spacing algorithms were considered;
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1)

2)

3)

element width proportional to the free surface elevatibave the element (at the top of the
column of elements, which may be sloped). The proportibpnabnstant is determined by

requiring that the sum of element widths equal the dam width;

Lot
Z?;f(si + Si41)

bi=bi_g*tr(sicats) 122,30,

T =

The top nodes are shifted analogously, usipng andt; instead ofr,,, andb;.

linearly increasing element widths with narrowest elaetred downstream face having width

determined by the downstream free surface elevation, s

2
S1
r=\|—
(yh>

d = Tpot
nxe
2d(1—r)
e= ———
Nge — 1

bi=bl+(i—1)<rd+%(z'—2)e>, i=2.3,. .. 0,

Smaller values of decrease the width of the downstream element. For a fixedstrdace
elevation ratios; /y;,, empirical testing showed that the reduction-ineeded to be amplified
to get reasonable results which is why the ratio is squaresteabThe top nodes are shifted

analogously, using,,, and¢; instead ofr,,, andb;.

geometrically increasing element widths with narrowetetment at downstream face having
width determined by the amount of drawdows/y;,. This model shifts the base nodes as

follows:

a) computel,,, = ,le as the width of the downstream base element,

b) if dypy < L2t then

- computed;,, = dp,t (“"P)

Tpot

. find root of f(a) = &=L, — % =

anze—1 Thot
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b=t () i, 723

- ti=t1+<°€—il_1>dtop, i=2.3... . .n.,

Since 1< a < (Tpor/dpot) nzifl, the root is conveniently found using bisection (for thisdtion,

bisection is also more efficient than, say, Newton-Raphson)

Once the base and top nodes have been shifted according abake discussion, the final free
surface and, in fact, all the remaining nodes, must be tearexf to the new set of lines joining
(b;,0) and (;,v;). To define the new free surface, that is to find the locatioeaah node along

the free surface, the index 4 j < n,,. is found so that the line segments between the points
[(b;,0), (¢, yn)] @and [(c;, 55), (c;+1, 5j+1)] cross each other. This intersection becomes the locus of
the new free surface. All other nodes are distributed eveelpw the new free surface. The

algorithm to find the free surface is as follows;
a) setj =1
b) fort=2,3,...,n,. do
1) d=(s; — sj+)(t: — b;) +ynlcjen — ¢;)
2) if d = 0 then ERROR: the lines do not intersect — convergencerdailu
3) &= <5j(ti — b;) +yn(bi — Cj)) /d
4) if £ < 0or¢ > 1then check next free surface line segment;
i) setj=j+1
i) if j > n,. then ERROR: unable to find free surface
iii) return to step (1)
else
) 2; = [(cjs15; — ¢;5541) (i — b;) + byn(cje — ¢;)1/d
i) i = ynlbi(sje1 — 55) + (cjs18; — ¢58541)1/d

endif



enddo

where (;,y;) are the updated coordinates of the free surface. The b¢und may be changed
to & > (1 +¢), for suitably smalk, to avoid not finding an intersection due to round-off eridne

two error conditions noted above should never occur.

In the case of geometric or linear element spacing, one fimatlcis applied by looking at the
overall aspect ratio of the uppermost downstream eleméttislaspect ratio exceeds 5, then the
effective downstream free surface elevation is taken tg b2 and the spacing algorithm repeated.
This strategy was found to be necessary only occasionatlgidufurther reduce the number of

divergent cases to be discussed later.

With a random permeability field, convergence is sometinms 8 occur due to the mapping of
permeabilities from the spatially fixed permeability fietdthe deforming finite element mesh. If
the permeability mapped to a given element flops back anld &srit shifts slightly (spatially), then

the free surface may continue to oscillate from iteratioitexation. To alleviate this situation, the

response computed on each iteration is damped to give arage@ computed free surface of

ig = maxE — 16,1)
B=1+/1/iq
si = (L= B)si + i

in which £ is the iteration count and, is the potential computed at thigh node along the free
surface. In this formulation, the first 16 iterations aré lefdamped. The number 16 was selected
after some trial and error, considering overall averagevemence rates. The use of a square
root in the calculation off reduces the rate of increase of the damping. It was foundugiag,

for example,s = 1/i, often resulted in non-convergence simply because theteffesticcessive
iterations became too rapidly negligible. For most perniggbealizations, convergence is attained

before damping is necessary.

The various element spacing methods were tested on a suit®8Qofealizations of a random
permeability field applied to the earth dam geometry showatlithe figures. Divergence, due to
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excessive element distortion, is identified whenever thepmded free surface exceeds 1.2 times
the dam height or dips below the dam baseline. Diverged flafilps typically resemble that

shown in Figure 2 and yield unusable results.

The maximum number of iterations was set at 80, after whiehatmalysis was discontinued and
considered to be an unconverged case. Convergence wagdttdien the max-norm relative error
on the entire free surface elevation became less than 08%ereral, unconverged flow profiles
were not found to differ much from those obtained by allowingre iterations (with damping) so

that non-convergence is usually not a major concern.

Two cases were considered; 1) an earth dam with a drain rgralong the dam base from the
centerline to the downstream face, and 2) an earth dam withdtain. The free surface tends to
exit somewhere about half height of the dam in the second arageypically results in elements
near the top downstream corner with interior angles apogcl80° since the free surface often
approaches the downstream face at a tangent. In the preskeadeain, the free surface descends
rapidly, getting quite close to the base and potentiallydyig very large element aspect ratios.
Table 1 tabulates the number of unconverged, divergenttfamcverage number of iterations
(convergent cases) over the 100 realizations. Figure dtilites the converged results obtained
using the geometric spacing algorithm for the drained ardtained earth dam. The undrained

case of Figure 4(a) corresponds to the same permeabilitiieich led to the failure in Figure 2.

3. Conclusions

Of the various mesh shifting techniques considered in thidys the one which showed overall the

least divergence and best convergence rates was that oetygosahifting. Although not reported

here, the method has been used for a variety of dam side slejiesand without base drains, for

a variety of discretizations, and under various random pabniity field statistics. The average

convergence rate was about the same for all spacing methotigjing the no spacing adjustment

case. The latter had by far the largest number of divergenititee motivating this study. For
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earth dams without drains, where the free surface remdmtssdy high, the linear or proportional
spacing algorithms showed the best results with geomegbtacisg having about 1% divergent
cases. In the presence of a drain, geometric spacing was@upihe proportional spacing gave
good results without a drain, but was significantly slowethwa high number of unconverged

results in the presence of a drain.

The algorithms given in this paper can be used by those wgdoimise quadrilateral elements in
an iterative free surface problem without having to resmiddaptive mesh generators. Since the
permeability fields which resulted in failure of the georeespacing algorithm often differed from
those causing failure of the linear spacing algorithm, oogsible application of these methods
is to use geometric spacing and switch over to linear spanitige event of divergence. Finally,
convergence can be assured in all cases by restrictingabesiérrface to be non-increasing in the
downstream direction. This, however, may result in congeeg to an incorrect result unless it is

knowna-priori that the free-surface is non-increasing.

4. Acknowledgements

Thanks for financial support are due to the Natural ScienndsEangineering Research Council
of Canada under Grant OPG0105445 as well as to the UniteelsStitional Science Foundation
under Grant 4-41589. Any opinions, findings, and conclusiemd recommendations are those of

the authors and do not necessarily reflect the views of thementioned organizations.
REFERENCES

Bathe, K.J. and Khoshgoftaar, M.R. (1979). “Finite elenfes# surface seepage analysis without

mesh iteration,Internat. J. Numer. Anal. Methods Geome&13—22.

Chung, K.Y. and Kikuchi, N. (1987). “Adaptive methods tos®free boundary problems of flow
through porous medialhternat. J. Numer. Anal. Methods Geomedi(1), 17-32.

Cividini, A. and Gioda, G. (1990). “On the variable mesh nglement analysis of unconfined
seepage problems3éotechniqued((3), 523-524.
9



Fenton, G.A. and Griffiths, D.V. (1996). “Statistics of freerface flow through stochastic earth
dam,” ASCE J. Geotech. End.226), 427-436.

Finn, W.D.L. (1967). “Finite element analysis of seepag®ulgh dams,’”ASCE J. Soil Mech.
Found. Div, 93(SM6), 41-48.

Lacy, S.J. and Prevost, J.H. (1987). “Flow through poroudimeA procedure for locating the

free surface,Internat. J. Numer. Anal. Methods GeomedHi(6), 585-601.

Rank, E. and Werner, H. (1986). “An adaptive finite elememtrapch for the free surface seepage

problem,’Internat. J. Numer. Methods Engr@3(7), 1217-1228.

Smith, .M. and Griffiths, D.V. (1988)Programming the Finite Element Methaibhn Wiley &
Sons, New York, NY.

NOTATION

The following symbols are used in this paper:
b; = z-coordinate of thé’th node along the dam base
¢; = x-coordinate of the’th node along the free surface
nz. = humber of elements in the(horizontal) direction
n,. = number of elements in the(vertical) direction
s; = vertical elevation of the'th node along the free surface
; = xz-coordinate of theé’th node along the dam top
x = horizontal coordinate axis
Tpor = Width of the dam base
T4, = Width of the dam top
y = vertical coordinate axis

y,, = vertical height of the dam, also upstream free surfaceaétmv
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Table 1.

Convergence results over 100 random permeability fieldza#bdns for various

spacing algorithms.

Method Without Drain With Drain
Unconverged| Diverged | Ave. Number || Unconverged| Diverged | Ave. Number
(%) (%) of Iterations (%) (%) of Iterations
None 0 8 12 0 16 15
Geometric 0 1 12 0 0 15
Linear 0 0 13 0 4 15
Proportional 0 0 12 13 0 29




Figure 1.

Figure 2.
Figure 3.

Figure 4.

Finite element mesh of earth dam (a) with example realimadiopermeability field

and free surface (b).
Divergent iteration sequence (a through d) due to excessaveent distortion.
Earth dam dimensions illustrating top and bottom nodal ardmate labeling.

Converged free surface results obtained using geometaicirsgp for undrained, (a),

and drained, (b), earth dams.
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