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Bearing Capacity of Rough Rigid Strip Footing on Cohesive
Soil: Probabilistic Study
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Abstract: A probabilistic study on the bearing capacity of a rough rigid strip footing on a weightless cohesive soil is carried out to
the influence of randomly distributed undrained shear strength. Nonlinear finite element analysis is merged with random field
conjunction with a Monte Carlo method. In a parametric study, the mean shear strength is held constant while the coefficient of
and spatial correlation length of cohesion are varied systematically. The influence of the spatial variation of cohesion on the mea
capacity is discussed. The results are also presented in a probabilistic context to determine the probability of failure. A co
between rough and smooth footing conditions is also made.

DOI: 10.1061/~ASCE!1090-0241~2002!128:9~743!

CE Database keywords: Bearing capacity; Cohesive soils; Probabilistic methods; Footings.
s d
s o
ob
of

on-
ica
oth
se
titu
of
ni-
cal
ifi-

th
s or
u-
ent
rm
is

n in
ns,
thi
n-

ap-
true
he
istic
m
and

ma-
3;

bo-

or

h is
pli-
r, a
is

id-
.
has
ility
ari-

of
is

by
soil
the
lex-

ould
ini-

ica-

t al.

s,

ali-

Rd.

ion
by

ing
os-

This
l
0-
Introduction

Most geotechnical analyses in general practice are treated a
terministic. These involve analyses using representative value
design parameters, usually an average or the lowest value
tained from field and/or laboratory test results, and application
a suitable factor of safety to arrive at an allowable loading c
dition. However, in nature, soil parameters such as phys
strength and hydraulic properties generally vary spatially in b
the horizontal and vertical directions. The distribution of the
soil properties at a site depends on the heterogeneity of cons
ent materials forming the soil matrix, the geological history
soil formation, and its continuous modification by nature. A u
form soil condition is seldom, if ever, encountered in practi
problems. In most site conditions, soil properties show a sign
cant variation over space.

Geotechnical analyses are generally carried out by treating
soil as a single homogeneous layer with uniform soil propertie
as a multilayered medium with layerwise uniform properties. N
merical techniques such as finite difference or finite elem
methods have facilitated modeling the layerwise unifo
material—variation of soil properties in the horizontal direction
generally ignored. This may be due to the fact that the variatio
the horizontal direction is not so significant in many situatio
and a greater number of boreholes is required to establish
horizontal variation, which is impractical due to economical co
siderations.
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The results of such deterministic analyses are a first order
proximation to the mean response, but may easily miss the
failure mechanics, particularly where failure surfaces follow t
weakest path through the soil. Thus, the results of determin
analyses are only approximations which may vary widely fro
reality. Common causes of discrepancy between the estimated
actual performance of any geotechnical system may be sum
rized as~Cambou 1975; Lee et al. 1983; Mostyn and Li 199
Phoon and Kulhawy 1999!

1. Variability of the soil properties at a specific site;
2. Sampling techniques;
3. Laboratory test conditions;
4. Selection of design parameters from limited field and la

ratory test results;
5. Assumptions used to simplify the problem for analytical

numerical study;
6. Model error; and
7. Construction methods and materials used.

Among the above, only the randomness of the soil strengt
considered in this work but such consideration may have im
cations for several of the other sources of error. In particula
potentially significant source of error in the traditional model
just that spatial variability is traditionally ignored. So the cons
eration of spatial variability may very well reduce model error

The deterministic approach with a suitable factor of safety
been found to be adequate to essentially eliminate the possib
of failure of geotechnical systems due to these sources of v
ability. However, for major projects, reporting the probability
geotechnical failure and/or risk involved in any such failure
becoming popular among engineers~Mostyn and Li 1993; Phoon
et al. 2000!. Such probabilistic studies may be carried out
treating some of the key soil properties as random fields. The
parameters that do not cause any significant variation in
analyses may be treated deterministically to reduce the comp
ity of the problem. Based on parametric studies, engineers c
further refine their design and construction requirements to m
mize the project cost.

Probabilistic studies on a wide range of geotechnical appl
tions have been reported in the literature~see, e.g., Li and Lo
1993; Lemaire et al. 1995; Shackelford et al. 1996; Pande e
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2000!. Probabilistic studies on the bearing capacity of smo
footings have been reported previously by Fenton and Griffi
~2000, 2001! for c8-f8 soils and by Griffiths and Fenton~2001!
for fu50 soils. In all these studies, a lognormal distribution w
assumed for cohesion and a bounded distribution for the fric
angle. In thec8-f8 bearing capacity analyses, the influence
cross correlation between the cohesion and friction angle was
investigated.

The smooth footing condition assumed in the previous wo
is an ideal case. In reality, footings are usually constructed
pouring concrete directly on a firm surface of soil or lean co
crete, and the footing-soil interface is rough enough to restrain
tendency for slip. In the present study, the influence of a rando
distributed shear strength on the bearing capacity of a rough r
strip footing at the surface of a weightless cohesive soil is
sessed. The study combines a conventional nonlinear elastop
finite element analysis with random field theory in conjuncti
with a Monte Carlo method. The results from the probabilis
study for a rough footing are interpreted statistically, and th
compared with similar results from a smooth footing.

Random Field Model

The behavior of a footing on a weightless cohesive soil is in
enced by the following three soil parameters:
1. Young’s modulusE;
2. Poisson’s ration; and
3. Undrained shear strengthcu .

While the parametersE and n influence the computed settle
ment, the bearing capacity of a footing depends primarily on
undrained shear strengthcu . Hence in the present study, to sim
plify the analyses, the Young’s modulus and Poisson’s ratio of
soil are held constant while the undrained shear strength is m
eled as a random field.

The variability of the undrained shear strength is assume
be characterized by a lognormal distribution with the three par
eters given in Table 1.

The spatial correlation length, also known as the scale of fl
tuation, describes the distance over which the spatially rand
values will tend to be correlated in the underlying Gaussian fi
Thus, a large value will imply a smoothly varying field, while
small value will imply a ragged field. For more discussion of t
spatial correlation length, the reader is referred to Vanmar
~1977!. In order to nondimensionalize the input, the shear stren
variability is expressed in terms of the coefficient of variati
COVcu

5scu
/mcu

, and a normalized spatial correlation leng
Q ln cu

5uln cu
/B, whereB is the width of the footing.

Use of the lognormal distribution to characterize the variab
ity of the undrained shear strength is preferred over the nor
distribution because it avoids the generation of negative value
soil parameters that a normal distribution allows. Moreover, av
able field data indicate a lognormal distribution for some s
properties~Hoeksema and Kitanidis 1985; Sudicky 1986; Che
bini 2000!. The lognormal distribution of the undrained she

Table 1. Undrained Shear Strength Properties

Statistical property Symbol Units

Mean mcu
Stress

Standard deviation scu
Stress

Spatial correlation length u ln cu
Length
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strengthcu means that lncu is normally distributed and the stan
dard deviation and mean of the underlying normal distribution
ln cu are given by

s ln cu
5Aln$11COVcu

2 % (1)

m ln cu
5 ln mcu

2 1
2 s ln cu

2 (2)

Other properties of the lognormal distribution are

mcu
5exp~m ln cu

1 1
2 s ln cu

2 ! (3)

scu
5mcu

Aexp~s ln cu

2 !21 (4)

Median5exp~m ln cu
! (5)

Mode5exp~m ln cu
2s ln cu

2 ! (6)

In this study, the random field is generated using the lo
average subdivision method~Fenton and Vanmarcke 1990; Fen
ton 1994!. A lognormally distributed random field is obtained b
first simulating a normally distributed random fieldG(x), having
zero mean, unit variance, and spatial correlation lengthu ln cu

.
Then this underlying normally distributed random field is tran
formed to the desired cohesion field using the relationship

cui
5exp$m ln cu

1s ln cu
G~xi !% (7)

wherexi5vector containing the coordinates of the center of t
i th element; andcui

5cohesion value assigned to that element
An isotropic Markovian spatial correlation function, in whic

the correlation decays exponentially with distance, is used, an
can be expressed as

r~t!5expH 2
2utu
u ln cu

J (8)

wherer5correlation coefficient between the underlying rando
field values at any two points separated by a distancet. This
correlation function governs the correlation structure of the
derlying generated fieldsG(x). The actual spatial correlation
structure of soil deposits is usually not well known, especially
the horizontal direction~see, e.g., Asaoka and Grivas 1982;
Marsily 1985; DeGroot and Baecher 1993!. Establishing the spa
tial correlation structure of a site having erratic variation in its s
properties would require an extensive amount of subsoil explo
tion, which may not be feasible in many projects due to the h
cost. The various forms of commonly used spatial correlat
functions and the procedure to estimate the correlation coeffic
length are discussed in detail by Fenton~1999!.

In the present study, for simplicity, the spatial correlati
lengths in the vertical and horizontal directions are assumed t
equal, and the influence ofQ ln cu

is studied by a parametric ap
proach. The assumption of isotropy in the correlation structur
sufficient to establish the basic stochastic behavior of the bea
capacity problem. Site specific refinements relating to anisotr
are left for future studies.

Finite Element Method

The bearing capacity analyses are carried out by the finite elem
method using a viscoplastic algorithm and the elastic–perfe
plastic Tresca yield criterion~Smith and Griffiths 1998!. The soil
EERING / SEPTEMBER 2002



Fig. 1. Mesh used in probabilistic bearing capacity analyses
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medium is discretized by isoparametric plane strain element
typical finite element mesh used is shown in Fig. 1. It consists
1,000 eight-noded square elements, in 50 columns and 20 r
of equal size with side length 0.1 m. The footing occupies
elements, giving it a width ofB51 m. The nodes representing th
footing width are incrementally displaced by an equal amoun
the vertical direction, simulating a rigid footing condition with
uniform vertical settlement but without any rotation. In reality, t
spatial variation of soil properties might cause a rotational mo
ment of the footing~e.g., Nobahar and Popescu 2001!, which is
not considered in this study. Rough footing conditions are sim
lated by restraining horizontal movement of these nodes.
footing load for each increment is the summation of the no
forces back-computed from the converged stress field after e
increment. Bearing capacity failure of the footing was taken
have occurred when the back-computed footing load leveled
within quite strict tolerances.

The vertical stress distribution beneath a rigid footing is no
uniform, unlike that of a flexible footing where the load is appli
equally at nodal points. High stress concentration is observed
general, at the vicinity of the footing edge where soil underg
high plastic strains. Since the footing load is back-computed fr
the stress field, a finer mesh is preferred in that vicinity to
hance the accuracy of the back-computed footing load. Use
coarser mesh generally results in a higher value of back-comp
footing load than the theoretical.

However, in the present study, a uniform finite element m
consisting of square elements of equal size is used in orde
simplify the random field generation and mapping of the cohes
value of each element. Although the complexity in the rand
field generation due to a finite element model with varying sha
and sizes of elements can be incorporated, it is not consid
herein.

Monte Carlo Simulations

For each set of assumed statistical properties given by COVcu
and

Q ln cu
, Monte Carlo simulations are performed. These invo

1,000 realizations of the shear strength random field and the
JOURNAL OF GEOTECHNICAL A
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sequent finite element analysis of bearing capacity. Each rea
tion, while having the same underlying statistics, will have a qu
different spatial pattern of shear strength values beneath the
ing and hence a different value of bearing capacity. On com
tion of the bearing capacity analysis for 1,000 simulations,
bearing capacities are subjected to statistical analysis.

The bearing capacityqf is normalized by the mean undraine
shear strength to give a bearing capacity factor

Nci
5qf i

/mcu
, i 51,2, . . . ,1,000 (9)

In the present study, the mean undrained shear strengthmcu
is

held constant throughout the parametric study at a value of
kPa.

Deterministic Analysis

The results of deterministic analyses carried out with the m
undrained shear strength and COVcu

50 are shown in Fig. 2. The
estimated bearing capacity for a rough footing condition by
finite element method was 542.3 kPa, implying a bearing capa
factor of 5.423, which is 5.5% higher than the Prandtl closed fo
solution ofNc55.14. This is due to the coarser and uniform fin
element mesh used in the analysis. As discussed earlier, a b
agreement between the computed result and the closed form
lution can be obtained by using a finer mesh near the foo
edge. Similarly, the estimated bearing capacity of a smooth fo
ing by finite element analysis was 528.2 kPa, about 2.8% hig
than the closed form solution. In the following discussion, and
order to take account of this discretization error, the mean bea
capacity from statistical analysis will be normalized by the fin
element deterministic values mentioned above, and the effec
this marginally higher numerical estimation will be relatively in
significant. The deterministic bearing capacity will be referred
asqf d

, i.e., qf d
5542.3 kPa~or 528.2 kPa for the smooth footin

case!. Similarly, the deterministic bearing capacity factor will b
referred to asNcd

, i.e.,Ncd
55.423~or 5.282 for the smooth foot-

ing case!.
The displacement vector plot for a rough footing condition

Fig. 3 shows that the failure field is similar to Prandtl’s failu
ND GEOENVIRONMENTAL ENGINEERING / SEPTEMBER 2002 / 745
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mechanism, a triangular wedge moving downward as a rigid b
with the displaced footing and zones of radial shear and pas
Rankine triangular wedges symmetrical on either side.

Parametric Study

Analyses are performed with the mesh of Fig. 1 and with
input parameters taking the following values:

Q ln cu
50.125,0.5,1,2,4,8

Fig. 2. Deterministic analysis of footings
746 / JOURNAL OF GEOTECHNICAL AND GEOENVIRONMENTAL ENGIN
e

COVcu
50.125,0.25,0.5,1,2,8.

Following 1,000 Monte Carlo simulations, the mean and stand
deviation of the resulting 1,000 bearing capacities are compu

The accuracy of the estimated bearing capacity statistics
pends on the number of realizations carried out for each se
parameter values. An estimate that is based on only a few r
izations will have a large standard error. In order to achieve sta
~i.e., accurate! bearing capacity statistics, a quite high number
Monte Carlo realizations may be required. The influence of
number of realizations on the mean and standard deviation
bearing capacity of a rough footing is shown in Figs. 4~a and b!
for two different sets of input values. It can be observed t
1,000 realizations, as used in this study, are generally adeq
within the considered range of parameters. For further discus
on the optimal number of realizations, the interested reade
referred to Griffiths and Fenton~2001!.

Fig. 5 shows two typical cases of generated random fields
the undrained shear strength for a fixed value of COVcu

while
Q ln cu

is varied. In this figure, a gray scale is superimposed on
finite element mesh; the lighter regions indicate stronger soil
darker regions indicate weaker soil. It can be observed that f

Fig. 3. Displacement vector at failure of rough footing in determi
istic analysis
Fig. 4. Effect of number of realizations on bearing capacity statistics:~a! mean,~b! standard deviation
EERING / SEPTEMBER 2002
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small value ofQ ln cu
the shear strength changes rapidly from e

ment to element creating a ragged field, and asQ ln cu
increases the

random field becomes smoother, or more slowly varying.
Figs. 6~a and b! show how the mean bearing capacity, norm

ized by the deterministic bearing capacity, varies with COVcu
and

Q ln cu
for rough footing conditions. For low values of COVcu

, the
mean bearing capacitymqf

tends to the deterministic value. Bu
for higher values of COVcu

the mean bearing capacity fall
steeply, especially for spatial correlation lengths of the orde
Q ln cu

'0.5. For example, in Fig. 6~a!, the mean bearing capacit
in a highly variable condition withQ ln cu

50.5 and COVcu
58 is

only about 10% of the deterministic value. For the value

Fig. 5. Influence of Q ln cu
on random field generation (COVcu

51): Q ln cu
5(a) 0.125,~b! 8
JOURNAL OF GEOTECHNICAL A
COVcu
50.5, which Lee et al.~1983! suggest as an upper limit

with Q ln cu
51.0, themqf

is about 80% of the deterministic value
Fig. 6~b! indicates a minimum value of the mean bearing capac
is observed whenQ ln cu

'0.5, i.e., the correlation length is half o
the footing width. At the next lower value ofQ ln cu

, mqf
is seen in

all cases to increase. It is speculated that in the limit ofQ ln cu

→0, there are no ‘‘preferential’’ weak paths the failure mech
nism can follow, and the mean bearing capacity will tend to
deterministic bearing capacity based on the geometric averag
the shear strength, namely the median from Eq.~5!. Thus, as
Q ln cu

→0 mqf
/qf d

→(11COVcu

2 )21/2. The explanation lies in the

fact that as the spatial correlation length decreases, the wea
path becomes increasingly tortuous, and its length corresp
ingly longer. As a result, the ‘‘lowest energy’’ path starts to loo
for shorter routes cutting through higher strength material. In
limit, as Q ln cu

→0, it is expected that the optimum failure pa
will be the same as in a uniform material at the median.

In principle, theQ ln cu
50 case is somewhat delicate to inve

tigate. Strictly speaking, any local average of a~finite variance!
random lncu field havingQ ln cu

50 will have zero variance~since
the local average will involve an infinite number of independe
points!. Thus, in theQ ln cu

50 case the ‘‘local average’’ represen
tation, i.e., the finite element method~as interpreted here!, will
necessarily return to a deterministic solution based on the med
The detailed investigation of this trend is also complicated by
fact that soil properties are never determined at the ‘‘poi
level—they are based on a local average over the soil sam
volume. While recognizing the apparent trend with smallQ ln cu

in
this study, the theoretical explanation for the limiting trend is l
for further research.

It is also hypothesized thatQ ln cu
'B ~or Q ln cu

'1.0! leads to
the greatest reduction inmqf

, because it allows enough variabilit
for a failure surface to develop which deviates significantly fro
the deterministic Prandtl mechanism~consisting of circular arcs
Fig. 6. Estimated mean bearing capacity as function of undrained shear strength statisticsQ ln cu
and COVcu
ND GEOENVIRONMENTAL ENGINEERING / SEPTEMBER 2002 / 747



Fig. 7. Estimated coefficient of variation of bearing capacity (COVqf
) as function of undrained shear strength statisticsQ ln cu

and COVcu
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and straight lines!. Too much spatial variability, whereQ ln cu
→0

so that the weakest path would become too long, or too lit
whereQ ln cu

→` so that no weakest path exists, both tend back
the deterministic solution.

From these two figures, it can be seen that the bearing cap
of a footing on a heterogeneous soil with spatially varying u
drained shear strength will generally be less than the determin
bearing capacity computed with the mean shear strengthmcu

.
This important result shows that weak soil elements, rather t
strong soil elements, tend to dominate the overall performanc
the footing.

The horizontal line in Fig. 6~a! corresponds to the solution tha
would be obtained for the hypothetical case ofQ ln cu

5`. This
condition implies that each realization of the Monte Carlo proc
involves a uniform soil, albeit with properties varying from on
realization to the next. In this case, the distribution of the bear
capacityqf will be statistically similar to the underlying lognor
mal distribution ofcu but magnified byNcd

, i.e., the mean bear
ing capacity will be equal to the deterministic bearing capacity
all values of COVcu

.
The change in the coefficient of variation of computed bear

capacities, COVqf
, with respect to COVcu

for the rough footing is
shown in Fig. 7. For this, the standard deviation in the estima
bearing capacitysqf

for each set of input parameters is norma
ized by the corresponding mean bearing capacity to ob
COVqf

. At lower values of COVcu
, the COVqf

increases almos
linearly with COVcu

, and at higher values of COVcu
the curves

flatten and the rate of increase is reduced. It is noted that
influence ofQ ln cu

is also significant; COVqf
increases with in-
748 / JOURNAL OF GEOTECHNICAL AND GEOENVIRONMENTAL ENGIN
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c

f

creasingQ ln cu
and approaches the limiting value represented

the 45° inclined line for the hypothetical case ofQ ln cu
5` for

which, as explained above, COVqf
would be equal to COVcu

.
Fig. 8 shows typical deformed meshes at failure under a ro

footing for some of the realizations and the corresponding d
placement vector plot. The deformed mesh is superimposed
gray scale in which lighter regions indicate stronger soil a
darker regions indicate weaker soil. As the variance of the sh
strength for a spatially variable soil increases, the symmetry
the failure field is lost and the failure mechanism tends to go
way or the other. Failure of the footing in the very first loa
increment with negligible bearing capacity has also been
served during some realizations with COVcu

.1. In these cases
the random field simulation has generated a region of elem
close to the footing with very low shear strength that is unable
provide any resistance to the footing load. Similarly, higher v
ues of COVcu

have also resulted in very high bearing capacities
some realizations, as high as 11 times the deterministic value

Probabilistic Interpretation

The probability that the computed bearing capacity, for any se
input parameters, is less than the deterministic value,qf,qf d

, can
be expressed as

P@qf,qf d
#5FS ln qf d

2m ln qf

s ln qf

D (10)

whereF5cumulative normal function.
EERING / SEPTEMBER 2002



Fig. 8. Typical deformed meshes and corresponding plot of displacement vectors for some realizations~rough footing! ~a–h!
JOURNAL OF GEOTECHNICAL AND GEOENVIRONMENTAL ENGINEERING / SEPTEMBER 2002 / 749



Fig. 9. Probability that bearing capacity will be lower than deterministic value

Fig. 10. Probability that bearing capacity will be lower than deterministic value with factor of safetyF52
750 / JOURNAL OF GEOTECHNICAL AND GEOENVIRONMENTAL ENGINEERING / SEPTEMBER 2002



Fig. 11. Probability that bearing capacity will be lower than deterministic value with factor of safetyF53

Fig. 12. Probability that bearing capacity will be lower than deterministic value with factor of safetyF54
JOURNAL OF GEOTECHNICAL AND GEOENVIRONMENTAL ENGINEERING / SEPTEMBER 2002 / 751



Fig. 13. Probability that bearing capacity will be lower than deterministic value for different factors of safetyF for Q ln cu
51

Fig. 14. Typical deformed meshes and corresponding plot of displacement vectors for some realizations~smooth footing! ~a–d!
752 / JOURNAL OF GEOTECHNICAL AND GEOENVIRONMENTAL ENGINEERING / SEPTEMBER 2002



Fig. 15. Comparison of mean bearing capacity for smooth and rough footings
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The summary ofP@qf,qf d
#, shown in Fig. 9 for rough foot

ing conditions, indicates that there is always a greater than 5
chance that the bearing capacity of the footing on a soil w
spatially random shear strength is less than the deterministic b
ing capacity based on the mean. Higher probabilities corresp
to higher values of COVcu

and lower values ofQ ln cu
. The higher

probabilities corresponding to low values ofQ ln cu
occur due to

the reduced variance of the bearing capacity values. The ‘‘bun
ing up’’ of bearing capacity values, combined with a reduc
JOURNAL OF GEOTECHNICAL A
r-

-

mean~Figs. 6!, means that the majority of the bearing capac
distribution lies below the deterministic bearing capacity based
the mean strength. Theoretically, as the COVcu

approaches zero
all the probabilities in Fig. 9 tend to 0.5, irrespective of the va
of Q ln cu

. It can also be observed from Fig. 9 that this converge
toward 0.5 occurs faster for higher values ofQ ln cu

.
For a fixed mean, the lognormal distribution will become i

creasingly skewed to the right as theCOV increases~which is to
say, the median moves farther to the left from the mean!, so that
Fig. 16. Comparison of probability of design failure for smooth and rough footings:Q ln cu
5 (a) 0.5,~b! 8
ND GEOENVIRONMENTAL ENGINEERING / SEPTEMBER 2002 / 753
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there is an increasing area to the left of the mean. Thus, ev
known lognormal distribution~as represented by theQ ln cu

5`

case! will show an increasing probability thatqf,qf d
with in-

creasing COVcu
. However, the fact that lesser values ofQ ln cu

show even higher values ofP@qf,qf d
# is indicative of the

‘‘weakest path’’ effect arising from spatial variability in soil prop
erties. In effect, forQ ln cu

,`, the weaker soil regions in the re
sulting random field tend to dominate the failure mode.

The usual design practice for footings is deterministic. T
involves the estimation of ultimate bearing capacity using aver
values of design parameters and application of a suitable fact
safety~F! to arrive at an allowable bearing capacity. The factor
safety used for shallow footings is generally between 3 and 4.
results in Fig. 9 imply a factor of safety of unity, so the probab
ity results have been reinterpreted in Figs. 10–12 to indicate
estimated probability of design failure after the deterministic
lution has been reduced by a factor of safetyF.1. The probabil-
ity of design failureP@qf,qf d

/F# is now greatly reduced. Fo
example, for the recommended maximum value of COVcu

50.5,
the chance of failure has been reduced to 11% forF52, 1.3% for
F53, and 0.2% forF54. Fig. 13 shows directly howF affects
the probability of design failure for a range of COVcu

where the
correlation length is held constant.

The above results confirm that a factor of safety of 3–4
generally able to reduce the probability design failure to ne
gible level for all soils in the recommended range of COVcu

<0.5. Higher factor of safety values would be required for e
ceptionally variable soils.

Comparison with Smooth Footing Results

A parametric study for smooth footing conditions~e.g., Griffiths
and Fenton 2001! has been carried out and compared with that
rough conditions. Some typical deformed meshes and the co
sponding displacement vectors for realizations under smooth
ditions are shown in Fig. 14. In a deterministic analysis, the f
ure mechanism of a smooth footing is similar to Hill’s mechani
of failure with two smaller symmetrical triangular wedges und
neath the footing, one sliding to the left and the other sliding
the right. As the COVcu

increases, the symmetry of the failu
field is lost; the slip lines on one side are shallower than on
other, or the failure mechanism tends to go one way or the ot
The slip lines of smooth footing are generally shallower than t
of rough footing.

Fig. 15 compares the mean bearing capacities under sm
and rough conditions after being normalized by their respec
deterministic bearing capacity values. The general trend in
variation of the mean bearing capacities with respect to COcu

andQ ln cu
for both footing conditions is similar; but the norma

ized mean bearing capacity of the smooth footing is somew
lower than that of the rough footing. Fig. 16 compares the pr
ability of design failureP@qf,qf d

/F# for smooth and rough foot-
ings forQ ln cu

50.5 and 8. Although the general trend in the var
tion of the probability of failure is similar for both footing
conditions, the smooth footing generally has somewhat hig
probabilities of design failure than in the rough case.

Since the slip lines at failure for a rough footing are genera
deeper than for a smooth footing, a greater volume of soil mas
being sheared, resulting in a marginally higher bearing capa
and lower probability of failure than for the smooth case.
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Concluding Remarks

A probabilistic study on the bearing capacity of a rough rigid st
footing on a soil with randomly varying shear strength has be
carried out. Random field theory has been combined with a c
ventional nonlinear finite element algorithm, in conjunction w
a Monte Carlo method. The parametric study carried out invol
1,000 realizations for each set of parameters. From this prob
listic study the following conclusions can be made.

The mean bearing capacity of a footing on a soil with spatia
varying shear strength is always lower than the determini
bearing capacity based on the mean value. This important ob
vation is due to the linking up of weak elements beneath
footing, and shows that weak elements rather than strong
ments tend to dominate the expected bearing capacity of a foo
on spatially random soil.

The reduction in the expected bearing capacity was grea
for higher values of COVcu

and values of the spatial correlatio
lengthQ ln cu

on the order of the footing width.
The results confirm that a factor of safety of 3–4 would ge

erally be adequate to reduce the probability of design failure
negligible levels for soils with COVcu

<0.5.
The results of rough and smooth footings were compared.

trend in the variation of the mean bearing capacity with respec
COVcu

and Q ln cu
in both cases is generally similar. Due to th

greater volume of soil involved in the failure mechanism bene
a rough footing, however, the bearing capacities were margin
higher and hence the probabilities of design failure margina
lower than in the smooth case.
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Notation

The following symbols are used in this paper:
B 5 footing width;

COVcu 5 coefficient of variation of undrained shear
strength;

COVqf 5 estimated coefficient of variation of bearing capac-
ity;

cu 5 undrained shear strength;
cui 5 undrained shear strength assigned toi th element;
E 5 Young’s modulus;
F 5 factor of safety;

f~¯! 5 probability density function;
G(x) 5 standard Gaussian field with zero mean and unit

variance;
G(xi) 5 local average of Gaussian field overi th element;

i 5 integers that count realizations or elements;
Nc 5 bearing capacity factor;

Ncd 5 bearing capacity factor for deterministic solution;
Nci 5 bearing capacity factor fori th realization;

P@¯# 5 probability;
qf 5 bearing capacity;
EERING / SEPTEMBER 2002



n

al

-

:
us
dy

edia

-

d
.
m,

,

-

-

ds,

r

a,

t

rt
its
qf d 5 deterministic bearing capacity;
qf i 5 bearing capacity fori th realization;
xi 5 vector containing coordinates of center ofi th ele-

ment;
Q ln cu 5 dimensionless spatial correlation of log undrained

shear strength;
u ln cu 5 spatial correlation length of log undrained shear

strength;
mcu 5 mean of undrained shear strength;

m ln cu 5 mean of log undrained shear strength;
m ln qf 5 estimated mean of log bearing capacity;

mqf 5 estimated mean bearing capacity;
n 5 Poisson’s ratio;
r 5 correlation coefficient;

scu 5 standard deviation of undrained shear strength;
s ln cu 5 standard deviation of log undrained shear strength;
s ln qf 5 estimated standard deviation of log bearing capac-

ity;
sqf 5 estimated standard deviation of bearing capacity;

t 5 distance between two points in random field; and
F~¯! 5 cumulative normal function.
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