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Abstract: A probabilistic study on the bearing capacity of a rough rigid strip footing on a weightless cohesive soil is carried out to assess
the influence of randomly distributed undrained shear strength. Nonlinear finite element analysis is merged with random field theory in
conjunction with a Monte Carlo method. In a parametric study, the mean shear strength is held constant while the coefficient of variation
and spatial correlation length of cohesion are varied systematically. The influence of the spatial variation of cohesion on the mean bearin
capacity is discussed. The results are also presented in a probabilistic context to determine the probability of failure. A comparison
between rough and smooth footing conditions is also made.
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Introduction The results of such deterministic analyses are a first order ap-
eproximation to the mean response, but may easily miss the true

terministic. These involve analyses using representative values ogallure mechanics, parncularl)_/ where failure surfaces f°”°VY t_hg
design parameters, usually an average or the lowest value obWeakest path through the soil. Thus, the results of deterministic

tained from field and/or laboratory test results, and application of nalyses are only approximations which may vary widely from

a suitable factor of safety to arrive at an allowable loading con- "€@lity. Common causes of discrepancy between the estimated and

dition. However, in nature, soil parameters such as physical actual performance of any geotechnical system may be summa-

strength and hydraulic properties generally vary spatially in both 11Zed as(Cambou 1975; Lee et al. 1983; Mostyn and Li 1993;

the horizontal and vertical directions. The distribution of these Phoon and Kulhawy 1999

soil properties at a site depends on the heterogeneity of constitu-1.  Variability of the soil properties at a specific site;

ent materials forming the soil matrix, the geological history of 2. Sampling techniques;

soil formation, and its continuous modification by nature. A uni- 3. Laboratory test conditions;

form soil condition is seldom, if ever, encountered in practical 4. Selection of design parameters from limited field and labo-

problems. In most site conditions, soil properties show a signifi- ratory test results;

cant variation over space. 5. Assumptions used to simplify the problem for analytical or

Geotechnical analyses are generally carried out by treating the numerical study;

soil as a single homogeneous layer with uniform soil properties or 6. Model error; and

as a multilayered medium with layerwise uniform properties. Nu- 7.  Construction methods and materials used.

merical techniques such as finite difference or finite element ~Among the above, only the randomness of the soil strength is

methods have facilitated modeling the layerwise uniform considered in this work but such consideration may have impli-

material—variation of soil properties in the horizontal direction is cations for several of the other sources of error. In particular, a

generally ignored. This may be due to the fact that the variation in potentially significant source of error in the traditional model is

the horizontal direction is not so significant in many situations, just that spatial variability is traditionally ignored. So the consid-

and a greater number of boreholes is required to establish thiseration of spatial variability may very well reduce model error.

horizontal variation, which is impractical due to economical con-  The deterministic approach with a suitable factor of safety has

siderations. been found to be adequate to essentially eliminate the possibility
of failure of geotechnical systems due to these sources of vari-
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Table 1. Undrained Shear Strength Properties strengthc, means that lig, is normally distributed and the stan-

Statistical property Symbol Units dard deviation and mean of the underlying normal distribution of
Inc, are given by

Mean e, Stress
Stanfjard devia.tion o, Stress Tine,= /In{l+ COV§ } 1)
Spatial correlation length Binc, Length Y

1.2
Fin cuzln Ke,”20n¢, 2

2000. Probabilistic studies on the bearing capacity of smooth ~ Other properties of the lognormal distribution are
footings have been reported previously by Fenton and Griffiths

— 12

(2000, 2001 for ¢’-¢' soils and by Griffiths and Fentoi2001) Mo, = EXAMine, T2 Tinc,) ()
for ¢,=0 soils. In all these studies, a lognormal distribution was _ =
assumed for cohesion and a bounded distribution for the friction T, = Ko, \EXA(Oly cu)_ : “)
angle. In thec’-¢’ bearing capacity analyses, the influence of .
cross correlation between the cohesion and friction angle was also Median=exp(pin ¢, ®)
investigated. 2

The smooth footing condition assumed in the previous works Mode=exp(pin ¢, 9 Cu) ©)

is an ideal case. In reality, footings are usually constructed by
pouring concrete directly on a firm surface of soil or lean con-

crete, and the footing-soil interface is rough enough to restrain the
tendency for slip. In the present study, the influence of a randomly
distributed shear strength on the bearing capacity of a rough rigid
strip footing at the surface of a weightless cohesive soil is as-
sessed. The study combines a conventional nonlinear elastoplasti
finite element analysis with random field theory in conjunction

In this study, the random field is generated using the local
average subdivision methg@enton and Vanmarcke 1990; Fen-
ton 1994. A lognormally distributed random field is obtained by
first simulating a normally distributed random fieB{x), having
zero mean, unit variance, and spatial correlation Ierfgmu.

hen this underlying normally distributed random field is trans-
ormed to the desired cohesion field using the relationship

with a Monte Carlo method. The results from the probabilistic cu=expmc +ome G(X)} (7
study for a rough footing are interpreted statistically, and then ' ‘ ’
compared with similar results from a smooth footing. wherex;=vector containing the coordinates of the center of the

ith element; and,, =cohesion value assigned to that element.
. An isotropic Markovian spatial correlation function, in which
Random Field Model the correlation decays exponentially with distance, is used, and it

can be expressed as
The behavior of a footing on a weightless cohesive soil is influ-

) . ] 2|7
enced by the following three soil parameters: p(7)=exp[ _ |7l ]

(8)

1. Young’s modulus;
2. Poisson’s ratio; and . o .
3. Undrained shear strengtl . wherep = correlation coefficient between the underlying random
While the parameter& and v influence the computed settle- ~ field values at any two points separated by a distanc&his
ment, the bearing capacity of a footing depends primarily on the correlation function governs the correlation structure of the un-
undrained shear strengty . Hence in the present study, to sim-  derlying generated field&(x). The actual spatial correlation
plify the analyses, the Young’s modulus and Poisson’s ratio of the Structure of soil deposits is usually not well known, especially in
soil are held constant while the undrained shear strength is mod-the horizontal directior(see, e.g., Asaoka and Grivas 1982; de
eled as a random field. Marsily 1985; DeGroot and Baecher 1998stablishing the spa-
The variability of the undrained shear strength is assumed to tial correlation structure of a site having erratic variation in its soil
be characterized by a lognormal distribution with the three param- Properties would require an extensive amount of subsoil explora-
eters given in Table 1. tion, which may not be feasible in many projects due to the high
The spatial correlation length, also known as the scale of fluc- COSt. The various forms of commonly used spatial correlation
tuation, describes the distance over which the spatially randomfunctions and the procedure to estimate the correlation coefficient
values will tend to be correlated in the underlying Gaussian field. length are discussed in detail by Fentd999. . .
Thus, a large value will imply a smoothly varying field, while a In the present study, for simplicity, the spatial correlation
small value will imply a ragged field. For more discussion of the lengths in the vertical and horizontal directions are assumed to be
spatial correlation length, the reader is referred to Vanmarcke €qual, and the influence @, is studied by a parametric ap-
(1977. In order to nondimensionalize the input, the shear strength proach. The assumption of isotropy in the correlation structure is
variability is expressed in terms of the coefficient of variation sufficient to establish the basic stochastic behavior of the bearing
COV,, =0, /i, and a normalized spatial correlation length capacity problem. Site specific refinements relating to anisotropy
O, =0inc,/B, whereB is the width of the footing. are left for future studies.
Use of the lognormal distribution to characterize the variabil-
ity of the undrained shear strength is preferred over the normal
distribution because it avoids the generation of negative values ofFinite Element Method
soil parameters that a normal distribution allows. Moreover, avail-
able field data indicate a lognormal distribution for some soil The bearing capacity analyses are carried out by the finite element
properties(Hoeksema and Kitanidis 1985; Sudicky 1986; Cheru- method using a viscoplastic algorithm and the elastic—perfectly
bini 2000. The lognormal distribution of the undrained shear plastic Tresca yield criteriofSmith and Griffiths 1998 The soil

eIn [
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Fig. 1. Mesh used in probabilistic bearing capacity analyses

medium is discretized by isoparametric plane strain elements. Asequent finite element analysis of bearing capacity. Each realiza-
typical finite element mesh used is shown in Fig. 1. It consists of tion, while having the same underlying statistics, will have a quite

1,000 eight-noded square elements, in 50 columns and 20 rowsdifferent spatial pattern of shear strength values beneath the foot-
of equal size with side length 0.1 m. The footing occupies ten ing and hence a different value of bearing capacity. On comple-

elements, giving it a width dB=1 m. The nodes representing the tion of the bearing capacity analysis for 1,000 simulations, the

footing width are incrementally displaced by an equal amount in bearing capacities are subjected to statistical analysis.

the vertical direction, simulating a rigid footing condition with a The bearing capacity; is normalized by the mean undrained
uniform vertical settlement but without any rotation. In reality, the shear strength to give a bearing capacity factor

spatial variation of soil properties might cause a rotational move- N. =g/ =19 000 9
ment of the footing(e.g., Nobahar and Popescu 2p0Owhich is o= A /e, s ©)
not considered in this study. Rough footing conditions are simu-  |n the present study, the mean undrained shear strem_cétrs

lated by restraining horizontal movement of these nodes. Thepelq constant throughout the parametric study at a value of 100
footing load for each increment is the summation of the nodal ypg

forces back-computed from the converged stress field after each

increment. Bearing capacity failure of the footing was taken to

have occurred when the back-computed footing load leveled outDeterministic Analysis
within quite strict tolerances.

The vertical stress distribution beneath a rigid footing is non- The results of deterministic analyses carried out with the mean
uniform, unlike that of a flexible footing where the load is applied undrained shear strength and CO¥0 are shown in Fig. 2. The
equally at nodal points. High stress concentration is observed, inestimated bearing capacity for a rough footing condition by the
general, at the vicinity of the footing edge where soil undergoes finite element method was 542.3 kPa, implying a bearing capacity
high plastic strains. Since the footing load is back-computed from factor of 5.423, which is 5.5% higher than the Prandtl closed form
the stress field, a finer mesh is preferred in that vicinity to en- solution ofN.=5.14. This is due to the coarser and uniform finite
hance the accuracy of the back-computed footing load. Use of aelement mesh used in the analysis. As discussed earlier, a better
coarser mesh generally results in a higher value of back-computedagreement between the computed result and the closed form so-
footing load than the theoretical. lution can be obtained by using a finer mesh near the footing

However, in the present study, a uniform finite element mesh edge. Similarly, the estimated bearing capacity of a smooth foot-
consisting of square elements of equal size is used in order toing by finite element analysis was 528.2 kPa, about 2.8% higher
simplify the random field generation and mapping of the cohesion than the closed form solution. In the following discussion, and in
value of each element. Although the complexity in the random order to take account of this discretization error, the mean bearing
field generation due to a finite element model with varying shapes capacity from statistical analysis will be normalized by the finite
and sizes of elements can be incorporated, it is not consideredelement deterministic values mentioned above, and the effect of
herein. this marginally higher numerical estimation will be relatively in-

significant. The deterministic bearing capacity will be referred to
asqy,, i.e., 0, =542.3 kPa(or 528.2 kPa for the smooth footing

Monte Carlo Simulations casg. Similarly, the deterministic bearing capacity factor will be
referred to afN, ie., ch=5.423(or 5.282 for the smooth foot-
For each set of assumed statistical properties given byC(UZQW ing case.

0y, Monte Carlo simulations are performed. These involve  The displacement vector plot for a rough footing condition in
1,000 realizations of the shear strength random field and the sub+ig. 3 shows that the failure field is similar to Prandtl’s failure
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Fig. 3. Displacement vector at failure of rough footing in determin-
istic analysis

COV,,=0.125,0.25,0.5,1,2,8.

Following 1,000 Monte Carlo simulations, the mean and standard
deviation of the resulting 1,000 bearing capacities are computed.
The accuracy of the estimated bearing capacity statistics de-
pends on the number of realizations carried out for each set of
parameter values. An estimate that is based on only a few real-
izations will have a large standard error. In order to achieve stable
(i.e., accuratebearing capacity statistics, a quite high number of
Monte Carlo realizations may be required. The influence of the
number of realizations on the mean and standard deviation of
bearing capacity of a rough footing is shown in Fig&a 4nd b

mechanism, a triangular wedge moving downward as a rigid body]c wo diff t sets of inout val It be ob d that
with the displaced footing and zones of radial shear and passive or two different Sets of nput vaiues. i can be observe a
1,000 realizations, as used in this study, are generally adequate

Rankine triangular wedges symmetrical on either side. within the considered range of parameters. For further discussion
on the optimal number of realizations, the interested reader is
referred to Griffiths and Fentof2001).

Fig. 5 shows two typical cases of generated random fields of
the undrained shear strength for a fixed value of QUOWhiIe
Oy, ¢, is varied. In this figure, a gray scale is superimposed on the
finite element mesh; the lighter regions indicate stronger soil and
darker regions indicate weaker soil. It can be observed that for a

Parametric Study

Analyses are performed with the mesh of Fig. 1 and with the
input parameters taking the following values:

@p,=0.125,051,24,8
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Fig. 4. Effect of number of realizations on bearing capacity statistigsmean,(b) standard deviation
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Fig. 5. Influence of ®,. on random field generation (CQV

=1): ©)¢,=(a) 0.125(b) 8

TR

b)

small value of®, o, the shear strength changes rapidly from ele-
ment to element creating a ragged field, and*)@,%u increases the

random field becomes smoother, or more slowly varying.

Figs. §a and B show how the mean bearing capacity, normal-
ized by the deterministic bearing capacity, varies with GOand

O o, for rough footing conditions. For low values of CQthhe
mean bearing capaciq;tqf tends to the deterministic value. But
for higher values of coy, the mean bearing capacity falls

steeply, especially for spatial correlation lengths of the order of
O, ~0.5. For example, in Fig.(8), the mean bearing capacity

in a highly variable condition with®, ¢, =05 and Coy, =8 is

COV,,=0.5, which Lee et al(1983 suggest as an upper limit,
with @, =1.0, thepq is about 80% of the deterministic value.
Fig. 6(b) indicates a minimum value of the mean bearing capacity
is observed whe®, . ~0.5, i.e., the correlation length is half of
the footing width. At the next lower value @, ¢, p.q, is seen in

all cases to increase. It is speculated that in the Iimi@q;fcu

—0, there are no “preferential” weak paths the failure mecha-
nism can follow, and the mean bearing capacity will tend to the
deterministic bearing capacity based on the geometric average of
the shear strength, namely the median from E5). Thus, as

O c,—0 g /ds,—(1+COV; )~ 2 The explanation lies in the
fact that as the spatial correlation length decreases, the weakest
path becomes increasingly tortuous, and its length correspond-
ingly longer. As a result, the “lowest energy” path starts to look
for shorter routes cutting through higher strength material. In the
limit, as O, ¢, 0 it is expected that the optimum failure path
will be the same as in a uniform material at the median.

In principle, the®,,, =0 case is somewhat delicate to inves-
tigate. Strictly speaking, any local average offiaite variance
random Inc, field having®, ¢, =0 will have zero variancésince
the local average will involve an infinite number of independent
points. Thus, in the®,, ¢, =0 case the “local average” represen-
tation, i.e., the finite element methdds interpreted heyewill
necessarily return to a deterministic solution based on the median.
The detailed investigation of this trend is also complicated by the
fact that soil properties are never determined at the “point”
level—they are based on a local average over the soil sample
volume. While recognizing the apparent trend with sn@gjl; in
this study, the theoretical explanation for the limiting trend is left
for further research.

It is also hypothesized th&, . ~B (or ©,~1.0) leads to
the greatest reduction imqf, because it allows enough variability
for a failure surface to develop which deviates significantly from

only about 10% of the deterministic value. For the value of the deterministic Prandtl mechanidwonsisting of circular arcs
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Fig. 6. Estimated mean bearing capacity as function of undrained shear strength st@¥sticand COV,
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Fig. 7. Estimated coefficient of variation of bearing capacity ((;Q\es function of undrained shear strength statisii‘)q;sCu and CO\éu

and straight linegs Too much spatial variability, wher®, ¢, —0 creasing®,, o and approaches the limiting value represented by
so that the weakest path would become too long, or too little, the 45° inclined line for the hypothetical case ©f, ;== for
where®,, ¢, —%® SO that no weakest path exists, both tend back to which, as explained above, CQMNouId be equal to coy.
the deterministic solution. Fig. 8 shows typical deformed meshes at failure under a rough
From these two figures, it can be seen that the bearing capacityfooting for some of the realizations and the corresponding dis-
of a footing on a heterogeneous soil with spatially varying un- placement vector plot. The deformed mesh is superimposed on a
drained shear strength will generally be less than the deterministicgray scale in which lighter regions indicate stronger soil and
bearing capacity computed with the mean shear strepgth darker regions indicate weaker soil. As the variance of the shear
This important result shows that weak soil elements, rather thanstrength for a spatially variable soil increases, the symmetry of
strong soil elements, tend to dominate the overall performance ofthe failure field is lost and the failure mechanism tends to go one

the footing. way or the other. Failure of the footing in the very first load
The horizontal line in Fig. @ corresponds to the solution that increment with negligible bearing capacity has also been ob-
would be obtained for the hypothetical case @f, o, =% This served during some realizations with CO¥1. In these cases,

condition implies that each realization of the Monte Carlo process the random field simulation has generated a region of elements
involves a uniform soil, albeit with properties varying from one close to the footing with very low shear strength that is unable to
realization to the next. In this case, the distribution of the bearing provide any resistance to the footing load. Similarly, higher val-
capacityq; will be statistically similar to the underlying lognor-  ues of COV, have also resulted in very high bearing capacities in
mal distribution ofc, but magnified byN. , i.e., the mean bear-  some realizations, as high as 11 times the deterministic value.
ing capacity will be equal to the deterministic bearing capacity for
all values of COV, .

The change in the coefficient of variation of computed bearing Probabilistic Interpretation
capacities, COY , with respect to COY for the rough footing is 3 _ _
shown in Fig. 7. For this, the standard deviation in the estimated "€ Probability that the computed bearing capacity, for any set of
bearing capacity, for each set of input parameters is normal- INPUt parameters, is less than the deterministic vaju€qs,, can

ized by the corresponding mean bearing capacity to obtain P& €xpressed as

COV,,. At lower values of COY , the COV,_ increases almost NGt~ ing,

linearly with COVCU, and at higher values of CQ}j/the curves P[qf<qfd]=<b<T) (20)
flatten and the rate of increase is reduced. It is noted that the a

influence of@®, ., is also significant; coy increases with in- where® = cumulative normal function.
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mean(Figs. 6, means that the majority of the bearing capacity
ing conditions, indicates that there is always a greater than 50%distribution lies below the deterministic bearing capacity based on
chance that the bearing capacity of the footing on a soil with the mean strength. Theoretically, as the GO¥pproaches zero,
spatially random shear strength is less than the deterministic bearall the probabilities in Fig. 9 tend to 0.5, irrespective of the value
ing capacity based on the mean. Higher probabilities correspondof O, ¢ ltcan also be observed from Fig. 9 that this convergence
toward 0.5 occurs faster for higher values@f, o
For a fixed mean, the lognormal distribution will become in-
the reduced variance of the bearing capacity values. The “bunch-creasingly skewed to the right as tB®V increasegwhich is to
ing up” of bearing capacity values, combined with a reduced say, the median moves farther to the left from the mesn that
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Fig. 16. Comparison of probability of design failure for smooth and rough fOOtiQ]§'Cu= (@) 0.5,(b) 8
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there is an increasing area to the left of the mean. Thus, even aConcluding Remarks
known lognormal distribution(as represented by th®, 6, =%
case will show an increasing probability tha|1f<qfd with in-
creasing COY . However, the fact that lesser values ©f,
show even higher values d?[qf<qfd] is indicative of the
“weakest path” effect arising from spatial variability in soil prop-
erties. In effect, for®, o <o, the weaker soil regions in the re-
sulting random field tend to dominate the failure mode. listic study the following conclusions can be made.

~ The usual design practice for footings is deterministic. This  The mean bearing capacity of a footing on a soil with spatially
involves the estimation of ultimate bearing capacity using averageyarying shear strength is always lower than the deterministic
values of design parameters and application of a suitable factor ofpearing capacity based on the mean value. This important obser-
safety(F) to arrive at an allowable bearing capacity. The factor of yation is due to the linking up of weak elements beneath the
safety used for shallow footings is generally between 3 and 4. Thefgoting, and shows that weak elements rather than strong ele-
results in Fig. 9 imply a factor of safety of unity, so the probabil- ments tend to dominate the expected bearing capacity of a footing
ity results have been reinterpreted in Figs. 10-12 to indicate theon spatially random soil.
estimated probability of design failure after the deterministic so-  The reduction in the expected bearing capacity was greatest
lution has been reduced by a factor of safety 1. The probabil- - for higher values of COY and values of the spatial correlation
ity of design fallureP[qf<qfd/F] is now greatly reduced. For length®,, . on the order of the footing width.
example, for the recommended maximum value of CG40.5, The results confirm that a factor of safety of 3—4 would gen-
the chance of failure has been reduced to 11%-fer2, 1.3% for  erally be adequate to reduce the probability of design failure to
F=3, and 0.2% fori-=4. Fig. 13 shows directly how affects negligible levels for soils with COY<0.5.
the probability of design failure for a range of CQMvhere the The results of rough and smooth footings were compared. The
correlation length is held constant. ~trend in the variation of the mean bearing capacity with respect to
The above results confirm that a factor of safety of 3-4 is cov, and®,,, in both cases is generally similar. Due to the
generally able to reduce the probability design failure to negli- 4 oater volume of soil involved in the failure mechanism beneath
gible Iev_el for all soils in the recommended range_ of GV a rough footing, however, the bearing capacities were marginally
<0.5. Higher factor of safety values would be required for ex- higher and hence the probabilities of design failure marginally
ceptionally variable soils. lower than in the smooth case.

A probabilistic study on the bearing capacity of a rough rigid strip
footing on a soil with randomly varying shear strength has been
carried out. Random field theory has been combined with a con-
ventional nonlinear finite element algorithm, in conjunction with
a Monte Carlo method. The parametric study carried out involves
1,000 realizations for each set of parameters. From this probabi-

Comparison with Smooth Footing Results
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A parametric study for smooth footing conditiofesg., Griffiths
and Fenton 2001has been carried out and compared with that for The writers acknowledge the support of the U.S. National Science
rough conditions. Some typical deformed meshes and the corre-Foundation under Grant No. CMS-9877189 and the Canadian Na-
sponding displacement vectors for realizations under smooth con-tional Sciences and Engineering Research Council under Operat-
ditions are shown in Fig. 14. In a deterministic analysis, the fail- ing Grant No. OPG0105445.
ure mechanism of a smooth footing is similar to Hill's mechanism
of failure with two smaller symmetrical triangular wedges under-
neath the footing, one sliding to the left and the other sliding to Notation
the right. As the coy, increases, the symmetry of the failure

field is lost; the slip lines on one side are shallower than on the The following symbols are used in this paper

other, or the failure mechanism tends to go one way or the other. B
The slip lines of smooth footing are generally shallower than that COV¢,
of rough footing.

Fig. 15 compares the mean bearing capacities under smootPﬁOVqf
and rough conditions after being normalized by their respective

deterministic bearing capacity values. The general trend in the ¢,
variation of the mean bearing capacities with respect to cov Cy
and®y, . for both footing conditions is similar; but the normal- E

ized mean bearing capacity of the smooth footing is somewhat F

lower than that of the rough footing. Fig. 16 compares the prob- f(---)
ability of design failureP[qf<qfd/F] for smooth and rough foot- G(x)
ings for®,, ,=0.5 and 8. Although the general trend in the varia-

G(x))

tion of the probability of failure is similar for both footing
conditions, the smooth footing generally has somewhat higher
probabilities of design failure than in the rough case. c
Since the slip lines at failure for a rough footing are generally Ne,
deeper than for a smooth footing, a greater volume of soil mass is N,
being sheared, resulting in a marginally higher bearing capacity P[---]
and lower probability of failure than for the smooth case. s

footing width;

coefficient of variation of undrained shear
strength;

estimated coefficient of variation of bearing capac-
ity;

undrained shear strength;

undrained shear strength assignedttoelement;
Young’s modulus;

factor of safety;

probability density function;

standard Gaussian field with zero mean and unit
variance;

local average of Gaussian field ovi¢h element;
integers that count realizations or elements;
bearing capacity factor;

bearing capacity factor for deterministic solution;
bearing capacity factor faith realization;
probability;

bearing capacity;
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dr, = deterministic bearing capacity;
ds, = bearing capacity forth realization;
X; = vector containing coordinates of centeridi ele-
ment;
O, ¢, = dimensionless spatial correlation of log undrained
shear strength;
Binc, = spatial correlation length of log undrained shear
strength;
Kc, = mean of undrained shear strength;
Kinc, = mean of log undrained shear strength;
King, = estimated mean of log bearing capacity;
Mg, = estimated mean bearing capacity;
v = Poisson’s ratio;
p = correlation coefficient;

0, = standard deviation of undrained shear strength;
Oing, = standard deviation of log undrained shear strength;
Oing, = estimated standard deviation of log bearing capac-

ity;

0q, = estimated standard deviation of bearing capacity;

T = distance between two points in random field; and
®(---) = cumulative normal function.
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