Probabilistic Foundation Settlement on Spatially Random Soil
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Abstract: By modeling soils as spatially random media, estimates of the reliability of foundations against serviceability limit state
failure, in the form of excessive differential settlements, can be made. The soil's property of primary interest is its elastic fpdulus,
which is represented here using a lognormal distribution and an isotropic correlation structure. Prediction of settlement below a foundatior
is then obtained using the finite element method. By generating and analyzing multiple realizations, the statistics and density functions o
total and differential settlements are estimated. In this paper probabilistic measures of total settlement under a single spread footing ar
of differential settlement under a pair of spread footings using a two-dimensional model combined with Monte Carlo simulations are
presented. For the cases considered, total settlement is found to be represented well by a lognormal distribution. Probabilities associat
with differential settlement are conservatively estimated through the use of a normal distribution with parameters derived from the
statistics of local averages of the elastic modulus field under each footing.
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Introduction differential settlements over a range of loading conditions and

geometries. In this paper the findings of such a study are reported
The settlement of structures founded on soil is a subject of con-along with a reasonably simple, approximate approach to estimate
siderable interest to practicing engineers since excessive settleprobabilities associated with settlements. The case of a single
ments often lead to problems of serviceability. In particular, un- footing, as shown in Fig.(®), is first considered and estimates of
less the total settlements themselves are particularly large, it isthe probability density function governing total settlement of the
usually differential settlements which lead to unsightly cracks in footing as a function of footing width for various statistics of the
facades and structural elements, possibly even to structural fail-ynderlying soil are given. Only the soil elasticity is considered to
ure, especially in unreinforced masonry elements. Existing codepe spatially random. Uncertainties that arise from the model, test
requirements that limit differential settlements to SatiSfy service- procedures and in the loads are not considered. In addition’ the
ability limit states[see building codes ACI 318-8@1989 or soil is assumed to be isotropic, that is, the correlation structure is
A23.3-M84 (1984)] specify maximum deflections ranging from  assumed to be the same in both the horizontal and vertical direc-
D/180 to D/480, depending on the type of supported elements, tions where “correlation” refers to the correlation between two
whereD is the center-to-center span of the structural element. In points in the soil mass. Although soils generally exhibit a stronger
practice, differential settlements between footings are generally correlation in the horizontal direction, due to their layered nature,
Controlled, not by ConSidering the differential settlement itself, but the degree of anisotropy is site Speciﬁc_ In that in this Study we
by controlling the total settlement predicted by analysis using an gre attempting to establish the basic probabilistic behavior of
estimate of the soil elasticity. This approach is largely based on settlement, anisotropy is left as a refinement in future research.
correlations between total settlements and differential settlements | foundation engineering, both immediate and consolidation
observed experimentallysee, e.g., the work of D'Appolonia  settlements are traditionally computed using elastic theory. The
et al. 1968 and leads to a limitation of 4—8 cm in total settlement elastic propertiesE, that app|y to either or both immediate and
under a footing as stipulated by the Canadian Foundation Engi-consolidation settlement are addressed here, since these are usu-
neering Manual, Part 21978. ally the most important components of settlement.

Because of the wide variety of soil types and possible loading  The footings are assumed to be founded on a soil layer under-
Conditions, eXperimentaI data on differential settlement of foot- lain by bedrock. The assumption of an under|ying bedrock can be
ings founded on soil are limited. With the aid of modern high- relaxed if a suitable averaging region is used. Guidelines to this
speed computers, it is now possible to probabilistically investigate effect are suggested below. The results are generalized to allow
the estimation of probabilities associated with settlements under
professor, Dept. of Engineering Mathematics, Dalhousie Univ., footings in many practical cases.

Halifax, NS, Canada B3J 2X4. E-mail: gordon.fenton@dal.ca In the second part of the paper the issue of differential settle-
2Professor, Division of Engineering, Colorado School of Mines, ments under a pair of footings, shown in Figb}l again for the
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Fig. 1. Random field/FEM representation () single footing and
(b) two footings founded on soil layer

The physical problem is represented by use of a two-
dimensional2D) plane strain model following the work of Paice
et al.(1996. If the footings extend a large distance in the out-of-
plane directiong, then the 2D elastic modulus field is interpreted
either as an average oveor as having an infinite scale of fluc-
tuation in thez direction. For footings of finite dimension, the 2D
model is admittedly just an approximation. However, the approxi-
mation is considered reasonable since the elastic modulus field i
averaged in the direction in any case.

Random Field /Finite Element Model

As illustrated in Fig. 1, the soil mass is discretized into 60 four-
noded quadrilateral elements in the horizontal direction by 20
elements in the vertical direction. Trials runs using X2 ele-
ments resulted in less than a 2.5% difference in settlements for th
worst casegnarrowest footings at a cost of more than 10 times
the computing time, so the 6Q20 discretization was considered

adequate. The overall dimensions of the soil model are held fixed

atL=3 in width by H=1 in height. No units will be used since

the probabilistic properties of the soil domain are scaled by the

correlationscale of fluctuatiorthat will be discussed shortly. The
left and right faces of the finite element mod€EM) are con-

strained against horizontal displacement but are free to slide ver-

S

e

Table 1. Input Parameters Varied in this Study while KeepiHg
=1,D=1,P=1, ng=1, andv=0.25 Constant

Parameter Values considered

og 0.1, 0.5, 1.0, 2.0, 4.0

OnE 0.01, 0.05, 0.1, 0.3, 0.5, 0.7, 1.0, 2.0, 5.0, 10.0, 50.0
Wi 0.1, 0.2, 0.5, 1.@single footing

0.1, 0.3, 0.5(two footing9

with load P’ =1,000 kN and elastic modulls' =60 kN/n? cor-
responds to 0.06 times the settlement of a footing of width
=0.1 mon arH =1.0 m thick soil layer withP=1 kN and elastic
modulus E=1 kN/n?. The scaling factor from the case with
primes to that without primes isP{P')(E'/E)(W;/W;)(H'/
H).

In the two footing case, the distance between footing centers
was held constant at 1.0, while the footing widtassumed to be
equa) were varied. Footings of width greater than 0.5 were not
considered since this situation approaches that of a strip footing
(the footings would be joined whew;=1.0). The soil has two
properties of interest to the settlement problem: these aréethe
fective) elastic modulusk(x), and the Poisson ratio(x), where
X is the spatial position. Only the elastic modulus is considered to
be a spatially random soil property. The Poisson ratio is believed
to have smaller relative spatial variability and only second order
importance to settlement statistics. It is held fixed at 0.25 over the
entire soil mass for all simulations.

Fig. 1 shows a gray-scale representation of a possible realiza-
tion of the elastic modulus field, along with the finite element
mesh. Lighter areas denote smaller valueE¢x) so that the
elastic modulus field shown in Fig(l) corresponds to a higher
elastic modulus under the left footing than under the right; this
leads to the substantial differential settlement, indicated by the
deformed mesh. This is just one possible realization of the elastic
modulus field; the next realization could just as easily show the
opposite trend.

The elastic modulus field is assumed to follow a lognormal
distribution so that Irff) is a Gaussiafnorma) random field with
meanu,, ¢ and variancer, .. The choice of a lognormal distri-
bution is motivated by the fact that the elastic modulus is strictly
non-negative, a property of the lognormal distributibnt not the
norma), while still having a simple relationship with the normal
distribution. A Markovian spatial correlation function, which
gives the correlation coefficient between log—elastic modulus val-
ues at points separated by distarcds used

2ITI]
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Pine(7)= EXD: - 1)

tically whereas the nodes on the bottom boundary are spatiallyin which 1=x—Xx’ is the vector between spatial pointsandx’,

fixed. The footings) are assumed to be rigid, to not undergo any
rotations, and to have a rough interface with the underlying soil
(no-slip boundary A fixed loadP=1 is applied to each footing.

and|7| is the absolute length of this vecttthe lag distance The
correlation function decay rate is governed by the so-called scale
of fluctuation,6, ¢, which, loosely speaking, is the distance over

Since settlement varies linearly with load, the results are easily which log—elastic moduli are significantly correlatbghen the

scaled to different values d1.
To investigate the effect of the footing width, the soil layer
thicknessH, was held constant at 1.0 while the footing width was

separation distancpr| is greater thard,, g, the correlation be-
tween InE(x) and InE(x") is less than 14%
The assumption of isotropy is, admittedly, somewhat restric-

varied according to Table 1. Because the settlement problem istive. In principle, the methodology presented in the following is
linear, the following results can be scaled to arbitrary footing easily extended to anisotropic fields although the accuracy of the
widths and soil layer thicknesses. For example, the settlement ofproposed distribution parameter estimates would then need to be
a footing of widthW;=2.0 m on anH’=20 m thick soil layer verified. For both the single footing and the two footing problems,
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however, it is the horizontal scale of fluctuation that is more im- to characterizeE, are conservative, settlement will generally be
portant. As will be seen, the settlement variance and covarianceless than predicted.
depend on the statistics of a local average of the log—elastic ~ Throughout, the mean elastic modulysg, is held fixed at
modulus field under the footing. If the vertical scale of fluctuation 1.0. Since settlement varies linearly with the soil elastic modulus,
is less than the horizontal, this can be handled simply by reducingit is always possible to scale the settlement statistics to the actual
the vertical averaging dimensidf to H(6,g, /6,g, ). For very mean elastic modulus. The standard deviation of the elastic modu-
| lus is varied from 0.1 to 4.0 to investigate the effects of elastic
modulus variability on settlement variability. The parameters of
the transformed Irf) Gaussian random field may be obtained
from the relations

deep soil layers, the averaging depthshould probably be re-
stricted to no more than about M) since the stress under a
footing falls off approximately according %/; /(W;+H).

In practice, one approach by which to estiméate: involves

collecting elastic modulus data from a series of locations in space, ofe=In(1+02/pd) (2a)
estimating the correlations between the log data as a function of
the separation distance, and then fitting EL.to the estimated Pine=In(pg)— %cﬁ]E (2b)

correlations. See, e.g., Asaoka and Gri¢E@82, Marsily (1985,
Soulieet al. (1990, Ravi (1992, De Groot and Baech&i993,
Chiasson et al(1995, and Fentor{1999 for further information

on the characterization of the spatial variability of soil properties.
The estimation o, g is not a simple problem since it tends to
depend on the distance over which it is estimated. For example,
sampling soil properties every 5 cm over 2 m will likely yield an
estimated, g of about 20 cm, while sampling every 1 km over
1000 km will likely yield an estimate of about 200 km. This is
because soil properties vary at many scales: looked at closely, soi

can change significantly within a few meters relative to the few than the elements result in a set of elements which are largely

meters considered. However, soils are formed by weathering an independent(increasingly independent &, = decreases Be-

gla_lcial a_ctions which can span thousands of kilometers, yielding cause of the averaging effect of the details of the elastic modulus
soils which have much in common over large distances. Thus,ﬁe|d under a footing, the settlement in the limiting cased g

soils can conceptually have lingering correlations over entire con- _ g expected to approach that obtained in the deterministic

tinents(even planets _ o o case, WithE=p everywhere, and has vanishing variance for
This lingering correlation in the spatial variability of soils im-  fite ol
-

plies that scales of fluctuation estimated in the literature should By similar reasoning the differential settlemdas shown in

not just be used blindly. One should attempt to select a scale,:ig. 1(b)] as 0,,c—0 is expected to go to zero. At the other
which has been estimated on a similar sover a domain of  gytreme, a®,, g, the elastic modulus field becomes the same
similar sizeto the site being characterized. In addition, the level eyerywhere. In this case, the settlement statistics are expected to

must be matched at the site being characterized. For example, if §andom variableE, to model the soilE(x) =E. That is, since the
scale of fluctuation, as reported in the literature, were estimatedsettiementg, under a footing founded on a soil layer with uni-

from data with a quadratic trend removed, then sufficient data form (but randon elastic modulu<E is given by

must be gathered at the site being characterized to allow a qua-

dratic trend to be fitted to the site data. The estimated scale of 5= Sgette 3)
fluctuation then applies to the residual random variation around E

the trend. To facilitate this, researchers providing estimates of
variance and scale in the literature should report estimates with
the trend removed, including the trgnd it$6|f’ an_d est_imgt_es with- tion) of the problem usinge= g everywhere. In this case as
out the trend removed. The latter will typically yield significantly 0, e— the settlement assumes a lognormal distribution with pa-
larger estimated variance and scales, giving a truer sense of theranmeters

actual soil variability.

from which it can be seen that the variance ofn( 2 ¢, varies
from 0.01 to 2.83 in this studjnote also that the mean of EY
depends on both.g andog].

To investigate the effect of the scale of fluctuatiép,z, on
the settlement statistic8,, g is varied from 0.01i.e., very much
smaller than the soil model sig® 50.0(i.e., substantially bigger
than the soil model sizeand up to 200 in the two footing case. In
the limit as6,,g—0, the elastic modulus field becomes a white
|noise field, withE values at any two distinct points independent.
In terms of the finite elements themselves, value8,pf smaller

where § 4= "“deterministic’’ settlement obtained from a single
finite element analysisor an appropriate approximate calcula-

In the case of two footings, the use of a scale of fluctuation Pins=INBged +IN(Le) — wine=IN(dge) + 305 (4a)
equal toD is conservative in that it yields differential settlement
variances which are at, or close to, their maxima, as will be seen. OIn3=0InE (4b)

In some cases, however, settifige=D may be unreasonably \vhere Eq.(2b) was used in Eq(4a). Also since, in this case, the
conservative. If sufficient site sampling has been carried out to settlement under the two footings of Figblbecomes equal, the
estimate the mean and variance of the soil properties at the sitedifferential settlement becomes zero. Thus, the differential settle-
then a significantly reduced scale is warranted. The literature ment is expected to approach zero at both very small and at very
should then be consulted to find a similar site on which a spatial large scales of fluctuation. The Monte Carlo approach adopted
statistical analysis has been carried out and an estimated scal@ere involves the simulation of a realization of the elastic modu-
reported. lus field and subsequent finite element analysig., Smith and

In the case of a single footing, takirty, ¢ as large is conser-  Griffiths 1999 of that realization to yield a realization of the
vative; in fact, the assumption th&tis (lognormally distributed footing settlemerts). Repeating the process over an ensemble of
ang spatially constant leads to the largest variabili@gross re- realizations generates a set of possible settlements which can be
alizations in footing settlement. Thus, traditional approaches to plotted in the form of a histogram and from which distribution
randomness in footing settlement, using a single random variableparameters can be estimated. In this study, 5000 realizations are
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Fig. 3. Estimated mean of log settlement

Fig. 2. Typical frequency density plot and fitted lognormal distribu-
tion of settlement under single footing

sumed distribution. As can be seen from Fig. 2, the lognormal
distribution certainly appears reasonable.
performed for each input parameter éet, 6,,g, andWs). If it Over the entire set of simulations performed for each param-
can be assumed that log settlement is approximately normally eter of interestW;, og, and6,, g), 80% of the fits have values
distributed(which is seen later to be a reasonable assumption andthat exceed 5% and only 5% hapevalues of less than 0.0001.
is consistent with the distribution selected gy and thatmy, s This means that the lognormal distribution is generally a close
ands?, ; are the estimators of the mean and variance of log settle- approximation to the distribution of the simulated settlement data,
ment, respectively, then the standard deviations of these estimatypically at least as good as seen in Fig. 2.
tors obtained from 5000 realizations are given by Accepting the lognormal distribution as a reasonable fit to the
simulation results, the next task is to estimate the parameters of
Oy, =S/ N =0.014 5 (52) the fitted lognormal distributions as functions of the input param-

> eters(Ws, og, and6,,g). The lognormal distribution
o2 = \/—n_lsﬁszo.ozﬁa (5b)

1/Inx— 2
(ﬁ } O=x<= (7)

1
so that the estimator “errors” are negligible compared to the es- fa(0 = V2mo, 5X ex;{ 2
timated variancdi.e., about 1 or 2% of the estimated standard
deviation.

Realizations of the log—elastic modulus field are produce
using the two-dimensional local average subdivigibAS) tech-
nigue (Fenton and Vanmarcke 1990; Fenton 1P9%he elastic
modulus value assigned to thih element is

OIns

has two parameterg,, s ando, 5. Fig. 3 shows how the estima-

g tor of w5, My, varies withoy, g for W;=0.1. All scales of
fluctuation are drawn in the plot, but they are not labeled indi-
vidually since they lie so close together. This observation implies
that the mean log settlement is largely independent of the scale of
fluctuation,d, ¢. This is as expected since the scale of fluctuation

E(x)=exfdpinetoineG(x)] (6) does not affect the mean of a local average of a normally distrib-
whereG(x;) =local average over the element centered;aif a uted process._Fig. 3 suggests _that t_he mean of log settlement can
zero mean, unit variance Gaussian random field. be closely estimated by a straight line of the fasaggested by

Eq. (48)],
P«Inazln(sdet)'f'%U%E 8

Single Footing Case
Eq. (8) is also shown in Fig. 3 and it can be seen that the agree-

A typical histogram of the settlement under a single footing, es- ment is very good. Even closer results were found for the other
timated by 5,000 realizations, is shown in Fig. 2 fat=0.1, footing widths.
og/we=1, and6,,=0.1. With the requirement that settlement Estimates of the standard deviation of log settlemspt,, are
be non-negative, the shape of the histogram suggests a lognormaplotted in Fig. 4(by symbols for the smallest and largest footing
distribution, which was adopted in this stufisee also Eq4)]. widths. Intermediate footing widths give similar results. In all
The histogram is normalized to produce a frequency density plot, Casessy, ; increases tar, g as 0y, ¢ increases. The reduction in
in which a straight line is drawn between the interval midpoints. variance a®),,g decreases is due to the local averaging variance

Superimposed on the histogram is a fitted log—normal distri- reduction of the log—elastic modulus field under the footifoy
bution with parameters given by, ; ands, ; in the line key. At smallerf, ¢, there are more “independent” random field values,
least visually, the fit appears reasonable. In fact, this is one of theso the variance reduces faster under averaging; see Vanmarcke
worst cases, of all the 220 parameter sets given in Table 1; a1984, for more details on local averaging theory
chi-square goodness-of-fit test yieldspavalue of 8x10 . Following the above reasoning, and assuming that local aver-
Large p values, up to 1.0, support the lognormal hypothesis, so aging of the area under the footing accounts for all of the reduc-
this small value suggests that the data do not follow a lognormal tion in variance seen in Fig. 4, the standard deviation of log
distribution. Unfortunately, when the size of the sample is large Settlement is
(n=5,000 in this casegoodness-of-fit tests are quite sensitive to N T YVEEEEY
the “smoothness” of the histogram. They perhaps correctly indi- Tins= VY (Wi, H)one ©)
cate that the true distribution is not exactly as hypothesized, butwherey(W; ,H) = so-called variance functiofvanmarcke 198%
provide little information about theeasonablenessf the as- which depends on the averaging regigwi,x H, as well as on the
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Fig. 4. Comparison of simulated sample standard deviation of log
settlement, shown by symbols, with theoretical estimate via(#q.
shown by lines

scalef,, . Sinces?, ¢ is constant for each value ofz /g [see
Eq. (2a)], Fig. 4 is essentially a plot of the variance function,
v(W; ,H), illustrating how the variance of a local average de-
creases as the scale of fluctuation decreases.

Specifically, the variance function gives the amount that the
log—elastic modulus variance is reduced when its random field is
averaged over a region &%;XH. The dependence of the vari-
ance function orH is apparently only valid for the geometries
considered; if the footing is founded on a much deeper soil mass,

one would not expect to average over the entire depth due to the3-

reduction of stress with depth. As suggested in the “Random
Field/Finite Element Model,"H should be limited to no more
than about 1W;. If in doubt, takingH to be relatively small
(even zerp yields a conservative estimate of the settlement dis-
tribution, having large variability. This is equivalent to takitg ¢
as large, as noted previously in the “Random Field/Finite Ele-
ment Model.” In practice, however, values of the normalized av-
eraging aredV;H/07 . greater than about 5 yield values ®f, ;
less than about 15% of;,, ¢ SO changes i above this level have
only a minor effect on the overall reduction in variance.

The variance function that corresponds to the isotropic Mar-
kov correlation functiodEq. (1)] is approximated by

v(dy,dz) =3[ v(dy)y(da|ds) +y(dy)y(dy|dy)] (10)
where
d, \¥2-23 d |32~ @3
y(dp)=|1+ m) } . y(dildy= 1+(ﬁj }
(11a)
_ o ’1T dj 2
Rj—emE E-F 1—5 exp — m (11b)

in which d;=dimensions of the averaging regigim this case,
d,=W; andd,=H). Predictions ofr, ; using Eq.(9) are super-
imposed in Fig. 4 by lines. The agreement is remarkable. Inter-

mediate cases show similar, if not better, agreement with the pre-

dictions.

An alternative physical interpretation of Eq®8) and (9) can
be made by generalizing the relationship given by @j.to the
following form:

JOURNAL OF GEOTECH

_ D detl E
Eq
whereE =geometric mean of the elastic modulus values over the
region of influence,

1 H (W
Eg=exp<W—foo fo InE(x,y)dxdy)

Taking the logarithm of Eq12) and then computing its mean and
variance leads to Eq$8)—Eq. (4a), and Eq.(9). The geometric
mean is dominated by small values of the elastic modulus, which
means that the total settlement is dominated by low elastic modu-
lus regions that underly the footing, as would be expected.

(12)

(13)

Single Footing Example

Consider a single footing of widtt%/;=2.0 m to be founded on a
soil layer of depth 10.0 m that will support a load &f
=1,000 kN. Suppose also that samples taken at the site have
allowed estimates of the elastic modulus mean and standard de-
viation at the site to be 40 and 40 MPa, respectively. In a similar
way, test results on a regular array at this or at a similar site have
resulted in an estimated scale of fluctuationdgfe=3.0 m. As-
sume also that the Poisson ratio is 0.25.

The results from the previous section can be used as follows to
estimate the probability that the settlement under the footing will
exceed 0.10 m.

1. Afinite element analysis of the given problem with soil elas-
tic modulus everywhere equal to-=40 MPa gives a deter-
ministic settlement 06 4,=0.03531 m.

Compute the variance of the log—elastic modulus from Eq.
(2a), o2, £=In(2)=0.69315, so thadtr,, .=0.83256.

Compute the mean of log settlement from E8), wi, s
=In(34e) +0.502 =—3.3437+0.5(0.69315% — 2.9971.
Compute the standard deviation of log settlement using
Egs. (9-(11), oy5=v(W;,H)o,e=0.22458(0.83256)
=0.39455.

As an aside, forp,s=—2.9971 and 0.39455, the corre-
sponding settlement mean and standard deviations are

Ws=eXPlLns+3055)=0.0540m and o5=u;\Vens—1
=0.0222 m, respectively. A trial run of 5,000 realizations for
this problem givesny;=0.0562 ands;=0.0201 for relative
differences of 3.9 and 10.4%, respectively. The estimated
relative standard error omy is approximately 0.5% for
5,000 realizations.

Compute the desired probability using the lognormal distri-
bution, P(8>0.10)=1—®(1.7603)=0.0392, whered(-)

is the standard normal cumulative distribution.

A simulation run for this problem yielded 160 samples of 5,000
having settlement greater than 0.10 m. This gives a simulation
based estimate of the above probability of 0.032.

Two Footing Case

Having established, with reasonable confidence, the distribution
associated with settlement under a single footing founded on a
soil layer, attention can now be turned to the more difficult prob-
lem of finding a suitable distribution with which to model differ-
ential settlement between footings. Analyticallydifis the settle-
ment under the left footing shown in Fig. 1 ardd is the
settlement of the right footing, then according to the results of the
“Single Footing Case,”d; and 8, will be jointly lognormally
distributed random variables,

NICAL AND GEOENVIRONMENTAL ENGINEERING / MAY 2002 / 385



v «

—- =]

Frequency Density —  Frequency Density
---------------------- ta =-0.004, 6, = 0.407 e Ly = 0,038, 6,4 = 2.61

—_ a
g @ <)
o3 o

v

2 -

S

-1.5 -1 -0.5 0 0.5 1 1.5

Fig. 5. Frequency density and fitted distribution for differential settlement under two footings of equal sizé,witB=0.05 in(a) and 1.0
in (b)

1 1 sonable fit in Fig. &8). Since a lognormal distribution begins to
fs5,(Xy)= mexd —ﬁ(‘l’f—mn sV W+ WD), look very much like a normal distribution whem, s/ s is
ina"xY small, then for smalb, s/ 5 both 8, and s, will be approxi-
x=0, y=0 (14) mately normally distributed. For small, ¢, therefore, since this
where W= (InX—pne)oins, ¥y=(NY=wpns)omns, r2=1 leads to smalb, 5, the difference §,—95,) will be very nearly

—p2 s andpp,; is the correlation coefficient between the log normally distributed, as seen in Fig(ah For larger scales of
settlement of the two footings. It is assumed in the abovedhat  fluctuation(and/or smalleD), the histogram of differential settle-
ands, have the same mean and variance, which, for the symmet-ments becomes narrower than the normal distribution, as seen in
ric conditions shown in Fig. (b), is a reasonable assumption. Fig. 5(b). What is less obvious in Fig.(b) is that the histogram

If the differential settlement between footings is defined by has much longer tails than those predicted by the normal distri-
A=38,—3, then the mean ol is zero if the elastic modulus field ~ bution. These long tails lead to a variance estimate which is larger
is statistically stationary. As indicated by Fent(999, station- than that dictated by the center region of the histogram. Although
arity is a mathematical assumption that in practice depends on thethe variance could be artlfICIaIIy reduced so that the fit is better
level of knowledge that one has about the site. If a trend in the near the origin, the result would be a significant underestimate of
effective elastic modulus is known to exist at the Site, then the the probablllty of Iarge differential settlements. This issue will be
following results can be still be used by computing the determin- discussed at more length, shortly, when differential settlement
istic differential settlement using the mean “trend” values in a Probabilities are considered. Both plots are éq/wg=1.0 and
deterministic analysis, then computing the probability ofadi- are typical of other coefficients of variatig@OV).
tional differential settlement using the equations that follow. In ~ Assuming thatA=5,—3, is at least approximately normally
this case the following probabilistic analysis would be performed distributed, and thaé, and 3, are identically and lognormally
with the trend removed from the elastic modulus field. distributed with correlation coefficiept;, then differential settle-

The exact distribution governing the differential settlement, ment has parameters of
assuming that Eq14) holds, is given by

ma=0, 03=2(1-ps)o} (16)
f fs5,(xtyy)dy if x=0 Note that wherd,, ¢ approaches zero, the settlement variamge
0 also approaches zero. Whep, ¢ becomes very large, the corre-
fa()= o (15) lation coefficient between settlements under the two footings ap-
J f55,(xtyy)dy if x<O proaches one. Thus, Eq4.6) are in agreement with the expecta-
X tion that differential settlements will disappear for both very small
which can be evaluated numerically, but which has no analytical and very large values df;, g.

solution so far as the authors are aware. This distribution is the  Since local averaging of the log—elastic modulus field under
subject of continuing research. In the following a normal approxi- the footing was found to be useful in predicting the variance of

mation to the distribution ofA will be investigated. log settlement, it seems reasonable to suggest that the covariance
Fig. 5 shows two typical frequency density plots of differential between log settlements under a pair of footings will be predicted
settlement between two footings of equal si¥é; (D =0.1) with well by the covariance between local averages of the log—elastic

superimposed fitted normal distributions, where the fit was ob- modulus field under each footing. For footings of equal size, the
tained by directly estimating the mean and standard deviationscovariance between local averages of the log—elastic modulus
from the simulation. The normal distribution appears to be a rea- field under two footings separated by distazés given by

2
o2 [H (Wi [H [D+W
C|n5:W2nH2f j j J’ Pine(X1—X2,Y1~Y2)dXdy,dx dyy a7
f oJo JoJo
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Fig. 8. Simulation based estimates B{|A|>a 5| for all cases

Fig. 6. Predicted and sample correlation coefficients between footing compared to that predicted by Eq49) and (20)

settlements for various relative separation distances between the foot=

ings and forog/pg=1

The correlation predicted by E¢L8), however, is at least conser-
vative in that smaller correlations lead to larger probabilities of

which can be evaluated reasonably accurately using a three-poinyitferential settlement.

Gaussian quadraturegf,, g is smooth, like it is in Eq(1). See the
Appendix for details.

The correlation coefficient between settlements can now be
obtained by transforming back from log space,

_ exp(Cns)—1

Cexplol )1 (18)

P3
whereo, 5 is given by Eq.(9). The agreement between the cor-
relation coefficient predicted by E@18) and the correlation co-
efficient estimated from the simulations is shown in Fig. 6. In
order to extend the curve up to correlation coefficients close to
one, four additional scales of fluctuation were considérenv a
total of 15 scales is considerngall the way up t®,, g=200. The

general trends between prediction and simulation results are the

same although the simulations show more correlation for larger
footing widths than was predicted by the above theory. For larger
footing widths there is a physical interaction between the foot-

Fig. 7 shows the estimated standard deviatior @fs a func-
tion of 6,, /D for three footing widths and fo ¢ /pg=1. Other
values ofoz /g are similar. Superimposed on the sample stan-
dard deviationgshown as symbo)sare the predicted standard
deviations using Eq(16) (shown by solid or dashed linesThe
agreement is very good over the entire range of scales.

To test the capability of the assumed distribution to accurately
estimate probabilities, the probability that the absolute valug of
exceeds some threshold is compared to empirical probabilities
derived from simulation. For generality, thresholdsogf,| will
be used, Wheraw is the mean absolute differential settlement,
which, if A is normally distributed, is given by

2
Hal= V7 %a

Note that this relationship indicates that the mean absolute differ-
ential settlement is directly related to the standard deviatiah, of

(19)

ings, where the stress under one footing begins to add to the stresghich in turn is related to the correlation between the elastic
under the other footing, so the true correlation is expected to beyoquli under the footings and the variability of the elastic

larger than that predicted purely on the basis of local averaging.

10°

W¢D = 0.10 (predicted)
WD = 0.30 (predicted)
W¢D = 0.50 (predicted)

O Wg¢D=0.10 (sample)
o W¢D=0.30 (sample)
<& W¢D = 0.50 (sample)

107

Fig. 7. Predicted and sample standard deviations of differential
settlement forog /pg=1

moduli. In particular, this means that the mean absolute differen-
tial settlement is a function of justys, o2, ¢, ande , g, increasing
with 3 gerando 2 ¢, and reaching a maximum wheéw, /D is near
1.0 (see Fig. 7.

Fig. 8 shows a plot of the probability

ol

for a varying from 0.5 to 4.0, shown by a solid line. The symbols
show empirical probabilities thdt\| is greater thamx |, ob-
tained via simulation(5,000 realizationsfor the three footing
widths, 15 scales of fluctuation, and five elastic modulus COVs
(thus, each column of symbols contains 225 points, 75 for each
footing width).

It can be seen that the predicted probability is in very good
agreement with average simulation results for large differential
settlements, while being conservatifrégher probabilities of ex-
ceedanceat lower differential settlements.

TOR AT A

P(1A1>aps) =20 —
A
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The normal distribution is considered to be a reasonable ap-is to widen the footing. This will result in a rapid decrease in
proximation for differential settlement in at least two ways: first P(|A|>0.028) in the case given above. In particularW is
of all it is a conservativeapproximation, that is, ibverestimates increased to 3.0 m, the empirical estimatePof|A|>0.028) re-
the probability of differential settlement for the bulk of the data. duces by more than a factor of 10 to 0.0016.
Second, it is a&onsistenapproximation in that it improves as the The distribution of absolute differential settlement is, however,
scale of fluctuation decreases, by virtue of the fact that the differ- highly dependent on the scale of fluctuation, primarily through
ence,d,—9%,, approaches a normal distribution. Since the esti- the calculation ofr|, ;. As discussed earlier, the scale of fluctua-
mated scale of fluctuation decreases as a site is more thoroughlytion is a quantity that is very difficult to estimate and one that is
investigated and trends are removed, the normal distribution thenpoorly understood for real soils, particularly in the horizontal di-
becomes more accurate as more is known about the site. Consection. If 8, ¢ is increased to 10.0 m in the above example, the
versely, if little is known about the site, the normal distribution empirical estimate oP (|A|>0.028) increases dramatically to
properly reflects inherent uncertainty by generally predicting 0.44. From a design point of view, the problem is compounded
larger differential settlements. since, for such a large scale of fluctuatiéh(|A|>0.028) now
decreases very slowly as the footing width is increageading
] the load constant For example, a footing width of 5.0 m, with
Two Footing Example 0,,£=10.0 m, hasP (|A|>0.028)=0.21. Thus, establishing the
scale of fluctuation in the horizontal direction is a critical issue in
differential settlement limit state design, and one which needs
much more work.

Consider two footings each of widW;=2.0 m separated bp

=10 m center to center. They are founded on a soil layer of 10 m
depth and each supports a load?sf 1,000 kN. Assume also that
we=40 MPa,oc=40 MPa,0,,=1.0 m, and the Poisson ratio is
0.25. If the footings support a floor or beam that is not attached to .
elements likely to be damaged by large deflection, then differen- COnclusions

tial settlement is limited t®/360=2.8 cm. What is the probabil- ) o ) ) )

ity that |A|>2.8 cm? The approach to the solution is outlined as On the basis of this simulation study, the following observations
follows (see the previous example for some of the earlier details; €@ P& made.

note, however, that the scale of fluctuation has changed in this 1he settlement under a footing founded on a spatially random
example. elastic modulus field of finite depth overlying bedrock is repre-

sented well by a lognormal distribution with parametgyfs; and
ol if Eis also lognormally distributed. The first parameter,
“ins, IS dependent on the mean and variance of the underlying
log—elastic modulus field and may be closely approximated by
considering limiting values of, ¢. One of the primary contribu-
tions of this paper is the observation that the second parameter,
o? 5, is approximated very well by the variance of a local average
of the log—elastic modulus field in the region directly under the
footing. This conclusion is motivated by the observation that
settlement is inversely proportional to the geometric mean of the
elastic modulus field and gives the predictionogf; some gen-
erality that can be extended beyond the actual range of simulation
results considered herein. For very deep soil layers that underly
are  pg=explun s+ 307,)=0.051587, 05=p;Veina—1 the footing, it is recommended that the depth of the averaging
=0.010242, andeZ(eCmafl)/(efrﬁmfl):7_9547x 1076 region not exceed about 10 times its width due to reduction of
respectively. A 5000 realization simulation run for this prob- stress with depth. Once the statistics of the settlemegt, and
lem gave estimates of settlement mean and standard deviao, 5, have been computed, using E¢®—(10), the estimation of
tion of 0.0530 and 0.0081, respectively, and an estimated probabilities associated with settlement involves little more than
correlation coefficient of-0.014 (where the negative corre-  referring to a standard normal distribution table.
lation coefficient estimate is clearly due to bias in the clas-  The differential settlement follows a more complicated distri-
sical estimator, see Fentdh999a for a discussion of this bution than that of settlement itsdéee Eq.(15)]. This is seen
issue. also in the differential settlement histograms which tend to be
4. The differential settlement), has parameterp.,=0 and quite erratic, with their narrow peaks and long tails, particularly at
02=2(1-7.954% 10 %)(0.010242§=0.0002098 and the large6,, /D ratios. Although the difference between two lognor-
mean absolute differential settlement in this case is predicted mally distributed random variables is not normally distributed, the
to be p |y =+2(0.0002098)r=0.011. The simulation run  normal approximation has nevertheless been found to be reason-
estimated the mean absolute differential settlement to be able, giving conservative estimates of probability over the bulk of
0.009. the distribution. For a more accurate estimation of probability
5. The desired probability is predicted to I|A|>0.028) relating to differential settlement, where it can be assumed that
=2®(—0.0284/0.0002098)}-2d(—1.933)=0.0532. The footing settlement is lognormally distributed, E45) should be
empirical estimate of this probability from the simulation run numerically integrated. However, both the simplified normal ap-
is 0.0204. proximation and the numerical integration of Ed.5) depend
The normal distribution approximation tbh somewhat overes-  upon a reasonable estimate of the covariance between footing
timates the probability thdt\| will exceedD/360. This is, there- settlements. Another important contribution of this paper is that
fore, a conservative estimate. From a design point of view, if the this covariance is closeljand conservative)yestimated using the
probability derived in step 5 is deemed unacceptable, one solutioncovariance between local averages of the log—elastic modulus

1. A deterministic finite element analysis of this problem gives
34e=0.03578 under each footingthis number is only
slightly different than that found in the single footing case
due to interactions between the two footing§or of, ¢
=0.69315, the log-settlement statistics under either footing
are Win5=IN(Bge) + 302, c=—2.9838 and o
=\v(W;,H)of, = /(0.055776)(0.69315) 0.19662.

2. To calculateCy, 5, a short program written to implement the
appro;slch presented in the Appendix giv€s s=3.1356
X107,

3. In terms of actual settlement under each footing, the
mean, standard deviation, and correlation coefficient
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field under the two footings. Discrepancies between the covari- D
ance predicted on this basis and in simulation results are due to E

interactions between the footings when they are closely spaced— E,
such interactions lead to higher correlations than predicted by  f,
local average theory, which leads to smaller differential settle- fs

ments than predicted in practice. This is conservative. The recom- f; 5,
mendations regarding the maximum averaging depth made for the G(x)
single footing case would also apply here. H
Example calculations were provided above to illustrate how L
the findings of the paper may be used. These calculations are m,
reasonably simple for calculations by hajekcept for the nu- ms
merical integration in Eq(17)] and are also easily programmed.
They allow probability estimates with regard to settlement and p

center-to-center distance between footings;
elastic modulus;

elastic modulus geometric mean;

differential settlement probability density function;
settlement probability density function;

joint settlement probability density function;
standard normalGaussiahrandom field

overall depth of the soil layer;

overall width of the soil model;

estimated mean of log settlement via simulation;
estimated mean of footing settlement via simula-
tion;

applied footing load;

differential settlement, which in turn allows the estimation of the R, = effective scale of fluctuation used incalcula-
risk associated with this particular limit state for a structure. tions;
A critical issue in the risk assessment of differential settlement sy = estimated standard deviation of footing settlement
that is unresolved is the estimation of the scale of fluctuation, via simulation;
01, e, since it significantly affects the differential settlement dis- 5. = estimated standard deviation of log settlement via
tribution. A tentative recommendation is to use a scale of fluctua- simulation;
tion which is some fraction of the distance between footings, say, W, = footing width;
D/10. There is, at this time, little justification for such a recom- x = spatial coordinate or position;
mendation, aside from the fact that scales that apprdaabr v = variance functior(reduction in variance due to
bigger yield differential settlements which are felt to be unrealis- local averagingy
tic in a practical sense and, for example, not observed in the work A = differential settlement between footings;
of D’Appolonia et al.(1968. Research into this problem is on- 8 = footing settlement, positive downward:;
going. d4et = footing settlement whe = g everywhere;
) 0, = isotropic scale of fluctuation of the log—elastic
Appendix modulus field;
The numerical computation of E¢L7) can be accomplished rea- B, = horizontal scale of fluctuation of the log—elastic
sonably accurately and efficiently using a three-point Gauss inte- modulus field;
gration scheme. The four-fold integration can be written as a two- 6, = vertical scale of fluctuation of the log—elastic
fold sum if the correlation function is quadrant symmefiie., modulus field:
pin eXY)=pin e(=XY)=pin e} —Y)=pin e(—X—VY)], as is Eq.(1), we = mean elastic modulus;
aﬁ . 3 Kine = mean of the log—elastic modulus;
Clnﬁ:ﬁ.7 Wi (1+2z)Pi+(1-2)Q] (21) Mins = mean o_f log se_ttleme_nt;
=1 wa = mean differential footing settlement;
where Rja| = mean absolute differential footing settlement;
3 ws = mean footing settlement;
pne = correlation coefficient between Y at two points;
Pi:; Wil(1+Z)pine(Xiz.Yj0) + (1= Z)pme(Xi1.Yj2)] pins = correlation coefficient between log-footing settle-
(22a) ments;
3 ps = correlation coefficient between footing settlements;
Q:E Wi(1+2) (X Y1)+ (1-2)) (Xi2Yia)] og = standard dev!at!on of the elastic mgdulus;
= j)PinE(Xi2,Yj1 j)PinE(Xi2,Yj2 ope = Standard deviation of the log—elastic modulus;
(22b) ons = Standard deviation of log settlement;
. o, = standard deviation of differential settlement;
Xi1=32(z;—1)W;+D (22c) o5 = standard deviation of footing settlement;
Xiy= Yz + 1)W;+ D (22d) 7 = lag distance, equal thex|;
T = spatial lag vector;
yj1=13(zj—1)H (22¢) v = Poisson ratio; and
. ¢® = standard normal cumulative distribution function.
Yj2=3(z;+1)H (22f)
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