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Abstract: By modeling soils as spatially random media, estimates of the reliability of foundations against serviceability limit state
failure, in the form of excessive differential settlements, can be made. The soil’s property of primary interest is its elastic modulus,E,
which is represented here using a lognormal distribution and an isotropic correlation structure. Prediction of settlement below a foundation
is then obtained using the finite element method. By generating and analyzing multiple realizations, the statistics and density functions of
total and differential settlements are estimated. In this paper probabilistic measures of total settlement under a single spread footing and
of differential settlement under a pair of spread footings using a two-dimensional model combined with Monte Carlo simulations are
presented. For the cases considered, total settlement is found to be represented well by a lognormal distribution. Probabilities associated
with differential settlement are conservatively estimated through the use of a normal distribution with parameters derived from the
statistics of local averages of the elastic modulus field under each footing.
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Introduction

The settlement of structures founded on soil is a subject of con-
siderable interest to practicing engineers since excessive settle-
ments often lead to problems of serviceability. In particular, un-
less the total settlements themselves are particularly large, it is
usually differential settlements which lead to unsightly cracks in
facades and structural elements, possibly even to structural fail-
ure, especially in unreinforced masonry elements. Existing code
requirements that limit differential settlements to satisfy service-
ability limit states @see building codes ACI 318-89~1989! or
A23.3-M84 ~1984!# specify maximum deflections ranging from
D/180 to D/480, depending on the type of supported elements,
whereD is the center-to-center span of the structural element. In
practice, differential settlements between footings are generally
controlled, not by considering the differential settlement itself, but
by controlling the total settlement predicted by analysis using an
estimate of the soil elasticity. This approach is largely based on
correlations between total settlements and differential settlements
observed experimentally~see, e.g., the work of D’Appolonia
et al. 1968! and leads to a limitation of 4–8 cm in total settlement
under a footing as stipulated by the Canadian Foundation Engi-
neering Manual, Part 2~1978!.

Because of the wide variety of soil types and possible loading
conditions, experimental data on differential settlement of foot-
ings founded on soil are limited. With the aid of modern high-
speed computers, it is now possible to probabilistically investigate

differential settlements over a range of loading conditions and
geometries. In this paper the findings of such a study are reported
along with a reasonably simple, approximate approach to estimate
probabilities associated with settlements. The case of a single
footing, as shown in Fig. 1~a!, is first considered and estimates of
the probability density function governing total settlement of the
footing as a function of footing width for various statistics of the
underlying soil are given. Only the soil elasticity is considered to
be spatially random. Uncertainties that arise from the model, test
procedures and in the loads are not considered. In addition, the
soil is assumed to be isotropic, that is, the correlation structure is
assumed to be the same in both the horizontal and vertical direc-
tions where ‘‘correlation’’ refers to the correlation between two
points in the soil mass. Although soils generally exhibit a stronger
correlation in the horizontal direction, due to their layered nature,
the degree of anisotropy is site specific. In that in this study we
are attempting to establish the basic probabilistic behavior of
settlement, anisotropy is left as a refinement in future research.

In foundation engineering, both immediate and consolidation
settlements are traditionally computed using elastic theory. The
elastic properties,E, that apply to either or both immediate and
consolidation settlement are addressed here, since these are usu-
ally the most important components of settlement.

The footings are assumed to be founded on a soil layer under-
lain by bedrock. The assumption of an underlying bedrock can be
relaxed if a suitable averaging region is used. Guidelines to this
effect are suggested below. The results are generalized to allow
the estimation of probabilities associated with settlements under
footings in many practical cases.

In the second part of the paper the issue of differential settle-
ments under a pair of footings, shown in Fig. 1~b!, again for the
particular case of footings founded on a soil layer underlain by
bedrock is addressed. The mean and standard deviation of differ-
ential settlement are estimated as functions of the footing width
for various input statistics of the underlying elastic modulus field.
The probability distribution governing differential settlement is
found to be conservatively estimated using a joint normal distri-
bution with the correlation predicted using local averages of the
elastic modulus field under the two footings.
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The physical problem is represented by use of a two-
dimensional~2D! plane strain model following the work of Paice
et al. ~1996!. If the footings extend a large distance in the out-of-
plane direction,z, then the 2D elastic modulus field is interpreted
either as an average overz or as having an infinite scale of fluc-
tuation in thez direction. For footings of finite dimension, the 2D
model is admittedly just an approximation. However, the approxi-
mation is considered reasonable since the elastic modulus field is
averaged in thez direction in any case.

Random Field ÕFinite Element Model

As illustrated in Fig. 1, the soil mass is discretized into 60 four-
noded quadrilateral elements in the horizontal direction by 20
elements in the vertical direction. Trials runs using 120340 ele-
ments resulted in less than a 2.5% difference in settlements for the
worst cases~narrowest footings!, at a cost of more than 10 times
the computing time, so the 60320 discretization was considered
adequate. The overall dimensions of the soil model are held fixed
at L53 in width by H51 in height. No units will be used since
the probabilistic properties of the soil domain are scaled by the
correlationscale of fluctuationthat will be discussed shortly. The
left and right faces of the finite element model~FEM! are con-
strained against horizontal displacement but are free to slide ver-
tically whereas the nodes on the bottom boundary are spatially
fixed. The footing~s! are assumed to be rigid, to not undergo any
rotations, and to have a rough interface with the underlying soil
~no-slip boundary!. A fixed loadP51 is applied to each footing.
Since settlement varies linearly with load, the results are easily
scaled to different values ofP.

To investigate the effect of the footing width, the soil layer
thickness,H, was held constant at 1.0 while the footing width was
varied according to Table 1. Because the settlement problem is
linear, the following results can be scaled to arbitrary footing
widths and soil layer thicknesses. For example, the settlement of
a footing of widthWf852.0 m on anH8520 m thick soil layer

with load P851,000 kN and elastic modulusE8560 kN/m2 cor-
responds to 0.06 times the settlement of a footing of widthWf

50.1 m on anH51.0 m thick soil layer withP51 kN and elastic
modulus E51 kN/m2. The scaling factor from the case with
primes to that without primes is (P/P8)(E8/E)(Wf /Wf8)(H8/
H).

In the two footing case, the distance between footing centers
was held constant at 1.0, while the footing widths~assumed to be
equal! were varied. Footings of width greater than 0.5 were not
considered since this situation approaches that of a strip footing
~the footings would be joined whenWf51.0!. The soil has two
properties of interest to the settlement problem: these are the~ef-
fective! elastic modulus,E(x), and the Poisson ratio,n(x), where
x is the spatial position. Only the elastic modulus is considered to
be a spatially random soil property. The Poisson ratio is believed
to have smaller relative spatial variability and only second order
importance to settlement statistics. It is held fixed at 0.25 over the
entire soil mass for all simulations.

Fig. 1 shows a gray-scale representation of a possible realiza-
tion of the elastic modulus field, along with the finite element
mesh. Lighter areas denote smaller values ofE(x) so that the
elastic modulus field shown in Fig. 1~b! corresponds to a higher
elastic modulus under the left footing than under the right; this
leads to the substantial differential settlement, indicated by the
deformed mesh. This is just one possible realization of the elastic
modulus field; the next realization could just as easily show the
opposite trend.

The elastic modulus field is assumed to follow a lognormal
distribution so that ln(E) is a Gaussian~normal! random field with
meanm ln E and variances ln E

2 . The choice of a lognormal distri-
bution is motivated by the fact that the elastic modulus is strictly
non-negative, a property of the lognormal distribution~but not the
normal!, while still having a simple relationship with the normal
distribution. A Markovian spatial correlation function, which
gives the correlation coefficient between log–elastic modulus val-
ues at points separated by distancet is used

r ln E~t!5expH 2
2utu
u ln E

J (1)

in which t5x2x8 is the vector between spatial pointsx andx8,
andutu is the absolute length of this vector~the lag distance!. The
correlation function decay rate is governed by the so-called scale
of fluctuation,u ln E , which, loosely speaking, is the distance over
which log–elastic moduli are significantly correlated@when the
separation distanceutu is greater thanu ln E , the correlation be-
tween lnE(x) and lnE(x8) is less than 14%#.

The assumption of isotropy is, admittedly, somewhat restric-
tive. In principle, the methodology presented in the following is
easily extended to anisotropic fields although the accuracy of the
proposed distribution parameter estimates would then need to be
verified. For both the single footing and the two footing problems,

Fig. 1. Random field/FEM representation of~a! single footing and
~b! two footings founded on soil layer

Table 1. Input Parameters Varied in this Study while KeepingH
51, D51, P51, mE51, andn50.25 Constant

Parameter Values considered

sE 0.1, 0.5, 1.0, 2.0, 4.0

u ln E 0.01, 0.05, 0.1, 0.3, 0.5, 0.7, 1.0, 2.0, 5.0, 10.0, 50.0

Wf 0.1, 0.2, 0.5, 1.0~single footing!
0.1, 0.3, 0.5~two footings!
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however, it is the horizontal scale of fluctuation that is more im-
portant. As will be seen, the settlement variance and covariance
depend on the statistics of a local average of the log–elastic
modulus field under the footing. If the vertical scale of fluctuation
is less than the horizontal, this can be handled simply by reducing
the vertical averaging dimensionH to H(u ln Eh

/uln Ev
). For very

deep soil layers, the averaging depthH should probably be re-
stricted to no more than about 10Wf since the stress under a
footing falls off approximately according toWf /(Wf1H).

In practice, one approach by which to estimateu ln E involves
collecting elastic modulus data from a series of locations in space,
estimating the correlations between the log data as a function of
the separation distance, and then fitting Eq.~1! to the estimated
correlations. See, e.g., Asaoka and Grivas~1982!, Marsily ~1985!,
Souliéet al. ~1990!, Ravi ~1992!, De Groot and Baecher~1993!,
Chiasson et al.~1995!, and Fenton~1999! for further information
on the characterization of the spatial variability of soil properties.
The estimation ofu ln E is not a simple problem since it tends to
depend on the distance over which it is estimated. For example,
sampling soil properties every 5 cm over 2 m will likely yield an
estimatedu ln E of about 20 cm, while sampling every 1 km over
1000 km will likely yield an estimate of about 200 km. This is
because soil properties vary at many scales: looked at closely, soil
can change significantly within a few meters relative to the few
meters considered. However, soils are formed by weathering and
glacial actions which can span thousands of kilometers, yielding
soils which have much in common over large distances. Thus,
soils can conceptually have lingering correlations over entire con-
tinents~even planets!.

This lingering correlation in the spatial variability of soils im-
plies that scales of fluctuation estimated in the literature should
not just be used blindly. One should attempt to select a scale
which has been estimated on a similar soilover a domain of
similar sizeto the site being characterized. In addition, the level
of detrending used to estimate the reported scale of fluctuation
must be matched at the site being characterized. For example, if a
scale of fluctuation, as reported in the literature, were estimated
from data with a quadratic trend removed, then sufficient data
must be gathered at the site being characterized to allow a qua-
dratic trend to be fitted to the site data. The estimated scale of
fluctuation then applies to the residual random variation around
the trend. To facilitate this, researchers providing estimates of
variance and scale in the literature should report estimates with
the trend removed, including the trend itself, and estimates with-
out the trend removed. The latter will typically yield significantly
larger estimated variance and scales, giving a truer sense of the
actual soil variability.

In the case of two footings, the use of a scale of fluctuation
equal toD is conservative in that it yields differential settlement
variances which are at, or close to, their maxima, as will be seen.
In some cases, however, settingu ln E5D may be unreasonably
conservative. If sufficient site sampling has been carried out to
estimate the mean and variance of the soil properties at the site,
then a significantly reduced scale is warranted. The literature
should then be consulted to find a similar site on which a spatial
statistical analysis has been carried out and an estimated scale
reported.

In the case of a single footing, takingu ln E as large is conser-
vative; in fact, the assumption thatE is ~lognormally distributed
and! spatially constant leads to the largest variability~across re-
alizations! in footing settlement. Thus, traditional approaches to
randomness in footing settlement, using a single random variable

to characterizeE, are conservative, settlement will generally be
less than predicted.

Throughout, the mean elastic modulus,mE , is held fixed at
1.0. Since settlement varies linearly with the soil elastic modulus,
it is always possible to scale the settlement statistics to the actual
mean elastic modulus. The standard deviation of the elastic modu-
lus is varied from 0.1 to 4.0 to investigate the effects of elastic
modulus variability on settlement variability. The parameters of
the transformed ln(E) Gaussian random field may be obtained
from the relations

s ln E
2 5 ln~11sE

2/mE
2 ! (2a)

m ln E5 ln~mE!2 1
2s ln E

2 (2b)

from which it can be seen that the variance of ln(E), s ln E
2 , varies

from 0.01 to 2.83 in this study@note also that the mean of ln(E)
depends on bothmE andsE#.

To investigate the effect of the scale of fluctuation,u ln E , on
the settlement statistics,u ln E is varied from 0.01~i.e., very much
smaller than the soil model size! to 50.0~i.e., substantially bigger
than the soil model size! and up to 200 in the two footing case. In
the limit asu ln E→0, the elastic modulus field becomes a white
noise field, withE values at any two distinct points independent.
In terms of the finite elements themselves, values ofu ln E smaller
than the elements result in a set of elements which are largely
independent~increasingly independent asu ln E decreases!. Be-
cause of the averaging effect of the details of the elastic modulus
field under a footing, the settlement in the limiting case ofu ln E

→0 is expected to approach that obtained in the deterministic
case, withE5mE everywhere, and has vanishing variance for
finite s ln E

2 .
By similar reasoning the differential settlement@as shown in

Fig. 1~b!# as u ln E→0 is expected to go to zero. At the other
extreme, asu ln E→`, the elastic modulus field becomes the same
everywhere. In this case, the settlement statistics are expected to
approach those obtained using a single lognormally distributed
random variable,E, to model the soil,E(x)5E. That is, since the
settlement,d, under a footing founded on a soil layer with uni-
form ~but random! elastic modulusE is given by

d5
ddetmE

E
(3)

where ddet5‘‘deterministic’ ’ settlement obtained from a single
finite element analysis~or an appropriate approximate calcula-
tion! of the problem usingE5mE everywhere. In this case as
u ln E→` the settlement assumes a lognormal distribution with pa-
rameters

m ln d5 ln~ddet!1 ln~mE!2m ln E5 ln~ddet!1 1
2s ln E

2 (4a)

s ln d5s ln E (4b)

where Eq.~2b! was used in Eq.~4a!. Also since, in this case, the
settlement under the two footings of Fig. 1~b! becomes equal, the
differential settlement becomes zero. Thus, the differential settle-
ment is expected to approach zero at both very small and at very
large scales of fluctuation. The Monte Carlo approach adopted
here involves the simulation of a realization of the elastic modu-
lus field and subsequent finite element analysis~e.g., Smith and
Griffiths 1998! of that realization to yield a realization of the
footing settlement~s!. Repeating the process over an ensemble of
realizations generates a set of possible settlements which can be
plotted in the form of a histogram and from which distribution
parameters can be estimated. In this study, 5000 realizations are
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performed for each input parameter set~sE , u ln E , andWf!. If it
can be assumed that log settlement is approximately normally
distributed~which is seen later to be a reasonable assumption and
is consistent with the distribution selected forE! and thatmln d

andsln d
2 are the estimators of the mean and variance of log settle-

ment, respectively, then the standard deviations of these estima-
tors obtained from 5000 realizations are given by

smln d
.sln d /An50.014sln d (5a)

ss
ln d
2 .A 2

n21
sln d

2 50.02sln d
2 (5b)

so that the estimator ‘‘errors’’ are negligible compared to the es-
timated variance~i.e., about 1 or 2% of the estimated standard
deviation!.

Realizations of the log–elastic modulus field are produced
using the two-dimensional local average subdivision~LAS! tech-
nique ~Fenton and Vanmarcke 1990; Fenton 1994!. The elastic
modulus value assigned to thei th element is

E~xi !5exp@m ln E1s ln EG~xi !# (6)

whereG(xi)5 local average over the element centered atxi of a
zero mean, unit variance Gaussian random field.

Single Footing Case

A typical histogram of the settlement under a single footing, es-
timated by 5,000 realizations, is shown in Fig. 2 forWf50.1,
sE /mE51, andu ln E50.1. With the requirement that settlement
be non-negative, the shape of the histogram suggests a lognormal
distribution, which was adopted in this study@see also Eqs.~4!#.
The histogram is normalized to produce a frequency density plot,
in which a straight line is drawn between the interval midpoints.

Superimposed on the histogram is a fitted log–normal distri-
bution with parameters given bymln d andsln d in the line key. At
least visually, the fit appears reasonable. In fact, this is one of the
worst cases, of all the 220 parameter sets given in Table 1; a
chi-square goodness-of-fit test yields ap value of 8310210.
Large p values, up to 1.0, support the lognormal hypothesis, so
this small value suggests that the data do not follow a lognormal
distribution. Unfortunately, when the size of the sample is large
(n55,000 in this case! goodness-of-fit tests are quite sensitive to
the ‘‘smoothness’’ of the histogram. They perhaps correctly indi-
cate that the true distribution is not exactly as hypothesized, but
provide little information about thereasonablenessof the as-

sumed distribution. As can be seen from Fig. 2, the lognormal
distribution certainly appears reasonable.

Over the entire set of simulations performed for each param-
eter of interest~Wf , sE , andu ln E!, 80% of the fits havep values
that exceed 5% and only 5% havep values of less than 0.0001.
This means that the lognormal distribution is generally a close
approximation to the distribution of the simulated settlement data,
typically at least as good as seen in Fig. 2.

Accepting the lognormal distribution as a reasonable fit to the
simulation results, the next task is to estimate the parameters of
the fitted lognormal distributions as functions of the input param-
eters~Wf , sE , andu ln E!. The lognormal distribution

f d~x!5
1

A2ps ln dx
expF2

1

2 S ln x2m ln d

s ln d
D 2G , 0<x,` (7)

has two parameters,m ln d ands ln d . Fig. 3 shows how the estima-
tor of m ln d , mln d , varies withs ln E for Wf50.1. All scales of
fluctuation are drawn in the plot, but they are not labeled indi-
vidually since they lie so close together. This observation implies
that the mean log settlement is largely independent of the scale of
fluctuation,u ln E . This is as expected since the scale of fluctuation
does not affect the mean of a local average of a normally distrib-
uted process. Fig. 3 suggests that the mean of log settlement can
be closely estimated by a straight line of the form@suggested by
Eq. ~4a!#,

m ln d5 ln~ddet!1 1
2s ln E

2 (8)

Eq. ~8! is also shown in Fig. 3 and it can be seen that the agree-
ment is very good. Even closer results were found for the other
footing widths.

Estimates of the standard deviation of log settlement,sln d , are
plotted in Fig. 4~by symbols! for the smallest and largest footing
widths. Intermediate footing widths give similar results. In all
cases,sln d increases tos ln E as u ln E increases. The reduction in
variance asu ln E decreases is due to the local averaging variance
reduction of the log–elastic modulus field under the footing~for
smalleru ln E , there are more ‘‘independent’’ random field values,
so the variance reduces faster under averaging; see Vanmarcke
1984, for more details on local averaging theory!.

Following the above reasoning, and assuming that local aver-
aging of the area under the footing accounts for all of the reduc-
tion in variance seen in Fig. 4, the standard deviation of log
settlement is

s ln d5Ag~Wf ,H !s ln E (9)

whereg(Wf ,H)5so-called variance function~Vanmarcke 1984!,
which depends on the averaging region,Wf3H, as well as on the

Fig. 2. Typical frequency density plot and fitted lognormal distribu-
tion of settlement under single footing

Fig. 3. Estimated mean of log settlement
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scale,u ln E . Sinces ln E
2 is constant for each value ofsE /mE @see

Eq. ~2a!#, Fig. 4 is essentially a plot of the variance function,
g(Wf ,H), illustrating how the variance of a local average de-
creases as the scale of fluctuation decreases.

Specifically, the variance function gives the amount that the
log–elastic modulus variance is reduced when its random field is
averaged over a region ofWf3H. The dependence of the vari-
ance function onH is apparently only valid for the geometries
considered; if the footing is founded on a much deeper soil mass,
one would not expect to average over the entire depth due to the
reduction of stress with depth. As suggested in the ‘‘Random
Field/Finite Element Model,’’H should be limited to no more
than about 10Wf . If in doubt, takingH to be relatively small
~even zero! yields a conservative estimate of the settlement dis-
tribution, having large variability. This is equivalent to takingu ln E

as large, as noted previously in the ‘‘Random Field/Finite Ele-
ment Model.’’ In practice, however, values of the normalized av-
eraging areaWfH/u ln E

2 greater than about 5 yield values ofs ln d

less than about 15% ofs ln E so changes inH above this level have
only a minor effect on the overall reduction in variance.

The variance function that corresponds to the isotropic Mar-
kov correlation function@Eq. ~1!# is approximated by

g~d1 ,d2!5 1
2@g~d1!g~d2ud1!1g~d2!g~d1ud2!# (10)

where

g~di !5F11S di

u ln E
D 3/2G2~2/3!

, g~di udj !5F11S di

Rj
D 3/2G2~2/3!

(11a)

Rj5u ln EH p

2
1S 12

p

2 DexpF2S dj

~p/2!u ln E
D 2G J (11b)

in which di5dimensions of the averaging region~in this case,
d15Wf andd25H!. Predictions ofs ln d using Eq.~9! are super-
imposed in Fig. 4 by lines. The agreement is remarkable. Inter-
mediate cases show similar, if not better, agreement with the pre-
dictions.

An alternative physical interpretation of Eqs.~8! and ~9! can
be made by generalizing the relationship given by Eq.~3! to the
following form:

d5
ddetmE

Eg
(12)

whereEg5geometric mean of the elastic modulus values over the
region of influence,

Eg5expS 1

WfH
E

0

HE
0

Wf

ln E~x,y!dxdyD (13)

Taking the logarithm of Eq.~12! and then computing its mean and
variance leads to Eqs.~8!–Eq. ~4a!, and Eq.~9!. The geometric
mean is dominated by small values of the elastic modulus, which
means that the total settlement is dominated by low elastic modu-
lus regions that underly the footing, as would be expected.

Single Footing Example

Consider a single footing of widthWf52.0 m to be founded on a
soil layer of depth 10.0 m that will support a load ofP
51,000 kN. Suppose also that samples taken at the site have
allowed estimates of the elastic modulus mean and standard de-
viation at the site to be 40 and 40 MPa, respectively. In a similar
way, test results on a regular array at this or at a similar site have
resulted in an estimated scale of fluctuation ofu ln E53.0 m. As-
sume also that the Poisson ratio is 0.25.

The results from the previous section can be used as follows to
estimate the probability that the settlement under the footing will
exceed 0.10 m.
1. A finite element analysis of the given problem with soil elas-

tic modulus everywhere equal tomE540 MPa gives a deter-
ministic settlement ofddet50.03531 m.

2. Compute the variance of the log–elastic modulus from Eq.
~2a!, s ln E

2 5ln(2)50.69315, so thats ln E50.83256.
3. Compute the mean of log settlement from Eq.~8!, m ln d

5ln(ddet)10.5s ln E
2 523.343710.5(0.69315)522.9971.

4. Compute the standard deviation of log settlement using
Eqs. ~9!–~11!, s ln d5Ag(Wf ,H)s ln E5A0.22458(0.83256)
50.39455.
As an aside, form ln d522.9971 and 0.39455, the corre-
sponding settlement mean and standard deviations are

md5exp(mln d1
1
2sln d

2 )50.0540 m and sd5md
Aes ln d

2
21

50.0222 m, respectively. A trial run of 5,000 realizations for
this problem givesmd50.0562 andsd50.0201 for relative
differences of 3.9 and 10.4%, respectively. The estimated
relative standard error onmd is approximately 0.5% for
5,000 realizations.

5. Compute the desired probability using the lognormal distri-
bution, P(d.0.10)512F(1.7603)50.0392, whereF(•)
is the standard normal cumulative distribution.

A simulation run for this problem yielded 160 samples of 5,000
having settlement greater than 0.10 m. This gives a simulation
based estimate of the above probability of 0.032.

Two Footing Case

Having established, with reasonable confidence, the distribution
associated with settlement under a single footing founded on a
soil layer, attention can now be turned to the more difficult prob-
lem of finding a suitable distribution with which to model differ-
ential settlement between footings. Analytically, ifd1 is the settle-
ment under the left footing shown in Fig. 1 andd2 is the
settlement of the right footing, then according to the results of the
‘‘Single Footing Case,’’d1 and d2 will be jointly lognormally
distributed random variables,

Fig. 4. Comparison of simulated sample standard deviation of log
settlement, shown by symbols, with theoretical estimate via Eq.~9!,
shown by lines
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f d1d2
~x,y!5

1

2ps ln d
2 rxy

expS 2
1

2r 2 ~Cx
22r ln dCxCy1Cy

2! D ,

x>0, y>0 (14)

where Cx5(ln x2mln d)/sln d , Cy5(ln y2mln d)/sln d , r 251
2r ln d

2 , and r ln d is the correlation coefficient between the log
settlement of the two footings. It is assumed in the above thatd1

andd2 have the same mean and variance, which, for the symmet-
ric conditions shown in Fig. 1~b!, is a reasonable assumption.

If the differential settlement between footings is defined by
D5d12d2 then the mean ofD is zero if the elastic modulus field
is statistically stationary. As indicated by Fenton~1999!, station-
arity is a mathematical assumption that in practice depends on the
level of knowledge that one has about the site. If a trend in the
effective elastic modulus is known to exist at the site, then the
following results can be still be used by computing the determin-
istic differential settlement using the mean ‘‘trend’’ values in a
deterministic analysis, then computing the probability of anaddi-
tional differential settlement using the equations that follow. In
this case the following probabilistic analysis would be performed
with the trend removed from the elastic modulus field.

The exact distribution governing the differential settlement,
assuming that Eq.~14! holds, is given by

f D~x!55 E0

`

f d1d2
~x1y,y!dy if x>0

E
2x

`

f d1d2
~x1y,y!dy if x,0

(15)

which can be evaluated numerically, but which has no analytical
solution so far as the authors are aware. This distribution is the
subject of continuing research. In the following a normal approxi-
mation to the distribution ofD will be investigated.

Fig. 5 shows two typical frequency density plots of differential
settlement between two footings of equal size (Wf /D50.1) with
superimposed fitted normal distributions, where the fit was ob-
tained by directly estimating the mean and standard deviations
from the simulation. The normal distribution appears to be a rea-

sonable fit in Fig. 5~a!. Since a lognormal distribution begins to
look very much like a normal distribution whens ln d /mln d is
small, then for smalls ln d /mln d both d1 and d2 will be approxi-
mately normally distributed. For smallu ln E , therefore, since this
leads to smalls ln d , the difference (d12d2) will be very nearly
normally distributed, as seen in Fig. 5~a!. For larger scales of
fluctuation~and/or smallerD!, the histogram of differential settle-
ments becomes narrower than the normal distribution, as seen in
Fig. 5~b!. What is less obvious in Fig. 5~b! is that the histogram
has much longer tails than those predicted by the normal distri-
bution. These long tails lead to a variance estimate which is larger
than that dictated by the center region of the histogram. Although
the variance could be artificially reduced so that the fit is better
near the origin, the result would be a significant underestimate of
the probability of large differential settlements. This issue will be
discussed at more length, shortly, when differential settlement
probabilities are considered. Both plots are forsE /mE51.0 and
are typical of other coefficients of variation~COV!.

Assuming thatD5d12d2 is at least approximately normally
distributed, and thatd1 and d2 are identically and lognormally
distributed with correlation coefficientrd , then differential settle-
ment has parameters of

mD50, sD
2 52~12rd!sd

2 (16)

Note that whenu ln E approaches zero, the settlement variancesd
2

also approaches zero. Whenu ln E becomes very large, the corre-
lation coefficient between settlements under the two footings ap-
proaches one. Thus, Eqs.~16! are in agreement with the expecta-
tion that differential settlements will disappear for both very small
and very large values ofu ln E .

Since local averaging of the log–elastic modulus field under
the footing was found to be useful in predicting the variance of
log settlement, it seems reasonable to suggest that the covariance
between log settlements under a pair of footings will be predicted
well by the covariance between local averages of the log–elastic
modulus field under each footing. For footings of equal size, the
covariance between local averages of the log–elastic modulus
field under two footings separated by distanceD is given by

Cln d5
s ln E

2

Wf
2H2 E

0

HE
0

WfE
0

HE
D

D1Wf

r ln E~x12x2 ,y12y2!dx2dy2dx1dy1 (17)

Fig. 5. Frequency density and fitted distribution for differential settlement under two footings of equal size withu ln E /D50.05 in ~a! and 1.0
in ~b!
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which can be evaluated reasonably accurately using a three-point
Gaussian quadrature ifr ln E is smooth, like it is in Eq.~1!. See the
Appendix for details.

The correlation coefficient between settlements can now be
obtained by transforming back from log space,

rd5
exp~Cln d!21

exp~s ln d
2 !21

(18)

wheres ln d is given by Eq.~9!. The agreement between the cor-
relation coefficient predicted by Eq.~18! and the correlation co-
efficient estimated from the simulations is shown in Fig. 6. In
order to extend the curve up to correlation coefficients close to
one, four additional scales of fluctuation were considered~now a
total of 15 scales is considered!, all the way up tou ln E5200. The
general trends between prediction and simulation results are the
same although the simulations show more correlation for larger
footing widths than was predicted by the above theory. For larger
footing widths there is a physical interaction between the foot-
ings, where the stress under one footing begins to add to the stress
under the other footing, so the true correlation is expected to be
larger than that predicted purely on the basis of local averaging.

The correlation predicted by Eq.~18!, however, is at least conser-
vative in that smaller correlations lead to larger probabilities of
differential settlement.

Fig. 7 shows the estimated standard deviation ofD as a func-
tion of u ln E /D for three footing widths and forsE /mE51. Other
values ofsE /mE are similar. Superimposed on the sample stan-
dard deviations~shown as symbols! are the predicted standard
deviations using Eq.~16! ~shown by solid or dashed lines!. The
agreement is very good over the entire range of scales.

To test the capability of the assumed distribution to accurately
estimate probabilities, the probability that the absolute value ofD
exceeds some threshold is compared to empirical probabilities
derived from simulation. For generality, thresholds ofam uDu will
be used, wherem uDu is the mean absolute differential settlement,
which, if D is normally distributed, is given by

m uDu5A2

p
sD (19)

Note that this relationship indicates that the mean absolute differ-
ential settlement is directly related to the standard deviation ofD,
which in turn is related to the correlation between the elastic
moduli under the footings and the variability of the elastic
moduli. In particular, this means that the mean absolute differen-
tial settlement is a function of justddet, s ln E

2 , andu ln E , increasing
with ddet ands ln E

2 , and reaching a maximum whenu ln E /D is near
1.0 ~see Fig. 7!.

Fig. 8 shows a plot of the probability

P~ uDu.am uDu!52FS 2am uDu2mD

sD
D52FS 2aA2

p D
(20)

for a varying from 0.5 to 4.0, shown by a solid line. The symbols
show empirical probabilities thatuDu is greater thanam uDu ob-
tained via simulation~5,000 realizations! for the three footing
widths, 15 scales of fluctuation, and five elastic modulus COVs
~thus, each column of symbols contains 225 points, 75 for each
footing width!.

It can be seen that the predicted probability is in very good
agreement with average simulation results for large differential
settlements, while being conservative~higher probabilities of ex-
ceedance! at lower differential settlements.

Fig. 6. Predicted and sample correlation coefficients between footing
settlements for various relative separation distances between the foot-
ings and forsE /mE51

Fig. 7. Predicted and sample standard deviations of differential
settlement forsE /mE51

Fig. 8. Simulation based estimates ofP(uDu.am uDu) for all cases
compared to that predicted by Eqs.~19! and ~20!
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The normal distribution is considered to be a reasonable ap-
proximation for differential settlement in at least two ways: first
of all it is a conservativeapproximation, that is, itoverestimates
the probability of differential settlement for the bulk of the data.
Second, it is aconsistentapproximation in that it improves as the
scale of fluctuation decreases, by virtue of the fact that the differ-
ence,d12d2 , approaches a normal distribution. Since the esti-
mated scale of fluctuation decreases as a site is more thoroughly
investigated and trends are removed, the normal distribution then
becomes more accurate as more is known about the site. Con-
versely, if little is known about the site, the normal distribution
properly reflects inherent uncertainty by generally predicting
larger differential settlements.

Two Footing Example

Consider two footings each of widthWf52.0 m separated byD
510 m center to center. They are founded on a soil layer of 10 m
depth and each supports a load ofP51,000 kN. Assume also that
mE540 MPa,sE540 MPa,u ln E51.0 m, and the Poisson ratio is
0.25. If the footings support a floor or beam that is not attached to
elements likely to be damaged by large deflection, then differen-
tial settlement is limited toD/36052.8 cm. What is the probabil-
ity that uDu.2.8 cm? The approach to the solution is outlined as
follows ~see the previous example for some of the earlier details;
note, however, that the scale of fluctuation has changed in this
example!.

1. A deterministic finite element analysis of this problem gives
ddet50.03578 under each footing~this number is only
slightly different than that found in the single footing case
due to interactions between the two footings!. For s ln E

2

50.69315, the log-settlement statistics under either footing
are m ln d5ln(ddet)1

1
2sln E

2 522.9838 and s ln d

5Ag(Wf ,H)s ln E
2 5A(0.055776)(0.69315)50.19662.

2. To calculateCln d , a short program written to implement the
approach presented in the Appendix givesCln d53.1356
31027.

3. In terms of actual settlement under each footing, the
mean, standard deviation, and correlation coefficient

are md5exp(mln d1
1
2sln d

2 )50.051587, sd5md
Aes ln d

2
21

50.010242, andrd5(eCln d21)/(esln d
2

21)57.954731026,
respectively. A 5000 realization simulation run for this prob-
lem gave estimates of settlement mean and standard devia-
tion of 0.0530 and 0.0081, respectively, and an estimated
correlation coefficient of20.014~where the negative corre-
lation coefficient estimate is clearly due to bias in the clas-
sical estimator, see Fenton~1999a! for a discussion of this
issue!.

4. The differential settlement,D, has parametersmD50 and
sD

2 52(1 – 7.954731026)(0.010242)250.0002098 and the
mean absolute differential settlement in this case is predicted
to be m uDu5A2(0.0002098)/p50.011. The simulation run
estimated the mean absolute differential settlement to be
0.009.

5. The desired probability is predicted to beP(uDu.0.028)
52F(20.028/A0.0002098)52F(21.933)50.0532. The
empirical estimate of this probability from the simulation run
is 0.0204.

The normal distribution approximation toD somewhat overes-
timates the probability thatuDu will exceedD/360. This is, there-
fore, a conservative estimate. From a design point of view, if the
probability derived in step 5 is deemed unacceptable, one solution

is to widen the footing. This will result in a rapid decrease in
P(uDu.0.028) in the case given above. In particular, ifWf is
increased to 3.0 m, the empirical estimate ofP (uDu.0.028) re-
duces by more than a factor of 10 to 0.0016.

The distribution of absolute differential settlement is, however,
highly dependent on the scale of fluctuation, primarily through
the calculation ofs ln d . As discussed earlier, the scale of fluctua-
tion is a quantity that is very difficult to estimate and one that is
poorly understood for real soils, particularly in the horizontal di-
rection. If u ln E is increased to 10.0 m in the above example, the
empirical estimate ofP (uDu.0.028) increases dramatically to
0.44. From a design point of view, the problem is compounded
since, for such a large scale of fluctuation,P (uDu.0.028) now
decreases very slowly as the footing width is increased~holding
the load constant!. For example, a footing width of 5.0 m, with
u ln E510.0 m, hasP (uDu.0.028)50.21. Thus, establishing the
scale of fluctuation in the horizontal direction is a critical issue in
differential settlement limit state design, and one which needs
much more work.

Conclusions

On the basis of this simulation study, the following observations
can be made.

The settlement under a footing founded on a spatially random
elastic modulus field of finite depth overlying bedrock is repre-
sented well by a lognormal distribution with parametersm ln d and
s ln d

2 if E is also lognormally distributed. The first parameter,
m ln d , is dependent on the mean and variance of the underlying
log–elastic modulus field and may be closely approximated by
considering limiting values ofu ln E . One of the primary contribu-
tions of this paper is the observation that the second parameter,
s ln d

2 , is approximated very well by the variance of a local average
of the log–elastic modulus field in the region directly under the
footing. This conclusion is motivated by the observation that
settlement is inversely proportional to the geometric mean of the
elastic modulus field and gives the prediction ofs ln d

2 some gen-
erality that can be extended beyond the actual range of simulation
results considered herein. For very deep soil layers that underly
the footing, it is recommended that the depth of the averaging
region not exceed about 10 times its width due to reduction of
stress with depth. Once the statistics of the settlement,m ln d and
s ln d

2 , have been computed, using Eqs.~8!–~10!, the estimation of
probabilities associated with settlement involves little more than
referring to a standard normal distribution table.

The differential settlement follows a more complicated distri-
bution than that of settlement itself@see Eq.~15!#. This is seen
also in the differential settlement histograms which tend to be
quite erratic, with their narrow peaks and long tails, particularly at
largeu ln E /D ratios. Although the difference between two lognor-
mally distributed random variables is not normally distributed, the
normal approximation has nevertheless been found to be reason-
able, giving conservative estimates of probability over the bulk of
the distribution. For a more accurate estimation of probability
relating to differential settlement, where it can be assumed that
footing settlement is lognormally distributed, Eq.~15! should be
numerically integrated. However, both the simplified normal ap-
proximation and the numerical integration of Eq.~15! depend
upon a reasonable estimate of the covariance between footing
settlements. Another important contribution of this paper is that
this covariance is closely~and conservatively! estimated using the
covariance between local averages of the log–elastic modulus
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field under the two footings. Discrepancies between the covari-
ance predicted on this basis and in simulation results are due to
interactions between the footings when they are closely spaced—
such interactions lead to higher correlations than predicted by
local average theory, which leads to smaller differential settle-
ments than predicted in practice. This is conservative. The recom-
mendations regarding the maximum averaging depth made for the
single footing case would also apply here.

Example calculations were provided above to illustrate how
the findings of the paper may be used. These calculations are
reasonably simple for calculations by hand@except for the nu-
merical integration in Eq.~17!# and are also easily programmed.
They allow probability estimates with regard to settlement and
differential settlement, which in turn allows the estimation of the
risk associated with this particular limit state for a structure.

A critical issue in the risk assessment of differential settlement
that is unresolved is the estimation of the scale of fluctuation,
u ln E , since it significantly affects the differential settlement dis-
tribution. A tentative recommendation is to use a scale of fluctua-
tion which is some fraction of the distance between footings, say,
D/10. There is, at this time, little justification for such a recom-
mendation, aside from the fact that scales that approachD or
bigger yield differential settlements which are felt to be unrealis-
tic in a practical sense and, for example, not observed in the work
of D’Appolonia et al.~1968!. Research into this problem is on-
going.

Appendix

The numerical computation of Eq.~17! can be accomplished rea-
sonably accurately and efficiently using a three-point Gauss inte-
gration scheme. The four-fold integration can be written as a two-
fold sum if the correlation function is quadrant symmetric@i.e.,
r ln E(x,y)5rln E(2x,y)5rln E(x,2y)5rln E(2x,2y)#, as is Eq.~1!,

Cln d5
s ln E

2

16 (
i 51

3

wi@~11zi !Pi1~12zi !Qi # (21)

where

Pi5(
j 51

3

wj@~11zj !r ln E~xi1 ,yj 1!1~12zj !r ln E~xi1 ,yj 2!#

(22a)

Qi5(
j 51

3

wj@~11zj !r ln E~xi2 ,yj 1!1~12zj !r ln E~xi2 ,yj 2!#

(22b)

xi15 1
2~zi21!Wf1D (22c)

xi25 1
2~zi11!Wf1D (22d)

yj 15 1
2~zj21!H (22e)

yj 25 1
2~zj11!H (22f)

and where the weights,wi , and Gauss points,zi , are as follows:

w155/9 w258/9 w355/9 (23a)

z152A3/5 z250 z35A3/5. (23b)

Notation

The following symbols are used in this paper:
Cln d 5 covariance between log settlements under the two

footings;

D 5 center-to-center distance between footings;
E 5 elastic modulus;

Eg 5 elastic modulus geometric mean;
f D 5 differential settlement probability density function;
f d 5 settlement probability density function;

f d1d2 5 joint settlement probability density function;
G(x) 5 standard normal~Gaussian! random field

H 5 overall depth of the soil layer;
L 5 overall width of the soil model;

mln d 5 estimated mean of log settlement via simulation;
md 5 estimated mean of footing settlement via simula-

tion;
P 5 applied footing load;

Rj 5 effective scale of fluctuation used ing calcula-
tions;

sd 5 estimated standard deviation of footing settlement
via simulation;

sln d 5 estimated standard deviation of log settlement via
simulation;

Wf 5 footing width;
x 5 spatial coordinate or position;
g 5 variance function~reduction in variance due to

local averaging!;
D 5 differential settlement between footings;
d 5 footing settlement, positive downward;

ddet 5 footing settlement whenE5mE everywhere;
u ln E 5 isotropic scale of fluctuation of the log–elastic

modulus field;
u ln Eh 5 horizontal scale of fluctuation of the log–elastic

modulus field;
u ln Ev 5 vertical scale of fluctuation of the log–elastic

modulus field;
mE 5 mean elastic modulus;

m ln E 5 mean of the log–elastic modulus;
m ln d 5 mean of log settlement;
mD 5 mean differential footing settlement;

m uDu 5 mean absolute differential footing settlement;
md 5 mean footing settlement;

r ln E 5 correlation coefficient between ln(E) at two points;
r ln d 5 correlation coefficient between log-footing settle-

ments;
rd 5 correlation coefficient between footing settlements;
sE 5 standard deviation of the elastic modulus;

s ln E 5 standard deviation of the log–elastic modulus;
s ln d 5 standard deviation of log settlement;
sD 5 standard deviation of differential settlement;
sd 5 standard deviation of footing settlement;

t 5 lag distance, equal toutu;
t 5 spatial lag vector;
n 5 Poisson ratio; and
F 5 standard normal cumulative distribution function.
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