
D
ow

nl
oa

de
d 

fr
om

 a
sc

el
ib

ra
ry

.o
rg

 b
y 

D
A

L
H

O
U

SI
E

 U
N

IV
E

R
SI

T
Y

 o
n 

01
/2

7/
16

. C
op

yr
ig

ht
 A

SC
E

. F
or

 p
er

so
na

l u
se

 o
nl

y;
 a

ll 
ri

gh
ts

 r
es

er
ve

d.
ESTIMATION FOR STOCHASTIC SOIL MODELS

By Gordon A. Fenton,1 Associate Member, ASCE

ABSTRACT: Although considerable theory exists for the probabilistic treatment of soils, the ability to identify
the nature of spatial stochastic soil variation is almost nonexistent. We all know that we could excavate an entire
site and there would be no doubt about the soil properties. However, there would no longer be anything to rest
our structure on, and so we must live with uncertainty and attempt to quantify it rationally. Twenty years ago
the mean and variance was sufficient. Clients are now demanding full reliability studies, requiring more so-
phisticated models, so that engineers are becoming interested in rational soil correlation structures. Knowing
that soil properties are spatially correlated, what is a reasonable correlation model? Are soils best represented
using fractal models or finite-scale models? What is the difference? How can this question be answered? Once
a model has been decided upon, how can its parameters be estimated? These are questions that this paper
addresses by looking at a number of tools that aid in selecting appropriate stochastic models. These tools include
the sample covariance, spectral density, variance function, variogram, and wavelet variance functions. Common
models, corresponding to finite scale and fractal models, are investigated, and estimation techniques are dis-
cussed.
INTRODUCTION

The reliability assessment of geotechnical projects has been
receiving increased attention from regulatory bodies in recent
years. To provide a rational reliability analysis of a geotech-
nical system, there is a need for realistic random soil models
that can then be used to assess probabilities relating to the
design. Unfortunately, little research on the nature of soil spa-
tial variability is available, and this renders reliability analyses
using spatial variability suspect. In an attempt to remedy this
situation, this paper lays out the theory and discusses the anal-
ysis and estimation tools needed to analyze spatially distrib-
uted soil data statistically. Because of the complexity of the
problem, the concentration herein is purely on the 1D case.
That is, the overall goal is to establish reasonable models for
soil variability along a line. To achieve this goal, existing tools
and estimators need to be critically reviewed to assess their
performance for both large and small geotechnical data sets.

In general, statistical analyses can be separated into two
areas that can be thought of as descriptive and inferential in
nature. In the former, the goal is to best describe a particular
data set with a view toward interpolating within the data set.
For example, this commonly occurs when geotechnical data
are obtained at a site for which a design is destined. The de-
scriptive techniques most often used are those of regression,
using an appropriate polynomial that explains most of the var-
iability, or best linear unbiased estimation (BLUE). Regression
is purely geometry and observation based, whereas BLUE also
incorporates the covariance structure between the data. Thus,
the BLUE techniques require an a priori estimate of the co-
variance function governing the soil’s spatial variability; this
is often obtained by inference from other sites because it gen-
erally requires a very large data set to estimate reliably.

In general, inference occurs whenever one estimates prop-
erties at any unobserved spatial location. Here, the word in-
ference will be taken to mean the estimation of stochastic
model parameters that allow one to make probabilistic state-
ments about an entire site for which data are limited or not
available. This may be necessary, for example, in preliminary
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designs, designs involving a future state, or designs where a
large site is to be characterized on the basis of a small test
region. This paper focuses on inferential statistics for several
reasons: (1) Descriptive statistics are already reasonably well
established and understood; (2) a priori knowledge of the sec-
ond-moment (covariance) structure of soil properties is essen-
tial for BLUE estimators and Bayesian updating; and (3) site
investigations are often not complete enough to even begin a
spatial covariance estimation with any accuracy at all. Thus,
most reliability based designs will benefit from a database of
second-order soil statistics.

Consider a site from which a reasonably dense set of soil
samples has been gathered. The goal is to make statements
using this data set about the stochastic nature of the soil at a
different, although presumed similar, site. The collected data
are a sample extracted over some sampling domain of extent
D from a continuously varying soil property field. An example
may be seen in Fig. 1, where the solid line could represent the
known, sampled, undrained shear strength of the soil, and the
dashed lines represent unknown shear strengths outside the
sampling domain.

Clearly, this sample exhibits a strong spatial trend and
would classically be represented by an equation of the form

S (z) = m(z) 1 ε(z) (1)u

where m(z) = deterministic function giving the mean soil prop-
erty at z; and ε(z) = random residual. If the goal were purely
descriptive, then m(z) would likely be selected to allow opti-
mally accurate (minimum variance) interpolation of Su be-
tween observations. This generally involves letting m(z) be a
polynomial trend in z with coefficients selected to render ε
mean zero with small variance.

However, if the data shown in Fig. 1 are to be used to
characterize another site, then the trend must be viewed with
considerable caution. In particular, one must ask if a similar
trend is expected to be seen at the site being characterized,
and, if so, where the trend origin is to be located. In some
cases, where soil properties vary predictably with depth, the
answer to this question is affirmative. For example, undrained
shear strength is commonly thought to increase with depth (but
not always). In cases where the same trend is not likely to
reappear at the target site, then removal of the trend from the
data and dealing with just the residual ε(z) have the following
implications:

• Typically, the covariance structure of ε(z) is drastically
different from that of Su(z)—it shows more spatial inde-
pendence and has reduced variance.

• The reintroduction of the trend to predict the deterministic
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FIG. 1. Soil Sample on Finite-Sampling Domain
part of the soil properties at the target site may be grossly
in error.

• The use of only the residual process ε(z) at the target site
will considerably underestimate the soil variability—the
reported statistics will be unconservative. In fact, the more
variability accounted for by m(z), the less variable is ε(z).

From these considerations, it is easily seen that trends that are
not likely to reappear, that is, trends that are not physically (or
empirically) based and predictable, must not be removed prior
to performing an inferential statistical analysis. The trend itself
is part of the uncertainty to be characterized and removing it
leads to unconservative reported statistics.

It should be pointed out at this time that one of the reasons
for ‘‘detrending’’ the data is precisely to render the residual
process largely spatially independent. This is desirable because
virtually all classical statistics are based on the idea that sam-
ples are composed of independent and identically distributed
observations. Alternatively, when observations are dependent,
the distributions of the estimators become very difficult to es-
tablish. This is compounded by the fact that the actual depen-
dence structure is unknown. Only a limited number of asymp-
totic results are available to provide insight into the spatially
dependent problem (Beran 1994), and simulation techniques
are proving very useful in this regard (Cressie 1993).

Another issue to be considered is the level of information
available at the target site. Generally, a design does not pro-
ceed in the complete absence of site information. The ideal
case involves gathering enough data to allow the main char-
acteristics, for instance, the mean and variance, of the soil
property to be established with reasonable confidence. Then,
inferred statistics regarding the spatial correlation (where cor-
relation means correlation coefficient throughout this paper)
structure can be used to complete the uncertainty picture and
allow a reasonable reliability analysis or internal linear esti-
mation. Under this reasoning, this paper will concentrate on
statistics relating to the spatial correlation structure of a soil.
Although the mean and variance will be obtained along the
way as part of the estimation process, these results tend to be
specifically related to, and affected by, the soil type; this is
true particularly of the mean. The correlation structure is be-
lieved to be more related to the formation process of the soil;
that is, the correlation between soil properties at two disjoint
points will be related to where the materials making up the
soil at the two points originated and to the common weathering
processes experienced at the two points (i.e., geological dep-
osition processes, etc.). Thus, the major factors influencing a
soil’s correlation structure can be thought of as being ‘‘exter-
nal’’ (i.e., related to transport and weathering rather than to
JOURNAL OF GEOTECH
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chemical and mechanical details of the soil particles them-
selves), which is common to most soil properties and types.

Although it is undoubtedly true that many exceptions to the
idea of an externally created correlation structure exist, the
idea nevertheless gives a reasonable starting point for this type
of investigation. It allows the correlation structure derived
from a random field of a specific soil property to be used
without change as a reasonable a priori correlation structure
for other soil properties of interest and for other similar sites
(although changes in the mean and possibly variance may, of
course, be necessary).

Fundamental to the following statistical analysis is the as-
sumption that the soil is spatially statistically homogeneous.
This means that the mean, covariance, correlation structure,
and higher-order moments are independent of position (and
thus are the same from any reference origin). In the general
case, isotropy is not usually assumed. That is, the vertical and
horizontal correlation structures are allowed to be quite dif-
ferent. However, this is not an issue in this study because only
the 1D case is considered.

The assumption of spatial homogeneity does not imply that
the process is relatively uniform over any finite domain. It
allows apparent trends in the mean, variance, and higher-order
moments as long as those trends are just part of a larger-scale
random fluctuation; that is, the mean, variance, etc. need only
be constant over infinite space, not when viewed over a finite
distance. (Fig. 1 may be viewed as an example of a homo-
geneous random field that appears nonstationary when viewed
locally.) Thus, this assumption does not preclude large-scale
variations, such as those often found in natural soils, although
the statistics relating to the large-scale fluctuations are gener-
ally harder to estimate reliably from a finite-sampling domain.

The assumption of spatial homogeneity does, however,
seem to imply that the site over which the measurements are
taken is fairly uniform in geological makeup (or soil type).
Again, this assumption relates to the level of uncertainty about
the site for which the random model is aimed. Even changing
geological units may be viewed as simply part of the overall
randomness or uncertainty, which is to be characterized by the
random model. The more that is known about a site, the less
random the site model should be. However, the initial model
that is used before significant amounts of data are explicitly
gathered should be consistent with the level of uncertainty at
the target site at the time the model is applied. Bayesian up-
dating can be used to improve a prior model under additional
site data.

With these thoughts in place, an appropriate inferential anal-
ysis proceeds as follows:

1. An initial regression analysis may be performed to de-
termine if a statistically significant spatial trend is pres-
NICAL AND GEOENVIRONMENTAL ENGINEERING / JUNE 1999 / 471
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ent. Because a trend with, for example, depth may have
some physical basis and may be expected to occur iden-
tically at other sites, it may make sense to predict this
trend and assume it to hold at the target site. If so, the
remainder of the analysis is performed on the detrended
data, ε(x) = Su(x) 2 m(x), for example, and the trend
and residual statistics must both be reported for use at
the target site because they are intimately linked and can-
not be considered separately. Using just the residual sta-
tistics leads to a stochastic model that is likely to be
grossly in error.

2. Establish the second-moment behavior of the data set
over space. Here, interest may specifically focus on
whether the soil is best modeled by a finite-scale sto-
chastic model having limited spatial correlation, or by a
fractal model having significant lingering correlation
over very large distances. These terms are discussed in
more detail later.

3. For a selected spatial correlation function, estimate any
required parameters from the data set.

By and large, probably the most common spatial correlation
model in use currently is the 1D Markov model that has an
exponentially decaying correlation function

2utu
r(t) = exp 2 (2)S Du

where r(t) = correlation coefficient between two points sep-
arated by a lag distance t. In this model the parameter u is a
distance called the ‘‘scale of fluctuation.’’ It may be loosely
interpreted as the separation distance beyond which soil prop-
erties are largely uncorrelated. VanMarcke (1984) defined u to
be equal to the area under the correlation function. Eq. (2) is
considered to be a finite-scale model because the correlation
dies out very rapidly for separation distances t > u; the area
under this function, in particular, is finite. Such models are
also called short-memory (Beran 1994). Other common finite-
scale models are the Gaussian model, r(t) = exp{2p(t/u)2},
and the spherical model, r(t) = 1 2 1.5ut/uu 1 0.5ut/uu3, (utu
# u; r(t) = 0 if utu > u).

An alternative model, which is rapidly gaining acceptance
in a wide variety of applications, is the fractal model, also
known as statistically self-similar, long-memory, and 1/f noise.
This model has an infinite scale of fluctuation, and correlations
remain significant over very large distances. An example of
such a process is shown in Fig. 2. It should be noted that the
samples remain statistically similar, regardless of viewing res-
olution, under suitable scaling of the vertical axis. Such pro-
cesses are often described by the (one-sided) spectral density
function

Go
G(v) = (3)

gv

in which the parameter g controls how the spectral power is
partitioned from the low-to-high frequencies, and Go can be
viewed as a spectral intensity (white noise intensity when g =
0). In particular, the case where 0 # g < 1 corresponds to
infinite high frequency power and results in a stationary ran-
dom process called fractional Gaussian noise (Mandelbrot
1968). When g > 1, the spectral density falls off more rapidly
at high frequencies, but grows more rapidly at low frequencies
so that the infinite power is now in the low frequencies. This
then corresponds to a nonstationary random process called
fractional Brownian motion. Both cases are infinite-variance
processes that are physically unrealizable. Their spectral den-
sities must be truncated in some fashion to render them sta-
tionary with finite variance.
472 / JOURNAL OF GEOTECHNICAL AND GEOENVIRONMENTAL ENGIN
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FIG. 2. Realization of Self-Similar Fractional Gaussian Noise
(H = 0.95) Seen at Various Resolutions

Probably the best way to envisage the spectral density in-
terpretation of a random process is to think of the random
process as being composed of a number of sinusoids, each
with random amplitude (power). The fractal model indicates
that these random processes are made up of high amplitude,
long wavelength (low frequency) sinusoids added to succes-
sively less powerful, short wavelength sinusoids. The long
wavelength components provide for what are seen as trends
when viewed over a finite interval. As one ‘‘zooms’’ out and
views progressively more of the random process, even longer
wavelength (scale) sinusoids become apparent. Conversely, as
one zooms in, the short wavelength components dominate the
(local) picture. This is the nature of self-similarity attributed
to fractal processes—realizations of the process look the same
(statistically) at any viewing scale.

By locally averaging the fractional Gaussian noise (0 < g <
1) process over the small distance d, Mandelbrot (1968) ren-
ders fractional Gaussian noise physically realizable with finite
variance and correlation function

1 2H 2H 2Hr(t) = [ut 1 du 2 2utu 1 ut 2 du ] (4)2H2d

where H = (1/2)(g 1 1) is called the Hurst or self-similarity
coefficient with 1/2 # H < 1. The case H = 1/2 gives white
noise, whereas H = 1 corresponds to perfect correlation [all
X(z) = X, in the stationary case]. Strictly speaking, the process
variance is fully determined by Go, H, and d as =2 2s sX X

(1 2 2H)cos(pH )/(pH), which goes to infinity as the2H22G d Go
EERING / JUNE 1999

., 1999, 125(6): 470-485 



D
ow

nl
oa

de
d 

fr
om

 a
sc

el
ib

ra
ry

.o
rg

 b
y 

D
A

L
H

O
U

SI
E

 U
N

IV
E

R
SI

T
Y

 o
n 

01
/2

7/
16

. C
op

yr
ig

ht
 A

SC
E

. F
or

 p
er

so
na

l u
se

 o
nl

y;
 a

ll 
ri

gh
ts

 r
es

er
ve

d.
local averaging distance d goes to zero, as expected. The local
averaging is effectively a low pass filter, damping out high
frequency contributions, so that Mandelbrot’s approach essen-
tially truncates the spectral density function at the high end.

Self-similarity for fractional Gaussian noise is expressed by
saying that the process X(z) has the same distribution as the
scaled process a12HX(az), for some a > 0. Alternatively, self-
similarity for fractional Brownian motion means that X(z) has
the same distribution as a2HX(az), where the different expo-
nent on a is due to the fact that fractional Gaussian noise is
the derivative of fractional Brownian motion. Fig. 2 shows a
realization of fractional Gaussian noise with H = 0.95 pro-
duced using the local average subdivision method (Fenton
1990). The uppermost plot is of length n = 65,536. Each plot
in Fig. 2 zooms in by a factor of a = 8, so that each lower
plots has its vertical axis stretched by a factor of 80.05 = 1.11
to appear statistically similar to the next higher plot.

In the following sections, the applicability of these models
to characterize soil properties will be considered. In particular,
the Second-Order Structural Analysis section takes a qualita-
tive look at a number of tools that reveal something about
the second-moment behavior of a 1D random process. The
intent of that section is to evaluate these tools with respect to
their ability to discern between finite scale and fractal behav-
ior. In the Estimation of First- and Second-Order Statistical
Parameters section, various maximum likelihood approaches
to the estimation of the parameters for the finite-scale and frac-
tal models are given. Finally, the results are summarized in
the Conclusions with a view toward their use in developing a
priori soil statistics from a large geotechnical database.

SECOND-ORDER STRUCTURAL ANALYSIS

Attention is now turned to the stochastic characterization of
the soil data itself. Aside from estimating the mean and vari-
ance, the spatial correlation structure must be deduced. In the
following it is assumed that the data, xi, i = 1, 2, . . . , n, are
collected at a sequence of equispaced points along a line and
that the best stochastic model along that line is to be found.
Note that the xi may be some suitable transformation of the
actual data derived from the samples. In the following, xi is
an observation of the random process Xi = X(zi), where z is an
index (commonly depth) and zi = (i 2 1)Dz, i = 1, 2, . . . , n.
A variety of tools will be considered in this section and their
ability to identify the most appropriate stochastic model for Xi

will be discussed. In particular, interest focuses on whether the
process X(z) is finite scaled or fractal in nature. The perfor-
mance of the various tools in answering this question will be
evaluated via simulation employing 2,000 realizations of fi-
nite-scale (Markov) [(2)] and fractal [(4)] processes. Each sim-
ulation is 20.48 m in length with Dz = 0.02, so that n = 1,024,
and realizations are produced via covariance matrix decom-
position (Fenton 1994)—a method that follows from a Cho-
leski decomposition. Unfortunately, large covariance matrices
are often nearly singular and so are difficult to decompose
correctly. Because the covariance matrix for a 1D equispaced
random field is symmetric and Toeplitz (i.e., the entire matrix
is known if only the first column is known—all elements
along each diagonal are equal), the decomposition is done us-
ing the numerically more accurate Levinson-Durbin algorithm
[see Marple (1987) and Brockwell and Davis (1987)].

Sample Correlation Function

The classical sample average of xi is computed as
n

1
m̂ = x (5)X iOn i =1

and the sample variance as
JOURNAL OF GEOTECH
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n
12 2ŝ = (x 2 m̂ ) (6)X i XOn i =1

This estimator is biased because it is not divided by n 2 1
as is usually seen. (A biased estimator is one whose expected
value is not equal to the parameter it purports to estimate.)
The use of a biased estimator here is for three reasons:

1. The expected error variance is (slightly) smaller than that
for the biased case.

2. The biased estimator, when estimating covariances, leads
to a tractable nonnegative definite covariance matrix.

3. It is currently the most popular variance estimator in time
series analysis (Priestley 1981).

The main reason for its popularity is probably due to its non-
negative definiteness. The covariance C(t) between X(z) and
X(z 1 t) is estimated, using a biased estimator for reasons
discussed above, as

n2j 11
1

Ĉ(t ) = (x 2 m̂ )(x 2 m̂ ), j = 1, 2, . . . , n (7)j i X i 1 j 21 XOn i =1

where the lag tj = ( j 2 1)Dz. Notice that Ĉ(0) is the same as
the estimated variance The sample correlation is obtained2ŝ .X

by normalizing

Ĉ(t )j
r̂(t ) = (8)j

Ĉ(0)

One of the major difficulties with the sample correlation func-
tion resides in the fact that it is heavily dependent on the
estimated mean When the soil shows significant long-scalem̂ .X

dependence, characterized by long-scale fluctuations (see, e.g.,
Fig. 1), then is almost always a poor estimate of the truem̂X

mean. In fact, it is not too difficult to show that although the
mean estimator [(5)] is unbiased, its variance is given by

n n
1 2 2 2Var[m̂ ] = r(t ) s = g s . g(D)s (9)X i2j X n X XF OO G2n i =1 j =1

where D = (n 2 1)Dz = sampling domain size (interpreted as
the region defined by n equisized ‘‘cells,’’ each of width Dz
centered on an observation); g(D) = variance function
(VanMarcke 1984) that gives the variance reduction due to
averaging over the length D

D D D
1 2

g(D) = r(t 2 s) dt ds = (T 2 t)r(t) dt (10)E E E2 2D D0 0 0

The discrete approximation to the variance function, denoted
gn in (9), approaches g(D) as n becomes large. For highly
correlated soil samples (over the sampling domain), g(D) re-
mains close to 1.0, so that remains highly variable, almostm̂X

as variable as X(z) itself. Notice that the variance of ism̂X

unknown because it depends on the unknown correlation struc-
ture of the process.

In addition, it can be shown that Ĉ(tj) is biased according
to the following (VanMarcke 1984):

n 2 j 1 12ˆE[C(t )] . s [r(t ) 2 g(D)] (11)j X jS Dn

where, again, the approximation improves as n increases. From
this it can be seen that

ˆE[C(t )] n 2 j 1 1 r(t ) 2 g(D)j jE[r̂(t )] . . (12)j S D S DˆE[C(0)] n 1 2 g(D)

using a first-order approximation. For soil samples that show
considerable serial correlation, g(D) may remain close to 1,
NICAL AND GEOENVIRONMENTAL ENGINEERING / JUNE 1999 / 473
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FIG. 3. Covariance Estimator on Strongly Dependent Finite Sample
and generally the term r(tj) 2 g(D) will become negative for
all j* # j # n for some j* less than n. What this means is
that the estimator will typically dip below zero even whenr̂(t)
the field is actually highly positively correlated.

Another way of looking at this problem is as follows. Con-
sider the sample shown in Fig. 1 and assume that the apparent
trend is in fact just part of a long-scale fluctuation. Clearly,
Fig. 1 is then a process with a large scale of fluctuation, com-
pared with D. The local average is estimated and shownm̂X

by the dashed line in Fig. 3. Now, for any t greater than about
half of the sampling domain, the product of the deviations
from in (7) will be negative. This means that the samplem̂X

correlation function will decrease rapidly and become negative
somewhere before t = (1/2)D even though the true correlation
function may remain much closer to 1.0 throughout the sam-
ple.

It should be noted that if the sample does in fact come from
a short-scale process, with u << D, the variability of (9) and
the bias of (12) largely disappear because g(D) . 0. This
means that the sample correlation function is a good estimator
of short-scale processes as long as u << D. However, if the
process does in fact have long-scale dependence, then the cor-
relation function cannot identify this and in fact continues to
illustrate short-scale behavior. In essence, the estimator is anal-
ogous to a self-fulfilling prophecy: It always appears to justify
its own assumptions.

Fig. 4 illustrates the situation graphically using simulations
from finite-scale and fractal processes. The dashed lines show
the maximum and minimum correlations observed at each lag
over the 2,000 realizations. The finite-scale (u = 3) simulation
shows reasonable agreement between and the true corre-r̂(t)
lation because u << D . 20. However, for the fractal process
(H = 0.95) there is a very large discrepancy between the es-
timated average and true correlation functions. Clearly, the
sample correlation function fails to provide any useful infor-
mation about large-scale or fractal processes.

Sample Semivariogram

The semivariogram [half of the variogram, as defined by
Matheron (1962)] gives essentially the same information as
the correlation function because, for stationary processes, they
are related according to

1 2 2V(t ) = E[(X 2 X ) ] = s (1 2 r(t)) (13)j i1j i X2

The sample semivariogram is defined by
n2j

1 2V̂(t ) = (x 2 x ) , j = 0, 1, . . . , n 2 1 (14)j i1j iO2(n 2 j) i =1
474 / JOURNAL OF GEOTECHNICAL AND GEOENVIRONMENTAL ENGIN
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The major difference between and is that theV̂(t ) r̂(t )j j

semivariogram does not depend on This is a clear advan-m̂ .X

tage because many of the problems of the correlation function
relate to this dependence. In fact, it is easily shown that the
semivariogram is an unbiased estimator with =ˆE[V(t )]j

Fig. 5 shows how this estimator behaves2(1/2)E[(X 2 X ) ].i1j i

for finite-scale and fractal processes. Notice that the finite-
scale semivariogram rapidly increases to its limiting value (the
variance) and then flattens out whereas the fractal process
leads to a semivariogram that continues to increase gradually
throughout. This behavior can indicate the underlying process
type and allow identification of a suitable correlation model.
Noteworthy, however, is the very wide range between the ob-
served minimum and maximum (the maximum going off the
plot but having maximum values in the range from 5 to 10 in
both cases). The high variability in the semivariogram may
hinder its use in discerning between model types unless suf-
ficient averaging can be performed.

The semivariogram finds its primary use in mining geosta-
tistics applications [see, e.g., Journel and Huijbregts (1978)].
Cressie (1993) discussed some of its distributional character-
istics along with robust estimation issues, but little is known
about the distribution of the semivariogram when X(z) is spa-
tially dependent. Without the estimator distribution, the
semivariogram cannot easily be used to test rigorously be-
tween competing model types (as in fractal versus finite scale),
nor can it be used to fit model parameters using the maximum
likelihood method. The latter is one of the goals of this paper.
For these reasons, the semivariogram will not be pursued fur-
ther in this paper, although indications are that such a pursuit
may be warranted.

Sample Variance Function

The variance function measures the decrease in the variance
of an average as an increasing number of sequential random
variables are included in the average. If the local average of
a random process XD is defined by

D
1

X = X(z) dz (15)D ED 0

then the variance of XD is just In the discrete case,2g(D)s .X

which will be used here, this becomes
n n

1 1
X̄ = m̂ = X(z ) = X (16)X i iO On ni =1 i =1

where Var[X̄] = and gn, defined by (9), is the discrete2g s ;n X

approximation of g(D) (see Sample Correlation Function sub-
EERING / JUNE 1999
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FIG. 4. Sample Correlation Functions for Models Averaged Over 2,000 Realizations: (a) Finite Scale (u = 3); (b) Fractal (H = 0.95)
section). If the Xi values are independent and identically dis-
tributed then gn = 1/n, whereas if X1 = X2 = ??? = Xn, then the
values of X are completely correlated and gn = 1 so that av-
eraging does not lead to any variance reduction. In general,
for correlation functions that remain nonnegative, 1/n # gn

# 1.
Conceptually, the rate at which the variance of an average

decreases with averaging size states the spatial correlation
structure. In fact these are equivalent because in the 1D (con-
tinuous case)

D 22 1  2g(D) = (D 2 t)r(t) dt ⇔ r(t) = [t g(t)] (17)E2 2D 2 t0

Given a sequence of n equispaced observations over a sam-
pling domain of size D = nDz the sample (discrete) variance
function is estimated to be

n2i11
1 2ĝ = (X 2 m̂ ) , i = 1, 2, . . . , n (18)i i, j XO2ŝ (n 2 i 1 1)X j =1

where Xi, j = local average as follows:
j 1i 21

1
X = X , j = 1, 2, . . . n 2 i 1 1 (19)i, j kOi k = j
JOURNAL OF GEOTECH
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It should be noted that = 1 as the sum of (18) is the sameĝ1

as that used to find when i = 1. Also, when i = n, the2ŝX

sample variance function = 0 because Xn, j = Xn,1 = Thus,ĝ m̂ .n X

the sample variance function always connects the points g1 =
1 and gn = 0.

Unfortunately, the sample variance function is biased, and
its bias depends on the degree of correlation between obser-
vations. Specifically, it can be shown that

g 2 gi nE[ĝ ] . (20)i 1 2 gn

using a first-order approximation. This becomes unbiased as n
→ ` only if D = (n 2 1)Dz → ` and g(D) → 0 as well. In
other words, we need both the averaging region to grow large
and the correlation function to decrease sufficiently rapidly
within the averaging region for the sample variance function
to become unbiased.

Figs. 6(a and b) show sample variance functions averaged
over 2,000 simulations of finite-scale and fractal random pro-
cesses, respectively. There is very little difference between the
estimated variance function in the two plots, despite the fact
that they come from quite different processes. Clearly, the es-
timate of the variance function in the fractal case is highly
NICAL AND GEOENVIRONMENTAL ENGINEERING / JUNE 1999 / 475
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FIG. 5. Variograms for Models Averaged Over 2,000 Realizations: (a) Finite Scale (u = 3); (b) Fractal (H = 0.95)
biased. Thus, the variance function plot does not appear to be
a good identification tool and is really only a useful estimate
of second-moment behavior for the finite-scale process with u
<< D. In the plots, T = iDz for i = 1, 2, . . . , n.

Wavelet Coefficient Variance

The wavelet basis has attracted much attention in recent
years in areas of signal analysis, image compression, and
among other things, fractal process modeling (Wornell 1996).
It can basically be viewed as an alternative to Fourier decom-
position except that sinusoids are placed by ‘‘wavelets’’ that
act only over a limited domain. 1D wavelets are usually de-
fined as translations along the real axis and dilations (scalings)
of a ‘‘mother wavelet,’’ as in

m m/2 mc (z) = 2 c(2 z 2 j) (21)j

where m and j = dilation and translation indices, respectively.
The appeal to using wavelets to model fractal processes is that
476 / JOURNAL OF GEOTECHNICAL AND GEOENVIRONMENTAL ENGI

 J. Geotech. Geoenviron. En
they are self-similar in nature [i.e., all wavelets look the same
when viewed at the appropriate scale (which, in the above
definition, is some power of 2)]. The random process X(z) is
then expressed as a linear combination of various scalings,
translations, and dilations of a common ‘‘shape.’’ Specifically

m mX(z) = X c (z) (22)j jOO
m j

If the wavelets are suitably selected to be orthonormal, then
the coefficients can be found through the inversion

`

m mX = X(z)c (z) dz (23)j jE
2`

for which highly efficient numerical solution algorithms exist.
The details of the wavelet decomposition will not be discussed
in this paper. [The interested reader should see, for example,
Strang and Nguyen (1996).]

A theorem by Wornell (1996) states that, under reasonably
NEERING / JUNE 1999

g., 1999, 125(6): 470-485 



D
ow

nl
oa

de
d 

fr
om

 a
sc

el
ib

ra
ry

.o
rg

 b
y 

D
A

L
H

O
U

SI
E

 U
N

IV
E

R
SI

T
Y

 o
n 

01
/2

7/
16

. C
op

yr
ig

ht
 A

SC
E

. F
or

 p
er

so
na

l u
se

 o
nl

y;
 a

ll 
ri

gh
ts

 r
es

er
ve

d.
FIG. 6. Sample Variance Functions for Models Averaged Over 2,000 Realizations: (a) Finite Scale (u = 1); (b) Fractal (H = 0.98)
general conditions, if the coefficients are mutually uncor-mXj

related, zero-mean random variables with variances

2 m 2 2gms = Var[X ] = s 2 (24)m j

then X(z) obtained through (22) will have a spectrum that is
very nearly fractal. Furthermore, Wornell made theoretical and
simulation based arguments showing that the converse is also
approximately true, namely, that if X(z) is fractal with spectral
density proportional to v2g, then the coefficients will bemXj

approximately uncorrelated with variance given by (24). If this
is the case, then a plot of versus the scale indexmln(Var[X ])j

m will be a straight line.
Using a fifth-order Daubechies wavelet basis, Fig. 7 shows

a plot of the estimated wavelet coefficient variances where2ŝ ,m

m212
12 m 2ŝ = (x ) (25)m jOm212 j =1
JOURNAL OF GEOTECH
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against the scale index m for the finite-scale and fractal sim-
ulation cases. The fractal simulations yield a straight line, as
expected, whereas the finite-scale simulations show a slight
flattening of the variance at lower values of m (larger scales).
The lowest value of m = 1 is not plotted because the variance
of this estimate is very large, and it appears to suffer from the
same bias as estimates of the spectral density function at v =
0 (as discussed later). On the basis of Fig. 7, it appears that
the wavelet coefficient variance plot may have some potential
in identifying an appropriate stochastic model, although the
difference in the plots is quite small. Confident conclusions
will require a large data set.

If it turns out that X(z) is fractal and Gaussian, then the
coefficients are also Gaussian and (largely) uncorrelated asmXj

discussed above. This means that a maximum likelihood es-
timation can be performed to evaluate the spectral exponent g
by looking at the likelihood of the computed set of coefficients

mx .j
NICAL AND GEOENVIRONMENTAL ENGINEERING / JUNE 1999 / 477
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FIG. 7. Sample Wavelet Coefficient Variance Functions for Models Averaged Over 2,000 Realizations: (a) Finite Scale (u = 3); (b) Frac-
tal (H = 0.95)
Sample Spectral Density Function

The sample spectral density function, referred to here also
as the periodogram despite its slightly nonstandard form, is
obtained by first computing the Fourier transform of the data

n21
1 2iv kjx(v ) = X(t )e (26)j kOn k =0

at each Fourier frequency vj = 2pj/D, j = 0, 1, . . . , (n 2 1)/2.
This is efficiently achieved using the fast Fourier transform.
The periodogram is then given by the squared magnitude of
the complex Fourier coefficients according to

D 2Ĝ(v ) = ux(v )u (27)j j
p

where D = nDz. For stationary processes with finite variance,
the periodogram estimates as defined here are independent and
478 / JOURNAL OF GEOTECHNICAL AND GEOENVIRONMENTAL ENGIN
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exponentially distributed with means equal to the true one-
sided spectral density G(vj) [see Beran (1994)]. VanMarcke
(1984) showed that the periodogram itself has a nonzero scale
of fluctuation when D = nDz is finite, equal to 2p/D. This
suggests the presence of serial correlation between periodo-
gram estimators. However, because the periodogram estimates
at Fourier frequencies are separated by 2p/D, they are, there-
fore, approximately independent, according to the physical in-
terpretation of the scale of fluctuation distance. The indepen-
dence and distribution have also been shown by Yajima (1989)
to hold for both fractal and finite-scale processes. Armed with
this distribution on the periodogram estimates, one can per-
form maximum likelihood estimation as well as (conceptually)
hypothesis tests. If the periodogram is smoothed using some
sort of smoothing window, as discussed by Priestley (1981),
the smoothing may lead to loss of independence between es-
timates at sequential Fourier frequencies so that likelihood ap-
EERING / JUNE 1999
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FIG. 8. Periodograms for Models Averaged Over 2,000 Realizations: (a) Finite Scale (u = 3); and (b) Fractal (H = 0.95)
proaches become complicated. In this sense, it is best to
smooth the periodogram (which is notoriously rough) by av-
eraging over an ensemble of periodogram estimates taken from
a sequence of realizations of the random process, where avail-
able.

It should be noted that the periodogram estimate at v = 0
is not a good estimator of G(0), and so it should not be in-
cluded in the periodogram plot. In fact, the periodogram es-
timate at v = 0 is biased with E[Ĝ(0)] = G(0) 1 2nm /(2p)X

(Brockwell and Davis 1987). Recalling that mX is unknown,
and its estimate highly variable when strong correlation exists,
the estimate Ĝ(0) should not be trusted. In addition, its distri-
bution is no longer a simple exponential.

The easiest way to determine whether the data are fractal in
nature is to look directly at a plot of the periodogram. Fractal
processes have spectral density functions of the form G(v) }
v2g for g > 0. Thus, ln G(v) = c 2 g ln v, for some constant
JOURNAL OF GEOTECH

 J. Geotech. Geoenviron. Eng
c, so that a log-log plot of the sample spectral density function
of a fractal process will be a straight line with a slope of 2g.
Fig. 8 illustrates how the periodogram behaves when averaged
over both fractal and finite-scale simulations. The periodogram
is a straight line with a negative slope in the fractal case and
becomes more flattened at the origin in the finite-scale case,
as was observed for the wavelet variance plot. Again, the dif-
ference is only slight, so that a fairly large data set is required
to decide on a model with any degree of confidence.

ESTIMATION OF FIRST- AND SECOND-ORDER
STATISTICAL PARAMETERS

Upon deciding on whether a finite-scale or fractal model is
more appropriate in representing the soil data, the next step is
to estimate the pertinent parameters. In the case of the finite-
scale model, the parameter of interest is the scale of fluctuation
NICAL AND GEOENVIRONMENTAL ENGINEERING / JUNE 1999 / 479
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u. For fractal models, the parameter of interest is the spectral
exponent g, or, equivalently for 0 # g < 1, the self-similarity
parameter H = (1/2)(g 1 1).

Finite-Scale Model

If the process is deemed to be finite-scale in nature, then a
variety of techniques are available to estimate u, some of
which are as follows:

• Directly compute the area under the sample correlation
function. This is a nonparametric approach, although it
assumes that the scale is finite and that the correlation
function is monotonic. The area is usually taken to be the
area up to when the function first becomes negative (the
scale of fluctuation is not well defined for oscillatory cor-
relation functions—other parameters may be more appro-
priate if this is the case). It should also be noted that
correlation estimates lying within the band 62n21/2 are
commonly deemed to be not significantly different than
zero [see Priestley (1981, p. 340) and Brockwell and Da-
vis (1987, Chapter 7)].

• Use regression to fit a correlation function to or ar̂(t)
semivariogram to For certain assumed correlation orV̂(t).
semivariogram functions, this regression may be nonlin-
ear in u.

• If the sampling domain D is deemed to be much larger
than the scale of fluctuation, then the scale can be esti-
mated from the variance function using an iterative tech-
nique such as that suggested by VanMarcke (1984, p.
337).

• Assuming a joint distribution for X(tj) with corresponding
correlation function model, estimate unknown parameters
(mX, and correlation function parameters) using max-2s ,X

imum likelihood in the space domain.
• Using the established results regarding the joint distribu-

tion for periodogram estimates at the set of Fourier fre-
quencies, an assumed spectral density function can be
‘‘fit’’ to the periodogram using maximum likelihood.

Because of the reasonably high bias in the sample correlation
(or covariance) function estimates, even for finite-scale pro-
cesses, using the sample correlation directly to estimate u will
not be pursued here. The variance function techniques have
not been found by the writer to be particularly advantageous
over, for example, the maximum likelihood approaches and
are also prone to error due to their high bias in long-scale or
fractal cases. Here, the maximum likelihood estimator in the
space domain will be discussed briefly. The maximum likeli-
hood estimator in the frequency domain will be considered
later.

It will be assumed that the data are normally distributed, or
have been transformed from their raw state into something that
is at least approximately normally distributed. For example,
many soil properties are commonly modeled using the log-
normal distribution, often primarily because this distribution
is strictly nonnegative. To convert lognormally distributed data
to a normal distribution, it is sufficient merely to take the nat-
ural logarithm of the data prior to further statistical analysis.
It should be noted that the normal model is commonly used
for at least two reasons: (1) It is analytically tractable in many
ways; and (2) it is completely defined through knowledge of
the first two moments, namely the mean and covariance struc-
ture. Because other distributions commonly require higher mo-
ments and because higher moments are generally quite difficult
to estimate accurately, particularly in the case of geotechnical
samples that are typically limited in size, the use of other dis-
tributions is often difficult to justify. The normal assumption
can be thought of as a minimum knowledge assumption that
480 / JOURNAL OF GEOTECHNICAL AND GEOENVIRONMENTAL ENGIN
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succinctly expresses the first two moments of the random field,
where it is hoped that even these can be estimated with some
confidence.

Because the data are assumed to be jointly normally dis-
tributed, the space domain maximum likelihood estimators are
obtained by maximizing the likelihood of observing the spatial
data under the assumed joint distribution. The likelihood of
observing the sequence of observations xT = {x1, x2, . . . , xn}
(superscript T denotes the vector or matrix transpose) given
the distributional parameters fT = {mX, u} is2s ,X

1 1 T 21L(xuf) = exp 2 (x 2 m) C (x 2 m) (28)H Jn/2 1/2(2p) uCu 2

where C = covariance matrix between the observation; Cij =
E[(Xi 2 mi)(Xj 2 mj)]; uCu = determinant of C; and m = vector
of means corresponding to each observation location. In the
following, the data are assumed to be modeled by a stationary
random field, so that the mean is spatially constant and m =
mX1, where 1 is a vector with all elements equal to 1. Again,
if this assumption is not deemed warranted, a deterministic
trend in the mean and variance can be removed from the data
prior to the following statistical analysis through the transfor-
mation

x(z) 2 m(z)
x9(z) =

s(z)

where m(z) and s(z) = deterministic spatial trends in the mean
and standard deviation, respectively, possibly obtained by re-
gression analysis of the data. Recall, however, that this is gen-
erally only warranted if the same trends are expected at the
target site.

Also due to the stationarity assumption, the covariance ma-
trix can be written in terms of the correlation matrix r as

2C = s r (29)X

where r = function only of the unknown correlation function
parameter u. If the correlation function has more than one
parameter, then u is treated as a vector of unknown parameters
and the maximum likelihood will generally be found via a
gradient or grid search in these parameters. With (29), the
likelihood function of (28) can be written as

T 211 (x 2 m) r (x 2 m)
L(xuf) = exp 2 (30)H J2 n/2 1/2 2(2ps ) uru 2sX X

Because the likelihood function is strictly nonnegative, maxi-
mizing L(xuf) is equivalent to maximizing its logarithm,
which, ignoring constants, is given by

T 21n 1 (x 2 m) r (x 2 m)2+(xuf) = 2 ln s 2 lnuru 2 (31)X 22 2 2sX

The maximum of (31) can in principle be found by differen-
tiating with respect to each unknown parameter, mX, and2s ,X

u, in turn and setting the results to zero. This gives three equa-
tions in three unknowns. The partial derivative of + with re-
spect to mX, when set equal to zero, leads to the following
estimator for the mean

T 211 r x
m̂ = (32)X T 211 r 1

Because this estimator still involves the unknown correlation
matrix, it should be viewed as the value of mX that maximizes
the likelihood function for a given value of the correlation
parameter u. If the two vectors r and s are solutions of the
two systems of equations

rr = x; rs = 1 (33a,b)
EERING / JUNE 1999
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then the estimator for the mean can be written as

T1 r
m̂ = (34)X T1 s

It should be noted that this estimator is generally not very
different from the usual estimator obtained by simply aver-
aging the observations (Beran 1994). It should also be noted
that 1Tr = xTs, so that only s needs to be found to compute

However, r will be needed in (35), so it should be foundm̂ .X

anyhow.
The partial derivative of + with respect to when set2s ,X

equal to zero, leads to the following estimator for 2sX

12 Tŝ = (x 2 m̂ 1) r (35)X X
n

which is also implicitly dependent on the correlation function
parameter through and r.m̂X

Thus, both the mean and variance estimators can be ex-
pressed in terms of the unknown parameter u. Using these
results, the maximization problem simplifies to finding the
maximum of

n 12+(xuf) = 2 ln ŝ 2 lnuru (36)X2 2

where the last term in (31) became simply n/2 and was
dropped from (36) because it does not affect the location of
the maximum.

In principle, (36) need now only be differentiated with re-
spect to u, and the result set to zero to yield the optimal es-
timate and subsequently and Unfortunately, this in-2û ŝ m̂ .X X

volves differentiating the determinant of the correlation matrix,
and closed form solutions do not always exist. Solution of the
maximum likelihood estimators may therefore proceed by it-
eration as follows:

1. Guess at an initial value for u.
2. Compute the corresponding correlation matrix elements

rij = r(uzi 2 zj u), which in the current equispaced 1D case
is both symmetric and Toeplitz (i.e., elements along each
diagonal are equal).

3. Solve (33) for vectors r and s.
4. Solve for the determinant of r (because this is often van-

ishing, it is usually better to compute the log-determinant
directly to avoid numerical underflow).

5. Compute the mean and variance estimates using (35) and
(34).

6. Compute the log-likelihood value + using (36).
7. Guess at a new value for u and repeat Steps 2–7 until

the global maximum value of + is found.

Guesses for u can be arrived at simply by stepping discretely
through a likely range (and the speed of modern computers
make this a reasonable approach), increasing the resolution in
the region of located maxima. Alternatively, more sophisti-
cated techniques may be employed that look also at the mag-
nitude of the likelihood in previous guesses. One advantage to
the brute force approach of stepping along at predefined in-
crements is that it is more likely to find the global maximum
in the event that multiple local maxima are present. With the
speed of modern computers, this approach has been found to
be acceptably fast for a low number of unknown parameters,
for instance, less than four, and where bounds on the param-
eters are approximately known.

For large samples, the correlation matrix r can become
nearly singular, so that numerical calculations become unsta-
ble. In the 1D case, the Durbin-Levinson recursion, taking full
advantage of the Toeplitz character of r, yields a faster and
JOURNAL OF GEOTECH
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more accurate decomposition and allows the direct computa-
tion of the log-determinant as part of the solution [see, e.g.,
Marple (1987)].

One finite-scale model that has a particularly simple maxi-
mum likelihood formulation is the jointly normal distribution
with the Markov correlation function given by (2). When ob-
servations are equispaced, the correlation matrix has a simple
closed form determinant and a tridiagonal inverse

2 n21uru = (1 2 q ) (37)

121r = S D21 2 q

1 2q 0 0 ??? 0 0
22q 1 1 q 2q 0 ??? 0 0

20 2q 1 1 q 2q ??? 0 0
2? 0 0 2q 1 1 q ??? 0 0

? ? ? ? ? ? ?? ? ? ? ? ? ?? ? ? ? ? ? ?
20 0 0 0 ??? 1 1 q 2q

0 0 0 0 ??? 2q 1 (38)

where q = exp{22Dz/u} for observations spaced Dz apart.
Using these results, the maximum likelihood estimation of q
reduces to finding the root of the cubic equation

2 3f (q) = b 1 b q 1 b q 1 b q = 0 (39)0 1 2 3

on the interval q [ (0, 1), where

b = nR ; b = 2(R 1 nR9); b = 2(n 2 2)R (40a–c)0 1 1 0 0 2 1

n

2b = (n 2 1)R9; R = (x 2 m̂ ) (40d,e)3 0 0 i XO
i =1

2 2R9 = R 2 (x 2 m̂ ) 2 (x 2 m̂ ) (40f )0 0 1 X n X

n21

R = (x 2 m̂ )(x 2 m̂ ) (40g)1 i X i11 XO
i =1

For given q, the corresponding maximum likelihood estimates
of mX and are2sX

2Q 2 q(Q 1 Q9) 1 q Q9n n n n
m̂ = (41a)X 2n 2 2q(n 2 1) 1 q (n 2 2)

2R 2 2qR 1 q R90 1 02ŝ = (41b)X 2n(1 2 q )

where

n

Q = x ; Q9 = Q 2 x 2 x (42a,b)n i n n 1 nO
i =1

According to Anderson (1971), (39) will have one root be-
tween 0 and 1 (for positive R1, which is n times the lag 1
covariance and should be positive under this model) and two
roots outside the interval (21, 1). The root of interest is the
one lying between 0 and 1 and it can be efficiently found using
Newton-Raphson iterations with starting point q = asR /R9,1 0

long as that starting point lies within (0, 1) (if not, use starting
point q = 0.5).

Because the coefficients of the cubic depend on whichm̂ ,X

in turn depends on q, the procedure actually involves a global
iteration outside the Newton-Raphson root finding iterations.
However, changes only slightly with changing q, so globalm̂X

convergence is rapid if it is bothered with at all. Once the root
q of (39) has been determined, the maximum likelihood esti-
mate of the scale of fluctuation is determined from
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2Dz
û = 2 (43)

ln q

In general, estimates of the variances of the maximum likeli-
hood estimates derived above are also desirable. One of the
features of the maximum likelihood approach is that asymp-
totic bounds on the covariance matrix between the esti-ˆCu

mators = can be found. This covariance matrixT 2ˆ ˆu {m̂ , ŝ , u]X X

is called the Cramer-Rao bound, and the bound has been
shown to hold asymptotically for both finite-scale and fractal
processes (Dahlhaus 1989; Beran 1994), in both cases for both
n and the domain size going to infinity. If we let u = {mX,

u} be the vector of unknown parameters and define the2s ,X

vector


+9 = + (44)
; uj

where + is the log-likelihood function defined by (31), then
the matrix is given by the inverse of the Fisher informationˆCu

matrix

21 T
ˆC = E[[+9][+9] ] (45)u ; ;

where the superscript T denotes the transpose and the expec-
tation is overall possible values of X using its joint distribution
[see (28)] with parameters The above expectation is gen-û.
erally computed numerically because it is quite complex an-
alytically. For the Gauss-Markov model the vector is given+9

;by

1 T 211 r (X 2 m)2sX

1 nT 21+9 = (X 2 m) r (X 2 m) 2 (46)4 2; 2s 2sX X

22Dz(n 2 1)q 1 T2 (X 2 m) R(X 2 m)2 2 2u (1 2 q ) 2sX

where R is the partial derivative of r21 with respect to the
scale of fluctuation u.

Fractal Model

The use of a fractal model is considerably more delicate
than that of the finite-scale model. This is because the fractal
model, with G(v) } v2g, has infinite variance. When 0 # g
< 1, the infinite variance contribution comes from the high
frequencies so that the process is stationary but physically un-
realizable. Alternatively, when g > 1, the infinite variance
comes from the low frequencies that yield a nonstationary
(fractional Brownian motion) process. In the latter case, the
infinite variance basically arises from the gradual meandering
of the process over increasingly large distances as one looks
over increasingly large scales. Though nonstationarity is an
interesting mathematical concept, it is not particularly useful
nor practical in soil characterization. It does, however, em-
phasize the dependence of the overall soil variation on the size
of the region considered. This explicit emphasis on domain
size is an important feature of the fractal model.

To render the fractal model physically useful for the case
when 0 # g < 1, Mandelbrot (1968) introduced a distance d
over which the fractal process is averaged to smooth out the
high frequencies and eliminate the high frequency (infinite)
variance contribution. The resulting correlation function is
given by (4). Unfortunately, the rather arbitrary nature of d
renders Mandelbrot’s model of questionable practical value,
particularly from an estimation point of view. If d is treated
as known, then one finds that the parameter H can be estimated
to be any value desired simply by manipulating the size of d.
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Alternatively, if both d and H are estimated simultaneously via
maximum likelihood in the space domain (see previous sub-
section), then one finds that the likelihood surface has many
local maxima making it difficult to find the global maximum.
Even when it has been found with reasonable confidence, it is
the writer’s experience that the global maximum tends to cor-
respond to unreasonably large values of d corresponding to
over-averaging and thus is far too smooth a process. Why this
is so is yet to be determined.

A better approach to the fractal model is to employ the
spectral representation, with G(v) = Go/vg, and apply an upper
frequency cutoff, in the event that 0 # < 1, or a lowerĝ
frequency cutoff in the event that > 1. Both of these ap-ĝ
proaches render the process stationary and having finite vari-
ance. When g = 1, the infinite variance contribution appears
at both ends of the spectrum and both an upper and lower
cutoff are needed. The appropriate cutoff frequencies should
be selected on the basis of the following:

• A minimum descriptive scale, in the case 0 # < 1,ĝ
below which details of the process are of no interest. For
example, if the random process is intended to be soil per-
meability, then the minimum scale of interest might cor-
respond to the laboratory sample scale d at which per-
meability tests are carried out. The upper frequency cutoff
might then be selected such that this laboratory scale cor-
responds to, for instance, one wavelength, vu = 2p/d.

• For the case > 1, the lower bound cutoff frequency mustĝ
be selected on the basis of the dimension of the site under
consideration. Because the local mean will be almost cer-
tainly estimated by collecting some observations at the
site, one can eliminate frequencies with wavelengths that
are large compared with the site dimension. This issue is
more delicate than that of an upper frequency cutoff dis-
cussed above because there is no natural lower frequency
bound corresponding to a certain finite scale (whereas
there is an upper bound corresponding to a certain finite-
sampling resolution). If the frequency bound is made to
be too high, then the resulting process may be missing
the apparent long-scale trends seen in the original data
set. As a tentative recommendation, the writer suggests
using a lower cutoff frequency equal to the least nonzero
Fourier frequency vo = 2p/D, where D is the site dimen-
sion in the direction of the model.

The parameter g is perhaps best estimated directly in the fre-
quency domain via maximum likelihood. There are at least
two possible approaches, but here only the wavelet and per-
iodogram maximum likelihood estimators will be discussed.

In the case of the wavelet basis representation, the approach
is as follows [from Wornell (1996)]. For an observed Gaussian
process, x(ti), i = 1, 2, . . . , n, the wavelet coefficients mmx ,j

= 1, 2, . . . , M, j = 1, 2, . . . , 2m21, where n = 2M, can be
obtained via (23) (preferably using an efficient wavelet decom-
position algorithm). Because the input is assumed to be Gauss-
ian, the wavelet coefficients will also be Gaussian. Wornell
has shown that they are mean zero and largely independent if
X(z) comes from a fractal process so that the likelihood of
obtaining the set of coefficients is given bymxj

m21M 2 m 21 (x )j
L(x; g) = exp 2 (47)PP H J22 2s2ps mm =1 j =1 Ï m

where = = model variance for some unknown in-2 2 2gms s 2m

tensity s2. The log-likelihood function is thus
m21M M 2

1 1 1m21 2 m 2+ = 2 (2 )ln(s ) 2 (x ) (48)m jO O S D O22 2 smm =1 m =1 j =1
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(discarding constant terms) that must be maximized with re-
spect to s2 and g. [See Wornell (1996, Section 4.3) for details
on a relatively efficient algorithm to maximize +.]

An alternative approach to estimating g is via the periodo-
gram. In the writer’s opinion, the periodogram approach is
somewhat superior to that of the wavelet because the two
methods have virtually the same ability to discern between
finite-scale and fractal processes, and the periodogram has a
vast array of available theoretical results dealing with its use
and interpretation. Although the wavelet basis may warrant
further detailed study, its use in geotechnical analysis seems
unnecessarily complicated at this time.

Because the periodogram has been shown to consist of ap-
proximately independent exponentially distributed estimates at
the Fourier frequencies for a wide variety of random processes,
including fractal, it leads easily to a maximum likelihood es-
timator for g. In terms of the one-sided spectral density func-
tion, G(v), the fractal process is defined by

Go
G(v) = , 0 # v < ` (49)

gv

The likelihood of seeing the periodogram estimates Ĝj = Ĝ(vj),
j = 1, 2, . . . , k, where k = (n 2 1)/2, and vj = 2pj/D is just

k g gv vj jˆ ˆL(G; u) = exp 2 G (50)jP S D H JG Go oj =1

and its logarithm is
k k

1 g ˆ+ = 2k ln G 1 g ln v 2 v G (51)o j j jO OGoj =1 j =1

which is maximized with respect to Go and g. The spectral
intensity parameter Go is not necessarily of primary interest
because it may have to be adjusted anyhow to ensure that the
area under G(v) is equal to after the cutoff frequency dis-2ŝx

cussed above is employed (or, alternatively, the cutoff fre-
quency adjusted for fixed Go).

Differentiating (51) with respect to Go and setting the result
to zero yields

k
1 gˆ ˆG = G v (52)o j jOk j =1

In turn, differentiating (51) with respect to g and setting the
result to zero leads to the following root finding problem in g

k

gĜ v ln v kj j jO
j =1

2 ln v = 0 (53)k jO
j =1gĜ vj jO

j =1

For almost all common processes, 0 # g # 3, so that (53)
can be solved efficiently via bisection.

The Fisher information matrix, and thus the covariance ma-
trix between the unknown parameters Go and g, is especially
simple to compute for the periodogram maximum likelihood
estimator because, asymptotically, the estimator Ĝo is indepen-
dent of The estimated variances of each estimated parameterĝ.
can be found from

2Ĝ o2s . (54)Ĝ 2k ko

12ĝ 2(12ĝ)v 2 k 2 vi iSO D O
i =1 i =1

12s . (55)ĝ 2k

ln v 2 k 1 kiSO D
i =1
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However, it should be pointed out that these variances are only
achieved asymptotically as the sample length increases to in-
finity. In practice, this is not possible, so that estimates of g
and Go will show much greater variability from sample to sam-
ple than suggested by the above bounds. What this means is
that the uncertainty in the estimates of g and Go are best ob-
tained via simulation or by considering a large number of sam-
pling domains.

CONCLUSIONS

When attempting to identify which of a suite of stochastic
models is best suited to represent a soil property, a variety of
data transforms are available. Most commonly, these are the
sample correlation or covariance function, the semivariogram,
the sample variance function, the sample wavelet coefficient
variance function, and the periodogram. In trying to determine
whether the soil property best follows a finite-scale model or
a fractal 1/f-type noise, the periodogram, wavelet variance, and
semivariogram plots were found to be the most discriminating.
In this sense, the periodogram is perhaps the most preferable
due to the fact it has been extensively studied, particularly in
the context of time-series analysis, and because it has a nice
physical interpretation relating to the distribution of power to
various component frequencies.

It is recognized that these data transforms have been eval-
uated by averaging over an ensemble of realizations. In many
real situations only one or a few data sets will be available.
Judging from the minimum/maximum curves shown on the
plots of Figs. 4–8, it may be difficult to assess the true nature
of the process if little or no averaging can be performed. This
is, unfortunately, a fundamental issue in all statistical analy-
ses—confidence in the results decreases as the number of in-
dependent observations decreases. All that can really be said
about the tools discussed above (i.e., the periodogram) is that
on average it shows a straight line with negative slope for
fractal processes and flattens out at the origin for finite-scale
processes. Because the periodogram ordinates are exponen-
tially distributed, and the ability to distinguish between process
types depends on just the first few (low frequency) ordinates,
the use of only a single sample set may not lead to a firm
conclusion. For this, special large-scale investigations, yield-
ing a large number of soil samples, may be necessary.

The sample correlation or covariance functions are accept-
able measures of second moment structure when the scale of
fluctuation of the process is small relative to the sampling
domain, implying that many of the observations in the sample
are effectively independent. However, these sample functions
become severely biased when the sample shows strong depen-
dence, preventing them from being useful to discern between
finite-scale and fractal type processes. Because the level of
dependence is generally not known a priori, inferences based
on the sample covariance and correlation functions are not
generally reliable. Likewise, the sample variance function is
heavily biased in the presence of strong dependence, rendering
its use questionable unless the soil property is known to be
finite scale with u << D.

Once a class of stochastic models has been determined using
the periodogram, the periodogram can again be used to esti-
mate the parameters of an assumed spectral density function
via maximum likelihood. This method can be applied to either
finite-scale or fractal processes, requiring only an assumption
on the functional form of the spectral density function. The
maximum likelihood approach is preferred over other esti-
mation techniques such as regression, because of the many
available results dealing with the distribution of maximum
likelihood estimates [see, e.g., Beran (1994) and DeGroot and
Baecher (1993)].

If the resulting class of models is deemed to be fractal with
NICAL AND GEOENVIRONMENTAL ENGINEERING / JUNE 1999 / 483
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0 # < 1, then the Mandelbrot model of (4) can also be fittedĝ
using maximum likelihood in the space domain (preferably
with d taken to be some assumed small averaging length, be-
low which details of the random soil property process are of
no interest). For g > 1, the fitted spectral density function G(v)
= Go/vg is still of limited use because it corresponds to infinite
variance. It must be truncated at some appropriate upper or
lower bound (depending on whether g is below or above 1.0)
to render the model physically useful. The choice of truncation
point needs additional investigation although some rough
guidelines were suggested above.

In the finite-scale case, usually only a single parameter, the
scale of fluctuation, needs to be estimated to provide a com-
pletely usable stationary stochastic model. However, indica-
tions in a companion paper (Fenton 1999) are that soil prop-
erties are fractal in nature, exhibiting significant correlations
over very large distances. This proposition is reasonable if one
thinks about the formation processes leading to soil deposits—
the transport of soil particles by water, ice, or air, often takes
place over hundreds if not thousands of kilometers. There may,
however, still be a place for finite-scale models in soil models.
The major strength of the fractal model lies in its emphasis on
the relationship between the soil variability and the size of the
domain being considered. However, once a site has been es-
tablished, there may be little difference between a properly
selected finite-scale model and the real fractal model over the
finite domain. The relationship between such an ‘‘effective’’
finite-scale model and the true but finite-domain fractal model
can be readily established via simulation and is the subject of
ongoing research.
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APPENDIX II. NOTATION

The following symbols are used in this paper:

a = constant;
bi = coefficients in Gauss-Markov maximum likelihood

problem;
C = covariance matrix;

Cij = element of covariance matrix;
Ĉ(tj) = estimated covariance function at discrete lag tj;

D = sampling domain length or depth;
d = representative length;

f (q) = cubic function in Gauss-Markov maximum likeli-
hood problem;

Go = spectral intensity parameter;
Ĝo = estimated spectral intensity parameter;

G(v) = one-sided spectral density function;
Ĝ(v) = sample one-sided spectral density function;

H = Hurst or self-similarity coefficient;
i = index, also when appearing in exponential;21Ï

L( ? ) = likelihood function;
+( ? ) = log-likelihood function;

m = scale (dilation) index for wavelet basis;
m(z) = mean trend varying with spatial position;

n = number of observations in sample of X(z);
Qn, Q9n = coefficients in Gauss-Markov maximum likelihood

problem;
q = root in Gauss-Markov maximum likelihood prob-

lem;
R0, R1R9,0 = coefficients in Gauss-Markov maximum likelihood

problem;
r = vector used in space domain maximum likelihood

estimator;
s = vector used in space domain maximum likelihood

estimator;
s(z) = standard deviation trend varying with spatial posi-

tion;
T = averaging dimension;

V(tj) = variogram;
V̂(tj) = estimated variogram;

X̄ = average of Xi across sample of length n;
Xi = random value of X(z) at zi;

Xi, j = average of Xj, Xj 11, . . . , Xj 1i;
mX j = random wavelet coefficient;

XT = random local average of X(z) over length T;
X(z) = random 1D process;

x = vector of observations in sample;
xi = observed value of X(z) at zi;
mx j = computed wavelet coefficient from transform;

x9(z) = mean and variance standardized random process;
Y(z) = random 1D process;

z = coordinate, commonly with depth;
zi = discrete points along 1D random process;
g = spectral exponent in fractal model;
ĝ = estimated spectral exponent;

g(D) = variance function;
ĝ(D) = sample variance function;

Dz = incremental distance between observations;
d = averaging dimension in Mandelbrot’s fractal model;
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ε(z) = residual random process;
u = scale of fluctuation;
û = estimated scale of fluctuation;
u = vector of unknown parameters to be estimated;
û = vector of estimated parameters;
m = vector of mean values associated with set of spatial

points;
m j = element of m;
mX = mean of X(z);
m̂X = estimated mean of X(z);

r = correlation coefficient matrix;
ri, j = element of correlation coefficient matrix;

r(t) = correlation coefficient between two points separated
by t;
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r̂(t )j = estimated correlation function at discrete lag tj;
s2 = wavelet coefficient intensity parameter;

2sm = wavelet coefficient variance at scale m;
2sX = variance of X(z);
2ŝX = estimated variance of X(z);
t = separation distance;
tj = discrete separation distance, =jDz;

x(vj) = complex Fourier coefficient;
mc (z)j = daughter wavelet;
c(z) = mother wavelet;

v = frequency or wavenumber;
vo = lower frequency cutoff;
vu = upper frequency cutoff; and
1 = vector with all elements equal to 1.
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