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RANDOM FIELD MODELING OF CPT DATA

By Gordon A. Fenton,1 Associate Member, ASCE

ABSTRACT: An extensive set of cone penetration tests (CPT) soundings are analyzed statistically to produce
an a priori 1D stochastic soil model for use at other similar sites. The data were collected by the Norwegian
Geotechnical Institute at the site of a new airport just north of Oslo, Norway, and consists of 143 CPT soundings
over an area of about 18 km2 in a reasonably homogeneous soil mass. The CPT data consist of cone tip resistance,
side friction, and pore-water pressure measurements. Only the cone tip resistance is considered in this study, it
being considered closest to a ‘‘point’’ property of the soil, and only the vertical variation is characterized. To
perform the statistical analysis, the data sets are viewed as independent 1D realizations extracted from a statis-
tically homogeneous 3D random field. Plots of various transformations of the data indicate that the cone tip
resistance records are best represented using a fractal stochastic model corresponding to so-called fractional
Brownian motion, and its parameters are estimated via maximum likelihood.
INTRODUCTION

In the reliability analysis of any geotechnical project, a cer-
tain amount of data must be gathered. Typical risk analyses,
simulations, optimizations, and decision analyses all involve
knowledge of the stochastic nature of the soil. Because soils
are spatially variable, the mean, variance, and covariance
structure of the soil are needed for any realistic probability
modeling. Although the mean and variance of a soil property
can usually be established reasonably accurately with only a
small number of samples, a reasonably accurate estimate of
the entire covariance structure typically requires a vast amount
of data. As a result of limited budgets, many reliability studies
make use of covariance functions reported in the literature for
what are deemed to be similar sites. It is believed that this is
a reasonable approach, namely, that the soil property mean and
variance should be estimated from site data but that the cor-
relation structure can be derived from the more detailed anal-
ysis of similar sites. The idea that the correlation structure
might be due more to external influences, which are common
across soil properties and across similar sites, allows this con-
tention (Fenton 1999).

In an attempt to establish a correlation model for one such
site, the writer visited the Norwegian Geotechnical Institute
(NGI) in Oslo, Norway, to statistically analyze an extensive
spatially distributed set of cone penetration tests (CPT) with
measured pore-water pressures (strictly speaking, this is prop-
erly called CPTU readings, but the more common CPT nota-
tion will be kept here for simplicity and because the pore-water
pressure results were not used). This paper, using the tech-
niques presented by Fenton (1999), summarizes the findings
of the analysis.

The CPT data were gathered at the site of the Oslo Main
Airport, Gardermoen, located to the north of the city of Oslo,
and consists of measurements of cone tip resistance qc (kPa),
side friction fs (kPa), and pore-water pressure m (kPa). The
tests were carried out using a piezocone (ENVI memocone)
where the pore pressure is measured just behind the cone. The
measurements were recorded at vertical intervals of 0.02 m.
In total, 143 soundings are considered, scattered over an area
of about 6 km by 3 km. Fig. 1 illustrates the relative surface

1Assoc. Prof., Dept. of Engrg. Math., Dalhousie Univ., Halifax, NS,
Canada B3J 2X4.

Note. Discussion open until November 1, 1999. Separate discussions
should be submitted for the individual papers in this symposium. To
extend the closing date one month, a written request must be filed with
the ASCE Manager of Journals. The manuscript for this paper was sub-
mitted for review and possible publication on May 27, 1998. This paper
is part of the Journal of Geotechnical and Geoenvironmental Engi-
neering, Vol. 125, No. 6, June, 1999. qASCE, ISSN 1090-0241/99/0006-
0486–0498/$8.00 1 $.50 per page. Paper No. 18421.
486 / JOURNAL OF GEOTECHNICAL AND GEOENVIRONMENTAL ENGI

 J. Geotech. Geoenviron. En
locations of the CPT soundings. The soundings ranged from
2 to 50 m in (usable) length.

Only the qc readings are analyzed in this study. Of the three
measurements taken by the piezocone, it is believed that the
qc value most closely represents a ‘‘point’’ property of the soil
(both qc and fs are actually local average measures, but side
friction is more so). Most soil properties are not, in fact, point
properties but rather local averages over some representative
volume, often a laboratory scale volume. Because the major
goal of this study is to establish correlation structures for soil
properties, the qc measurements, assumed representative of
laboratory scale soil properties, are considered sufficient for
this purpose. The issue of measurement error is ignored at this
time even though it is undoubtedly present in the CPT data.
There is, however, considerable debate at this time on what
distribution is best for measurement error. It is usually consid-
ered to be Gaussian white noise but evidence is now appearing
that suggests that improved error models may be fractal in
nature (Beran 1994). It is assumed here that the signal-to-noise
ratio is high enough to permit reasonable estimates of the sig-
nal statistics without complicating the issue with an error
model study. One may think of the results, at this point, as a
measurement model; the relationship with real soil properties,
including an error model, can be incorporated in later studies.

The site of the Main Oslo Airport is an almost horizontal
plateau, at about 205 m above sea level, formed as a complex
system of several glacifluvial deltas during a period of about
50–100 years in the Preboreal period, some 10,000 years ago
(Watn et al. 1995). The airport site is generally dominated by
sands and gravels in the first 5–15 m, with finer materials
appearing as lenses, overlying silty-sands in thicknesses from
5 to 30 m, in turn overlying silty-clays with thicknesses in
excess of 10 m (Gregersen 1997). Sandven and Watn (1995)
reported that ‘‘due to the relatively complex geological history,
the soil conditions in the investigated area show large varia-
tions, containing soil types ranging from soft, sensitive clays
to very dense morainic material.’’ Gregersen indicated that the
soil is slightly preconsolidated with a preconsolidation pres-
sure of about 70 kPa. Because of the large volume of CPT
data and the reasonably typical soil variability, this site is con-
sidered a good testing ground for the estimation techniques
discussed in Fenton (1999) as well as for making some useful
inferential statistical statements about soils. The study does not
consider soil layers separately—the possible migration from
soil type to soil type with depth viewed as part of the overall
uncertainty being characterized. To separately account for the
soil layers (and possible seams) at the Oslo Airport renders
the analysis site specific and results in an unconservative es-
timate of the a priori uncertainty for use at other sites. By a
priori is meant statistical results that may be used at a site for
which little or no data have yet been collected, and yet a need
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FIG. 1. Relative Locations of CPT Soundings
exists to perform a preliminary stochastic analysis, as in sam-
pling planning, kriging analysis to ‘‘interpolate’’ from limited
data, preliminary reliability assessments, etc.

Although 27 additional CPT soundings were available, they
were rejected from this analysis due to one or more of the
following:

• The measurements were considered to be faulty, having
extended periods of zero cone tip resistance at various
depths (in excess of about 5% of the total sounding). This
accounted for 19 of the rejected soundings.

• The measurements were considered to be suspicious due
to an excessive drift in the cone pressure calibration (in
excess of 500 kPa). This accounted for five of the rejected
soundings.

• The measurements were not taken at an increment of 0.02
m, yielding them inconsistent with the majority of data
sets. This accounted for three of the rejected soundings.

The presence of a zero cone tip resistance well below grade
was considered to be a clear indication that the CPT measure-
ments were faulty at that point—there being no evidence or
belief that the soil contained extended holes. Of the acceptable
143 CPT soundings, a few have been modified to eliminate
such obvious errors and permit the use of the data set as fol-
lows:

• If only a few of the readings at intermediate depths were
zeros (i.e., less than about 5% of the total sounding), the
zeros were shifted to values approximately interpolated
between the previous and next nonzero values, which
were assumed to be valid. This shift is not believed to
have a significant impact on the statistical analysis—
much less in fact than the presence of the sequential ze-
ros—and allows the data set to be included in the event
that a logarithmic transform is selected. Because the zeros
are clearly in error, the shift was deemed an acceptable,
possibly even robust, correction, essentially downweight-
ing the effect of the errors.

• Zeros near the beginning and/or end of a CPT record were
eliminated simply by shortening the record at the begin-
ning and/or end.

• Initial seating problems sometimes led to clearly errone-
ous observations in the first few centimeters of the sound-
ings. These outliers were simply deleted from the record
by slightly shortening the record.

Many of the statistical procedures discussed in this paper de-
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pend on the data having equal increments between recording
points, which motivated the rejection of some of the data sets.
In general, however, such data can be transformed to another
increment through interpolation (linear in the simplest case, to
kriging in the most sophisticated case), which presumes high
correlation between data at small lags. Such a transformation
was not considered warranted in this initial study because a
large volume of acceptable data were readily available.

Before discussing the details of the analysis, it is important
to clearly define the goals of this study. In general, statistical
analyses can be separated into two areas that can be thought
of as inferential and descriptive in nature. In the latter, the
goal is to best describe a particular data set with a view toward
interpolating within the data set. For example, this occurs
when geotechnical data are obtained at the site for which a
design is destined. The interpolation techniques most often
used are those of regression, using an appropriate polynomial
that explains most of the variability, and best linear unbiased
estimation. Inference, on the other hand, is the term used here
to denote the considerably less certain venture of character-
izing the soil at another site for which data are not yet avail-
able. In this case trends in the data at the investigated site
must be viewed with considerable caution and only explicitly
described if there is a strong belief that such a trend is also to
be expected at the target site. Otherwise, trends should be
viewed merely as segments of a large-scale fluctuation, and
this large-scale fluctuation should appear as part of the statis-
tical characterization; that is, the model should reflect a greater
uncertainty in the soil property when applied to another site.

Here, the CPT data gathered at the Main Oslo Airport site
are studied primarily to obtain reasonable a priori estimates of
the correlation structure of natural soils to be used at other
similar sites. This is therefore an inferential statistical analysis.
Although the mean and variances are obtained as part of the
estimation process, these parameters tend to be specifically
related to, and affected by, the soil type or property; this is
particularly true of the mean. Thus, these parameters are of
limited interest here and should be separately estimated at any
target site. It is the correlation structure that is of primary
interest, because this structure is believed to be more ‘‘porta-
ble’’ so that it can be used at other, similar sites. Although
additional site investigations are required to verify such a con-
tention, it is a reasonable first hypothesis. The use of the term
‘‘correlation structure’’ here specifically refers to the correla-
tion coefficient function but is also intended to include any
function that equivalently describes the second moment of the
random process, such as the spectral density function. Because
ICAL AND GEOENVIRONMENTAL ENGINEERING / JUNE 1999 / 487
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one can be found from the other (given the variance), the
functions are, strictly speaking, interchangeable.

To this end, the NGI data set provides a high-quality spatial
realization, which is representative of geotechnical soil prop-
erties, from which estimates of the in situ correlation structure
can be made. Lunne et al. (1997) provided a comprehensive
list of relationships between CPT sounding data and engi-
neering properties of interest. For example, both the overcon-
solidation ratio (OCR) and the undrained shear strength can
be obtained through equations of the form OCR = b1qc 1 b2

and su = a1qc 1 a2, respectively, where the coefficients depend
on cone properties, in situ stresses, pore pressures, etc. In par-
ticular, in the case of the undrained shear strength, the coef-
ficients suggested by Lunne et al. are deterministic constants,
so that the mean and variance of su are easily computed in
terms of the mean and variance of qc (although the variance
should now include a component deriving from the above re-
gression) and their spatial correlation structures are identical.
Because statistical characterization of the correlation structure
is the primary thrust of this paper, the results may be viewed
as being representative of the spatial variation of this (and
possibly other) engineering soil property as well.

It is assumed that the soil is spatially statistically homoge-
neous and that the CPT soundings represent an ensemble of
largely independent realizations of the same 1D random pro-
cess. That is, the random process representing the variation of
qc with depth has the same joint distribution at any horizontal
location, so that various soundings are just different realiza-
tions of this process. Although it is likely that horizontal spa-
tial dependence renders the CPT soundings somewhat depen-
dent, rather than independent as assumed, this error is assumed
not to be particularly significant over the area considered. It
also is only believed to result in a slight underestimation of
the variability of statistical estimates coming from this anal-
ysis. It should be noted, however, that this lateral indepen-
dence assumption implies that the results are best used at sites
deemed to be similar.

To carry out maximum likelihood estimation of the random
field of qc measurements, a distribution for qc must be as-
sumed. Because qc is bounded below by zero and has no ar-
bitrarily set upper limit, qc may be assumed to be lognormally
distributed. There is some supporting evidence for the lognor-
mal distribution for a number of strictly positive soil properties
(e.g., strength, elastic modulus, permeability) [see Lumb
(1966), Hoeksema and Kitanidis (1985), and Sudicky (1986)],
so this is often a reasonable assumption. Perhaps more im-
portantly, and also a significant motivation for its use by many
researchers, it leads to a simple model because the distribution
of ln qc is then normal. The jointly normal distribution is fully
specified by only its first two moments (mean and covariance).
Because this is generally all that can be estimated with any
degree of confidence in geotechnical applications, the normal
distribution is then at least appropriate as a ‘‘minimal assump-
tion’’ model.

Other transformations are also available. In particular, rais-
ing qc to some power between 0 and 1 is quite common. The
disadvantage to these transformations is that they do not pre-
cisely lead to a nonnegative distribution on qc. In fact if X =

is normally distributed, then X ranges over the entire realrq c

line and for negative values of X, the inverse qc = X1/r is only
defined for a certain r and, of these, some are imaginary. How-
ever, if the probability of X being negative under the normal
assumption is negligible (i.e., having a small coefficient of
variation), these transformations can give reasonable results.

Once a suitable transformation has been selected, it is ap-
plied to all of the qc observations, whereupon the remainder
of the statistical analysis is performed under the assumption
that all randomness is jointly normal. It should be emphasized,
488 / JOURNAL OF GEOTECHNICAL AND GEOENVIRONMENTAL ENG
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however, that all subsequent statistics refer to the transformed
field, not the qc field itself. The qc random field must be ob-
tained through the inverse transformation.

With these assumptions in place, the possibly transformed
qc data are studied in this paper as follows:

1. In the following section, an initial regression analysis is
performed to determine if a statistically significant trend
with depth is present. Because a trend with depth often
has some physical basis, it may make sense to predict
this trend and assume it to be valid at other sites. It
should be noted that such a trend does not necessarily
translate into all other soil properties (such as d15, color,
etc.) and so is not particularly portable. However, for the
CPT data themselves, it seems reasonable to investigate
this trend. The regression analysis is performed on all
143 CPT soundings, and the average trend computed in
two ways: (1) By computing the slope and intercept val-
ues for each CPT site individually and then averaging
over the ensemble; and (2) by performing a global re-
gression on all 143 soundings at once. Although it is
uncertain at this time which approach is superior, with
respect to robustness issues, the global regression is
somewhat more appealing from the point of view of
yielding a single representative trend. This regression can
be used to detrend the data in preparation for further
statistical analyses, if the trend is deemed to exist at all
target sites using the statistical analysis.

2. A correlation model is identified for the CPT data by
looking at a number of sample transforms, namely, the
sample correlation function, variance function, vario-
gram, wavelet coefficient variance, and periodogram.

3. Finally, the parameters of the selected correlation model
are estimated using maximum likelihood. The parameter
estimator variability is derived by looking at the esti-
mates over the ensemble of 143 CPT soundings.

REGRESSION ANALYSIS

In keeping with the philosophy of only considering physi-
cally based trends that are expected to appear at other sites,
the regression analysis of the data is restricted to a simple
straight line trend. It is initially assumed that a reasonable data
transformation is the natural logarithm, so that the trend is
expressed as

ln q = a 1 bz 1 ε (1)c

where a = mean value of ln qc at the surface (z = 0); b = slope;
and ε = mean-zero residual random component. To compare
data sets, all sets are ‘‘aligned’’ at the preboring depth; that
is, the first CPT reading for each data set is assumed to occur
at a depth of z = Dz = 0.02. As will be seen, the different
preboring depths actually result in only small changes in the
local CPT intercept (a values).

Fig. 2 shows a typical ln qc recording with superimposed
local and global regressions—‘‘local’’ being that determined
for the current CPT sounding, and ‘‘global’’ being that deter-
mined using a global regression on all 143 data sets simulta-
neously. The significance of the slope was tested against the
null hypothesis that b = 0 at the 5% level and found to be
significant for 90% of the CPT soundings. However, the slope
was very small and was just as often negative as positive.
Thus, it is reasonable to assume that, on average, there is no
substantial depth dependence to the data at this site (also jus-
tifying the data set depth alignment).

To assess the assumption that ln qc is normally distributed,
Fig. 3 plots the average value of ln qc along with the minimum
and maximum observed ln qc at each depth z across all 143
INEERING / JUNE 1999
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FIG. 2. Typical Variation of ln qc versus Depth along with Local
and Global Regressions

data sets. Clearly there is significant nonsymmetry in the scat-
ter, despite the logarithmic transformation. Fig. 4 shows a his-
togram of the ln qc values along with a fitted normal distri-
bution—the skew of the data is very evident with skewness
coefficient of over 40.

It is possible that Fig. 4 may also be interpreted as the su-
perposition of two normal distributions: (1) For a weaker
seam; and (2) for the more common silty-sands and clays. If
the goal of the paper were to completely characterize this site,
then the two materials should be treated separately. However,
because the goal is to provide an a priori model that can be
used to initially characterize other sites, this additional uncer-
tainty must be incorporated into a single model and fitted as
well as possible to the data. Although this approach introduces
some inaccuracies into the following analysis, it is to be em-
phasized that the goal here is to find an approximate a priori
model that must be subsequently refined at the target site as
data are gathered at that site. If data are not gathered at the
target site, then one would be no further ahead regardless of
the level of detail in the current analysis. That is, separation
of the material types in the current site analysis may actually
result in an underestimation of possible variability at another
site.

A transform that yields a zero skewness coefficient over all
CPT data is and Fig. 5 shows the histogram and fitted0.74q ,c

normal distribution for this transformation. Unfortunately, the
fitted distribution still fails to capture the apparent bimodal
nature of the data. However, as only the first two moments0.74qc

are being characterized in this work, a more complex distri-
bution will not be considered. Because the transformation0.74q c

yields a zero skewness coefficient, it was selected for use in
this study over the logarithmic transformation. The approxi-
JOURNAL OF GEOTECH
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mation of a normal to the data transformation will be0.74qc

considered adequate for this and for reasons discussed earlier.
In addition, it will be found that the estimated correlation pa-
rameters are little affected by the exact nature of the data trans-
formation.

Although the details of the regression itself are affected by
the choice of data transformation, the slopes remain small and
inconsistent in sign. It is concluded, therefore, that there is no
significant trend in the data that needs to be considered ex-
plicitly in an inferential study of this sort. If the regression
were to be used, it must be emphasized that detrending the
data significantly affects the resulting mean, variance, and cor-
relation structures, so that these estimates must be accompa-
nied by information regarding the regression to form a com-
plete and usable picture of the random field model.

CHOICE OF CORRELATION MODEL

Attention is now turned to the stochastic characterization of
the data. In addition to estimating the mean and variance,0.74q c

the spatial correlation structure must be deduced. In the
writer’s opinion, the large-scale geologic mixing processes
leading eventually to soil formation lends support to the con-
tention that many geotechnical properties are ‘‘long-memory’’
or fractal in nature. What these two terms mean is that there
is a significant correlation between a soil’s properties at two
points even when the points are very widely separated. This
long-range dependence is not too difficult to believe consid-
ering, for example, the erosion, transport, and weathering pro-
cesses involved in the formation of a soil. The soil at a point
on the surface of the earth is derived from a rock source that
may be quite a distance away. For example, rivers and/or gla-
ciers may carry soil particles many hundreds or even
thousands of kilometers. Thus, a soil may have the same con-
stitutive components as some other widely separated soil hav-
ing the same original rock source. It is yet to be seen if this
idea holds in both the horizontal and vertical directions—there
perhaps being less reason to believe that soils separated in the
vertical direction derive from the same distant locations. Nev-
ertheless, it is worth investigating if statistical evidence sup-
ports a fractal model in the vertical direction because this pos-
sibility cannot be ruled out.

The stochastic soil model most often employed currently in
practice is a short-memory or finite-scale model (as in the ex-
ponentially decaying correlation function). That is, the corre-
lation between spatial points is assumed to fall off rapidly as
the distance between the points increases, and the area under
the correlation function, which is the scale of fluctuation, is
finite (unlike that for the fractal model). One reason that it is
important to determine whether soils are more closely fractal
in nature than they are short-memory or finite-scale arises from
the fact that maximum likelihood estimates of the scale of
fluctuation, when sampling from fractal processes, are depen-
dent on the size of the sampling domain. For example, as part
of this research, a simulation study was carried out in which
a fractal process with significant lingering correlation was gen-
erated first over a 2-m length and then again over 20 m. The
maximum likelihood estimate of the scale of fluctuation was
0.36 m in the smaller domain and 3.6 m in the larger domain.
This sampling domain dependence has been observed by the
writer over the years as a typical feature of long-memory or
fractal processes when characterized by short-memory esti-
mators. What this means is that if soils are actually fractal in
nature, then an estimate of the scale of fluctuation of, for in-
stance, 2 m obtained from the literature must be viewed with
caution because it is intrinsically tied to the size of the sam-
pling domain. If the same researchers reporting this estimate
had data over 10 times the length, they may have obtained a
much larger scale of fluctuation. Similarly, if the end-user is
NICAL AND GEOENVIRONMENTAL ENGINEERING / JUNE 1999 / 489
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FIG. 3. Average, Minimum, and Maximum of ln qc at Each Depth

FIG. 4. Histogram of ln qc Values with Fitted Normal Distribution
interested in characterizing a much smaller (larger) domain
than reported in the literature, then he or she should use a
smaller (larger) scale of fluctuation in the site model.

Thus, one motivation for the use of the fractal model, if
found to be appropriate, instead of an ‘‘equivalent’’ finite-scale
model where the scale is adjusted to reflect the domain size is
that the main parameter of the fractal model becomes inde-
pendent of the domain size. As discussed later, the dependence
on the domain size is not entirely eliminated, but it now be-
490 / JOURNAL OF GEOTECHNICAL AND GEOENVIRONMENTAL ENGIN
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comes explicitly part of the model, allowing a better under-
standing of the stochastic variation.

Although there may be other arguments in support of fractal
models for soils, it is worth considering the data itself at this
point. Fig. 6 shows the sample correlation function computed
for the same data set shown in Fig. 2. The dashed lines are
the 62n21/2 significance bounds within which the sample cor-
relation is commonly assumed not different from zero [see
Priestley (1981)]. For simplicity, using
EERING / JUNE 1999
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FIG. 5. Histogram of and Fitted Normal Distribution0.74q c

FIG. 6. Typical Sample Correlation Function Computed for Record with Length of 27.8 m (n = 1,390)0.74q c
0.74x = [q (z )] (2)i c i

at depth zi = iDz, i = 1, 2, . . . , n, in the following, the sample
covariance function is obtained from the moment estimator

n2j
1ˆ ˆ ˆC(t ) = (x 2 m )(x 2 m ),j i X i1j XOn 2 j i=1

j = 0, 1, . . . , n 2 1 (3)

for lag tj = jDz. The sample correlation is then = Ĉ(tj)/r̂(t )j
Ĉ(0).

Fig. 6 appears to show a fairly short scale of fluctuation
(which, roughly speaking, is the lag distance at and beyond
which points are effectively uncorrelated), somewhere around
1 m. This does not appear to be a particularly long-memory
record. This conclusion, however, may be very much in error
due to the large bias of this estimator for strongly correlated
fields [see Priestley (1981, Section 5.3) and Fenton (1999)].
JOURNAL OF GEOTECH
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When averaging the sample correlation functions over the
ensemble of CPT soundings, a problem arises over how to
deal with the differing sample lengths. Only a few records
contribute to the average at lags greater than 40 m, for in-
stance. Because the large lag behavior is vital to the deter-
mination of the large-scale behavior of the random process, it
is important to have reasonably accurate estimates in these
regions and to avoid basing conclusions on a small subset of
the total database. Because accuracy is generally improved by
increasing the level of averaging, one cannot expect good ac-
curacy at large lags for this data set. This will also appear as
a problem in interpreting the sample spectral density func-
tions—only the longest samples contribute to the very low
frequencies, and the low frequency behavior tells about the
fractal (or lack of such) nature of the random process.

Because of the necessity, therefore, for attaining as much
accuracy as possible at the larger scales, which requires that
the estimates be averaged over as many soundings as possible,
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FIG. 7. Average of Sample Correlation Functions over 93 CPT Soundings along with Associated Minimum and Maximum at Each Lag
it was decided to truncate the soundings to equal length in the
remainder of this section. Shorter soundings would be ignored,
as well as the remainder of longer soundings. In this way, the
decision about the nature of the stochastic variation can be
made using estimates of high accuracy, rather than on esti-
mates of questionable accuracy available at the very large
scales (greater than about 40 m). The length selected is a trade-
off between the desire to obtain as many contributing sound-
ings (encouraging a short truncation length) and the need to
investigate larger lags to ascertain fractal behavior (encour-
aging longer truncation lengths). A truncation length of 20.48
m (n = 1,024) was selected. Ninety-three of the soundings
have lengths (depths) greater than or equal to 20.48 m. The
word ‘‘global’’ in the following will refer to results obtained
by averaging over all 93 soundings.

Fig. 7 shows the average of the sample correlation functions
over the 93 soundings. The global average value, across0.74qc

all 93 soundings is 790.9, with individual sounding averages
ranging from 375 to 1,053. The global standard deviation is
279, with sounding standard deviations ranging from 141 to
551. (The averages across all 143 soundings are little changed,
with an average of 782 and a standard deviation of 301.)

It appears from Fig. 7 that the scale of fluctuation, on av-
erage, is considerably larger than was indicated by Fig. 6. It
may be tempting to assume that it is in the neighborhood of
4 m. However, because the sample correlation function can be
highly biased, little conclusion can be drawn from these results
until it is shown by other means that the scale of fluctuation
is considerably <20.48 m.

The sample variogram defined by

n2j
1 2V̂(t ) = (x 2 x ) (4)j i1j iO(n 2 j) i=1

is averaged over the 93 soundings and plotted in Fig. 8. Be-
cause the values of V̂(tj) are based on fewer data pairs at larger
lags, they are more variable, accounting for the erratic behav-
ior near the right tail of the figure. The plot does show a
gradual increase over most of its length, indicating that the

process possesses a large scale of fluctuation or may be0.74q c

fractal in nature.
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Fig. 9 shows the average sample variance function, defined
by

n2i11
1 2ˆ ˆg(i) = (X 2 m ) , i = 1, 2, . . . , n (5)i, j XO2ŝ (n 2 i 1 1)X j=1

where Xi, j is the local average as follows:
j1i21

1
X = X , j = 1, 2, . . . , n 2 i 1 1 (6)i, j kOi k=j

To emphasize the relationship with averaging over the physical
domain, the plot is in terms of T = iDz. Clearly, there is some
serial dependence between observations because the sample
variance function remains much higher than that for the ideal
sample where observations are independent. Beyond this, not
much can be deduced from the sample variance function be-
cause of its high bias in the presence of strong correlation [see
Fenton (1999)].

The sample wavelet coefficient variance, as defined by Wor-
nell (1996) and discussed by Fenton (1999), is computed, av-
eraged over the soundings, and plotted in Fig. 10. Although
the slope of the average coefficient variance does not remain
perfectly constant at the intermediate and smaller scales (in-
creasing m), the trend at the larger scales (small m) is a con-
stant negative slope. Because the critical aspect of a fractal
model is that correlation remains significant over very large
scales, it is primarily the large-scale behavior of Fig. 10 that
is of interest. Small deviations from the fractal model at small
scales are not particularly important and may be due to mea-
surement/recording errors as discussed next.

The behavior indicated by the sample spectral density func-
tion, shown in Fig. 11, reflects that of the wavelet coefficient
variance. Again, fractal behavior is indicated by the constant
negative slope at smaller frequencies (corresponding to longer
scales), whereas some deviation from the ideal fractal model
is seen at higher frequencies. Such deviations are not partic-
ularly important as the power in these higher frequencies is
considerably reduced. The deviations may also be in part due
to the measurement/recording resolution of the CPT qc data
that are rounded to the nearest 50 kPa. Such rounding elimi-
nates the fine-scale (high-frequency) self-similar nature of the
recording. Unfortunately, rounding is not a linear filter, and so
NEERING / JUNE 1999
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FIG. 8. Sample Variogram, Averaged over 93 CPT Soundings, along with Associated Minimum and Maximum at Each Lag

FIG. 9. Sample Variance Function, Averaged over 93 CPT Soundings, along with Associated Minimum and Maximum for Each Aver-
aging Dimension
the exact nature of the change in the spectral density function
is difficult to express. Suffice it to say that the nonlinearities
in Fig. 11 may be artificially created to some extent due to
the rounding. The recording does not imply that the fine-scale
self-similar nature does not exist, just that it has not been ob-
served. A basic representative fractal model would naturally
include the fine-scale detail missing in the record.

Because the curves shown in both Figs. 10 and 11 retain a
distinct negative slope near the origin, rather than flattening
out, the long-scale (small-frequency, small-scale index) nature
of the soil clearly shows a fractal behavior. On the basis of
these plots, and in particular on Fig. 11, it appears that the CPT
data, after transforming to yield a more symmetric dis-0.74qc

tribution, are well modeled by a fractal process with spectral
JOURNAL OF GEOTECH
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density G(v) = Gov
2g, where Go is the spectral intensity, and

g is the spectral exponent controlling distribution of the power
from high-to-low frequencies. If 0 # g < 1, then the process
is stationary with infinite power in the high frequencies. Al-
ternatively, if g $ 1, then the infinite power is in the low
frequencies and the process ‘‘wanders’’; that is, the process is
nonstationary.

The fractal nature of the CPT data is indicated by both the
wavelet and the spectral density plots and suggested by the
variogram. In addition, if the logarithmic transformation had
been used instead of the power transform, these observations
would not have changed significantly. The correlation structure
is largely insensitive to the choice of transformations even
though the shape of the marginal distribution is clearly affected.
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FIG. 10. Sample Wavelet Coefficient Variance, Averaged over 93 CPT Soundings, along with Associated Minimum and Maximum at
Each Scale

FIG. 11. Periodogram, Averaged over 93 CPT Soundings, along with Associated Minimum and Maximum at Each Frequency
ESTIMATION OF STATISTICAL PARAMETERS

Once a stochastic model has been decided upon using the
tools of the previous section, the parameters of the model can
be estimated using all of the data. There is no longer a neces-
sity to maintain a high level of accuracy at the larger scales.
Admittedly, the longer records will tend to yield more accurate
estimates. It is expected that the variety of record lengths used
here will lead to a higher estimator variability, which is at least
conservative.

The spectral exponent g can be estimated in a number of
ways, of which the maximum likelihood estimates using the
wavelet and periodogram will be considered here. Using the
procedures outlined in Fenton (1999), a histogram of the
494 / JOURNAL OF GEOTECHNICAL AND GEOENVIRONMENTAL ENGIN
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wavelet maximum likelihood estimate of g is shown in Fig.
12 based on the estimated g for all 143 CPT soundings. In
this case, the average estimated g value was 1.9 6 0.18, where
the 0.18 value is the estimated standard deviation of the esti-
mated g value. This notation will be used throughout this sec-
tion. For all the soundings, the g estimates ranged from 1.28
to 2.30.

Fig. 13 shows a histogram of g estimates over the 143
soundings using the periodogram maximum likelihood esti-
mator discussed in Fenton (1999). The average estimated g
value is now 1.8 6 0.13 with an overall range from 1.23 to
2.07. The periodogram estimates agree very well with those
obtained using the wavelet basis, and they have somewhat su-
perior precision.
EERING / JUNE 1999
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FIG. 12. Distribution of Maximum Likelihood Estimates of g via Wavelet Basis over 143 CPT Soundings

FIG. 13. Distribution of Maximum Likelihood Estimates of g Obtained Using Periodogram over 143 Soundings
Again, it should be noted that the estimates obtained using
a lognormal transformation of the original data were very
nearly the same, with the wavelet and periodogram average
estimates being 1.84 6 0.20 and 1.76 6 0.14, respectively.
The estimation process does not appear to be particularly sen-
sitive to the data transformation. In the following, the perio-
dogram estimator will be used alone, with the wavelet esti-
mator being viewed primarily as corroborative evidence on the
estimate of g.

The spectral exponent g may be equivalently expressed by
the fractal dimension Df = (5 2 g)/2 or the Hurst coefficient
of fractional Brownian motion, H = (g 2 1)/2. The latter
coefficient can lead to some confusion, however, as the
Hurst coefficient for fractional Gaussian motion, the derivative
of Brownian motion, which applies when 0 # g < 1, is
H = (g 1 1)/2.

The spectral intensity parameter Go was found to have an
average value of 1.03 3 105 6 0.67 3 105. This parameter is
related to the process variance and is considered to be site
specific and also significantly affected by the type of data
transform used. The result quoted here is for the trans-0.74q c

formation. Over the 143 CPT soundings, the average variance
of the data was estimated (by method of moments) to be0.74q c

9.1 3 104 6 4.8 3 104 and the mean was estimated to be 782
JOURNAL OF GEOTECH
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6 124. Armed with these parameters, which can be summa-
rized as = 782, Ĝo = 1.03 3 105, and = 1.8, one canˆ ˆm gX

presumably create a stochastic model for the X = process.0.74q c

Then letting qc = X1.35 recovers the desired process. There are,
however, a few more details to work out. Recall that the fractal
process is, strictly speaking, an infinite variance process, and
for g $ 1 it is also nonstationary. The infinite variance is
physically unrealizable, and the nonstationarity is inconvenient
as it introduces an origin issue. The stochastic model must be
modified to become physically useful, and for this purpose a
lower frequency cutoff vo must be introduced. An appropriate
spectral density function is of the form illustrated in Fig. 14.

The choice of lower frequency cutoff, according to the sug-
gestion by Fenton (1999), can be taken to be 2p/D, where D
is the soil depth. This suggestion is perhaps particularly ap-
propriate if the spectral intensity at the target site is unknown.
However, if one or more CPT soundings are made at the target
site and the spectral intensity estimated, then the cutoff fre-
quency can be estimated by matching the area under the spec-
tral density function shown in Fig. 14 to the method of mo-
ments estimated average process variance. According to
theory, the variance can be obtained from the spectral density
function according to
NICAL AND GEOENVIRONMENTAL ENGINEERING / JUNE 1999 / 495
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FIG. 14. Truncated Spectral Density Function for Fractal Pro-
cesses with g > 1

` v `o
G Go o2s = G(v) dv = dv 1 dvx E E Eg gv vo0 0 vo

g 12g= G vo oS D1 2 g (7)

for the g > 1 case. This can be inverted to solve for the re-
quired lower cutoff frequency in terms of the estimated vari-
ance and spectral parameters

ˆ1/(g21)ˆ ˆG go
v = (8)o S D2ˆ ˆs (g 2 1)X
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Because of the fractal nature of the data, the cutoff frequency
should be selected for a particular sample length D. Using the
CPT sounding shown in Fig. 2 as an example, the read-0.74q c

ings are redrawn in Fig. 15(a). This particular sounding has
length D = 27.8 m and parameter estimates = 1.81, Ĝo =ĝ
3.85 3 104, and = 7.77 3 104. For these values, the cutoff2ŝ x

frequency is given by (8) to be vo = 1.13 rads/m. This cor-
responds to a cutoff frequency 5 times that suggested in the
absence of knowledge of the spectral intensity (2p/D). The
frequency cutoff effectively controls how stationary realiza-
tions of the model appear. A smaller cutoff frequency leads to
realizations with more pronounced apparent ‘‘trends’’ over the
soil depth, although the trends in this case are actually random.

A realization of the resulting random process, with truncated
spectral density function

ĝĜ /v if 0 # v < vo o oG(v) = (9)ĝHĜ /v if v > vo o

using the parameters found above for the CPT data in Fig.
15(a), is shown in Fig. 15(b). This realization was produced
using the fast Fourier transform method (Fenton 1994). In ad-
dition to its increased high frequency content, it has very much
the same statistical nature as seen in Fig. 15(a). It should be
noted that it is not expected to be identical as it is merely one
possible realization. It does, however, include the high-fre-
quency content essential to the fine-scale self-similarity of a
true fractal process. If such detail is not desired, it can be
eliminated by placing an upper bound on the spectral density
function of (9) or by passing each realization through a low-
pass filter.

Using the result that the scale of fluctuation is proportional
to G(0) (VanMarcke 1984), an equivalent scale of fluctuation
FIG. 15. (a) Observed Record from One CPT Sounding; (b) Simulated Record at Same Location Using g = 1.810.74 0.74q qc c
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can be associated with the lower cutoff frequency applied to
the fractal model, as follows:

ˆpGo
u* = (10)ˆ2 gŝ vX o

Interestingly, the equivalent scale of fluctuation for the sound-
ing shown in Fig. 15(a) is computed to be u* = 1.24 m,
whereas its maximum likelihood estimate under the Gauss-
Markov model is = 3.3 m. The Gauss-Markov model has aû
finite-scale, exponentially decaying correlation function whose
decay rate is dictated by u. Although these are quite different
correlation models, the values of u* and are reasonably sim-û
ilar. A brief investigation of the maximum likelihood scale
estimates under the Gauss-Markov model indicates that isû
highly variable, with an average over the 143 soundings of
2.3 6 2.1 m, and a range from 0.22 to 13.8 m. Thus, the
equivalent scale computed for the truncated fractal model is
well within the range of those values estimated under the fi-
nite-scale model.

Once the cutoff frequency, Go and g are known, the model
is fully specified, at least as far as the second moment is con-
cerned. Unfortunately, no simple closed form expression for
the covariance function corresponds to the truncated fractal
spectral density function of (9), and so this quantity is most
easily obtained by numerical integration using the Weiner-
Khinchine relationship

`

C(t) = G(v)cos(vt) dv (11)E
0

if it is desired. Because the integrand above contains the cosine
function, it alternates in sign. Numerically, (11) is therefore
prone to errors due to so-called catastrophic cancellation (loss
of accuracy in the difference between two large numbers). The
same integral can be written

p/2`
1

C(t) = D (k, u)cos u du (12)GO Et k=0 0

where

2pk 1 u 2pk 1 1.5p 1 u
D (k, u) = G 1 GG S D S Dt t

2pk 1 p 1 u 2pk 1 0.5p 1 u
2 G 2 GS D S Dt t (13)

which, still involving differences, can at least be analytically
approximated when the sum of the first two terms is very
similar to the sum of the second two terms. For the case where
G(v) = Go/v

g the following approximation is appropriate when
k is large

1 2 2(g12) gD (k, u) = p g(g 1 1)(2pk) G tG o2

g 1 2 9p
? 1 2 1 uF S DG6pk 4 (14)

The remaining integration in (12) can be performed as usual
(e.g., by using Gaussian quadrature).

CONCLUSIONS

The primary result of this paper lies in the observation that
the vertical variation of CPT qc data appears to be fractal in
nature. If CPT soundings are available at the target site for
which the stochastic soil model is to be applied then all of the
fractal parameters, including the spectral exponent, can be es-
timated at the site. In that case, the major use of this study is
JOURNAL OF GEOTEC
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in establishing the basis for the use of the fractal model and
an indication of the variability of the estimators.

Alternatively, if data taken at a similar target site is suffi-
cient only to establish the mean and variance of the desired
soil property, then an a priori second-moment model for the
vertical soil variability would have g = 1.8, a lower frequency
cutoff equal to about 2p/D, where D is the soil depth, and a
spectral intensity Go computed so that the area under the spec-
tral density function is equal to the estimated variance [see
(7)].

Clearly there is much work yet to be done on the inferential
characterization of soils. For one, this study only considers a
single site, and so its results are still somewhat limited. The
issues related to the choice of a lower cutoff frequency need
additional clarification as this parameter is still somewhat ar-
bitrary in nature. Also needed is a good error model to distin-
guish between the real soil behavior and measurement error.
Because such a model involves the estimation of additional
parameters, an even more extensive database may be required
to make confident inferences. It is believed, however, that the
methodologies and reasoning set out in this paper and a com-
panion paper (Fenton 1999) lay the groundwork for additional
inferential studies on 1D variation in soil properties. In higher
dimensions, fractal models will presumably still apply, so that
researchers can concentrate on estimation issues.
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APPENDIX II. NOTATION

The following symbols are used in this paper:

a, b, r = constants;
Ĉ(tj) = estimated covariance function at discrete lag tj;

D = CPT sample length;
Df = fractal dimension;
d = representative length;
fs = side friction from CPT data (kPa);

Go = spectral intensity parameter;
Ĝo = estimated spectral intensity parameter;

G(v) = one-sided spectral density function;
Ĝ(v) = sample one-sided spectral density function;

H = Hurst or self-similarity coefficient;
m = scale (dilation) index for wavelet basis;
n = number of observations in sample of X(z);
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qc = cone resistance from CPT data (kPa);
V̂(tj) = estimated variogram;

Xi = random value of transformed CPT data at zi;
Xi,j = average of Xj, Xj11, . . . , Xj1i;

mX j = random wavelet coefficient;
xi = observed value of transformed CPT data at zi;
z = depth coordinate;
zi = discrete points along z;
g = spectral exponent in fractal model;
ĝ = estimated spectral exponent;

ĝ(i) = sample discrete variance function;
Dz = incremental distance between observations;

DG(k, u) = differencing operation on G(v);
ε = residual random process;
u = scale of fluctuation;
û = estimated scale of fluctuation;

u* = equivalent scale of fluctuation;
m = pore-water pressure from CPT data (kPa);

mX = mean of X(z);
m̂X = estimated mean of X(z);

r̂(t )j = estimated correlation function at discrete lag tj;
2sX = variance of X(z);
2ŝX = estimated variance of X(z);
t = separation distance;
tj = discrete separation distance, =jDz;
v = frequency or wavenumber; and

vo = lower frequency cutoff.
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