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SUMMARY

The majority of geotechnical analyses are deterministic, in that the inherent variability of the materials is
not modelled directly, rather some ‘factor of safety’ is applied to results computed using ‘average’
properties. In the present study, the influence of spatially varying strength is assessed via numerical
experiments involving the compressive strength and stability of pillars typically used in underground
construction and mining operations. The model combines random field theory with an elasto-plastic finite
element algorithm in a Monte-Carlo framework. It is found that the average strength of the rock is not a
good indicator of the overall strength of the pillar. The results of this study enable traditional approaches
involving factors of safety to be re-interpreted as a ‘probability of failure’ in the context of reliability based
design. Copyright # 2002 John Wiley & Sons, Ltd.

1. INTRODUCTION

A review and assessment of existing design methods for estimating the factor of safety of coal
pillars based on statistical approaches was covered recently by Salamon [1]. This paper follows
this philosophy by investigating in a rigorous way the influence of rock strength variability on
the overall compressive strength of rock pillars typically used in mining and underground
construction. The technique merges elasto-plastic finite element analysis (e.g. Reference [2]) with
random field theory (e.g. References [3,4]) within a Monte-Carlo framework. The rock strength
is characterized by its unconfined compressive strength or ‘cohesion’ c using an elastic-perfectly
plastic Tresca failure criterion. The variable c; is defined by a lognormal distribution with three
parameters as shown in Table I.

The spatial correlation length describes the distance over which the spatially random values
will tend to be correlated in the underlying Gaussian field. Thus, a large value will imply a
smoothly varying field, while a small value will imply a ragged field. Initial studies on a similar
problem were reported by Paice and Griffiths [5].

In order to non-dimensionalize the input, the rock strength variability is expressed in terms of
the coefficient of variation COVc ¼ sc=mc; and a normalized spatial correlation length Yln c ¼
yln c=B where B is the height (and width) of the pillar.
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The spatially varying rock strength field is simulated using the Local Average Subdivision
method [6,7] which produces local arithmetic averages of the ln c field over each element. Thus,
each element is assigned a random value of ln c as a local average, over the element size, of the
continuously varying random field having point statistics derived from Table I. The element
values thus correctly reflect the variance reduction due to arithmetic averaging over the element
as well as the cross-correlation structure dictated by the spatial correlation length, yln c: In this
study, an exponentially decaying (Markovian) correlation function is assumed,

rðtÞ ¼ exp �
2t
yln c

� �
ð1Þ

where t is the absolute distance between any two points in the rock mass. Notice that the above
correlation function is isotropic, which is to say two points separated by 0:2 m vertically have
the same correlation coefficient as two points separated by 0:2 m horizontally. While it is
unlikely that actual rock properties will have an isotropic correlation structure (due to layering,
etc.), the basic probabilistic behaviour of pillar failure can be established in the isotropic case
and anisotropic ‘site-specific’ refinements left for future work. The methodologies and general
trends will be similar to the results presented here.

The present study is confined to plane strain pillars with square dimensions in the plane of the
analysis. A typical finite element mesh is shown in Figure 1 and consists of 400 8-node plane
strain quadrilateral elements. Each element is assigned a different c-value based on the
underlying lognormal distribution, as discussed above. For each Monte-Carlo simulation, the
block is compressed by incrementally displacing the top surface vertically downwards. At
convergence following each displacement increment, the nodal reaction loads are summed and
divided by the width of the block B to give the average axial stress. When this axial stress levels
out to quite strict tolerances, it is then defined as the compressive strength of the block, qf :

This study focuses on the dimensionless ‘bearing capacity factor’ Nc defined for each of the
nsim Monte-Carlo simulations as

Ni
c ¼ qif =mc; i ¼ 1; 2; . . . ; nsim ð2Þ

It should be noted that Ni
c; for each simulation, is normalized by dividing qf by the mean

compressive strength mc: The Ni
c values are then analysed statistically leading to a sample mean

mNc ; and sample standard deviation, sNc : These, in turn, can be used to estimate probabilities
concerning the compressive strength of the pillar.

A uniform rock, having spatially constant strength given by c has an unconfined compressive
strength from Mohr’s circle given by Nc ¼ 2; hence,

qf ¼ 2c ð3Þ

Table I. Input parameters for rock strength c:

Units

Mean mc kN=m2

Standard deviation sc kN=m2

Spatial correlation length yln c m
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Of particular interest in this study therefore, is to compare this deterministic value of 2 with
mNc from the Monte-Carlo simulations.

2. LITERATURE

Although reliability based approaches have not yet been widely implemented by geotechnical
engineers in routine design, there has been a significant growth in interest in this area as an
alternative to the more traditional factor of safety. A valid criticism of the factor of safety, is
that it does not give as much physical insight into the likelihood of design failure as a
probabilistic measure. Even though a reliability based analysis tells more about the safety of a
design, engineers have tended to prefer the factor of safety approach since there is a perception
that it takes less time to compute. This perception is no doubt well based, since factor of safety
approaches are generally fairly simple, but the old addage ‘you get what you pay for’ applies
here. The understanding of the basic failure mechanism afforded by the consideration of spatial
variation is well worth the effort. In addition to increasing understanding and safety, reliability
based design can also maximize cost efficiency (e.g. Reference [8]).

Both variability and spatial correlation lengths of material properties can affect the reliability
of geotechnical systems. While the variability of geotechnical properties are hard to determine,
since soil and rock properties can vary widely (e.g. References [9–12]), there is some consensus

B

B

rigid rough top surface

rigid rough bottom surface

Figure 1. Mesh used for finite element pillar analyses.
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that COVc values for rock strength range from 0.30 to 0.50 (e.g. References [13–15]). This
variability has been represented in the present study by a lognormal distribution that ensures
non-negative strength values. The spatial correlation length can also affect system reliability,
although it is not often accounted for properly (e.g. References [16–20]).

In mining applications, material variability is not usually accounted for directly, however
empirical formulas have been developed to make adjustments to the factors of safety (e.g
References [1,21,22]).

Finite element analysis has been used, in the past to account for varying properties of
geotechnical problems including pillar design (see e.g. References [23–26]). In this paper, elasto-
plastic finite element analysis has been combined with random field theory to investigate the
influence of material variability and spatial correlation lengths on mine pillar stability. By using
multiple simulations, the Monte-Carlo technique can be used to predict pillar reliability
involving materials with high variances and spatial variability that would not be amenable to
analysis by first order second moment methods.

3. PARAMETRIC STUDIES

Analyses were performed with input parameters within the following ranges:

0:015Yln c510

0:055COVc51:6

For each pair of values of COVc and Yln c; 2500 Monte-Carlo simulations were performed,
and from these, the estimated statistics of the bearing capacity factor Nc were computed leading
to the sample mean, mNc ; and sample standard deviation, sNc :

In order to maintain reasonable accuracy and run-time efficiency, the sensitivity of results to
mesh density and the number of Monte-Carlo simulations was examined. Figure 2 shows the
effect of varying the mesh size with all other variables held constant. Since there is little change
from the 20 � 20 element mesh to the 40 � 40 element mesh, the 20 � 20 element mesh is
deemed to give reasonable precision for the analysis. Figure 3 shows the convergence of mNc as
the number of simulations increases. The figure displays five repeated analyses with identical
properties and indicates that 2500 simulations gives reasonable precision and reproducibility.
Although higher precision could be achieved with greater mesh density and simulation counts,
the use of a 20 � 20 element mesh with nsim ¼ 2500 simulations is considered to be accurate
enough in view of the inherent variability of the input data.

The accuracy of results obtained from Monte-Carlo analyses can also be directly computed
from the number of simulations. Estimated mean bearing capacities will have a standard error
(� one standard deviation) equal to the sample standard deviation times 1=nsim ¼ 1=2500 ¼
0:020 or about 2% of the sample standard deviation. Similarly, the estimated variance will have
a standard error equal to the sample variance times ð2=ðnsim � 1ÞÞ ¼ ð2=2499Þ ¼ 0:028; or about
3% of the sample variance. This means that estimated quantities will generally be within about
4% of the true (i.e. finite element) quantities, statistically speaking.

Figures 4(a) and 4(b) show two typical deformed meshes at failure, corresponding to Yln c ¼
0:4 and Yln c ¼ 0:2; respectively. Lighter regions in the plots indicate stronger rock and darker
regions indicate weaker rock. It is clear that the weak (dark) regions have triggered quite
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irregular failure mechanisms. In general, the mechanism is attracted to the weak zones and
‘avoids’ the strong zones. This suggests that failure is not simply a function of the arithmetic
average of rock strength}it is somewhat reduced due to the failure path preferentially selecting
weak materials.

3.1. Mean of Nc

A summary of the sample mean bearing capacity factor ðmNc Þ; computed using the values
provided by Equation (2), for each simulation is shown in Figures 5(a) and 5(b). The plots
confirm that for low values of COVc; mNc tends to the deterministic value of 2. As the COVc of
the rock increases, the mean bearing capacity factor falls quite rapidly, especially for smaller
values of Yln c: As shown in Figure 5(b), however, mNc reaches a minimum at about Yln c ¼ 0:2
and starts to climb again. It is speculated that in the limit of Yln c ! 0; there are no ‘preferential’
weak paths the failure mechanism can follow, and the mean bearing capacity factor will return
once more to the deterministic value of 2. This is as suggested by Figure 5(b). In principle, the
Yln c ¼ 0 case is somewhat delicate to investigate. Strictly speaking, any local average of a (finite
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Figure 2. Influence of mesh density on the computed mNc :
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variance) random ln c field having Yln c ¼ 0 will have zero variance (since the local average will
involve an infinite number of independent points). Thus, in the Yln c ¼ 0 case the ‘local average’
representation, i.e. the finite element method (as interpreted here), will necessarily return to the
deterministic case. The detailed investigation of this trend is also complicated by the fact that
rock properties are never determined at the ‘point’ level}they are based on a local average over
the rock sample volume. Thus, while recognizing the apparent trend with small Yln c in this
study, the theoretical and numerical verification of the limiting trend is left for further research.

Also included on Figure 5(a) is the horizontal line corresponding to the solution that would
be obtained for Yln c ¼ 1: This hypothetical case implies that each simulation of the Monte-
Carlo process involves an essentially uniform soil, albeit with properties varying from one
simulation to the next. In this case, the distribution of qf will be statistically similar to the
lognormal distribution of c but magnified by 2, thus mNc ¼ 2 for all values of COVc:

3.2. Coefficient of variation of Nc

Figure 6 shows the influence of Yln c and COVc on the sample coefficient of variation of the
estimated bearing capacity factor, COVNc ¼ sNc=mNc : The plots indicate that COVNc is positively
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Figure 3. Influence of the number of simulations on the computed mNc :
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correlated with both COVc and Yln c; with the limiting value of Yln c ¼ 1 giving the straight line
COVNc ¼ COVc:

4. PROBABILISTIC INTERPRETATION

Following Monte-Carlo simulations for each parametric combination of input parameters (Yln c

and COVc), the suite of computed bearing capacity factor values from Equation (1) was plotted
in the form of a histogram, and a ‘best-fit’ lognormal distribution superimposed. An example of
such a plot is shown in Figure 7 the case where Yln c ¼ 0:2 and COVc ¼ 0:4:

Since the lognormal fit has been normalized to enclose an area of unity, areas under the curve
can be directly related to probabilities. From a practical viewpoint, it would be of interest to
estimate the probability of ‘design failure’, defined here as occurring when the computed
compressive strength is less than the deterministic value based on the mean strength divided by a

(a)

C.O.V.c = 0.5

Θln c =0.4

(b)

C.O.V. c = 0.5

Θlnc =0.2

Figure 4. Typical deformed meshes and grey scales at failure. Darker zones signify weaker rock.
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‘factor of safety’ F ; i.e.

‘Design failure if 0 qf52mc=F ð4Þ

or alternatively,

‘Design failure if 0 Nc52=F ð5Þ
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Figure 5. (a) Variation of mNc with COVc: (b) Variation of mNc with Yc:
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The probability of failure as defined in Equation (4) can be expressed as the area under the
probability density function to the left of a ‘target’ design value 2=F ; hence from the properties
of the underlying normal distribution we get:

pðNc52=F Þ ¼ F
ln 2=F � mln Nc

sln Nc

� �
ð6Þ

where F is the cumulative standard normal distribution function.
For the particular case shown in Figure 7, the fitted lognormal distribution has the properties

mNc ¼ 1:721 and sNc ¼ 0:185: These values indicate a median given by MedianNc ¼ 1:711 and a
mode given by ModeNc ¼ 1:692: Furthermore, the underlying normal distribution (see Appendix
A) is easily shown to have the properties mln Nc ¼ 0:537 and sln Nc ¼ 0:107: For the particular
case of F ¼ 1:5; Equation (4) gives pðNc52=1:5Þ ¼ 0:01; indicating a 1% probability of ‘design
failure’ as defined above. This implies a 99% reliability that the pillar will remain stable. It
should be noted that for the relatively low variance indicated in Figure 7, the lognormal
distribution looks very similar to a normal distribution.

4.1. General observation on the lognormal distribution

While the probability of design failure is directly related to the estimated values of mNc and sNc ; it
is of interest to observe the separate influences of mNc and sNc : If sNc is held constant, increasing
mNc clearly decreases the probability of failure as shown in Figure 8(a), since the curves move
consistently to the right and the area to the left of any stationary ‘target’ decreases. The
situation is less clear if mNc is held constant and sNc is varied as shown in Figure 8(b).

Figure 9(a) shows how the probability of design failure as defined in Equation (4), varies as a
function of COVNc and the ratio of the target value 2=F to the mean of the lognormal
distribution mNc : If the target values is less than or equal to the mean, the probability of failure
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Figure 7. Histogram and lognormal fit for a typical set of computed Nc values.
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always increases as COVNc is increased. If the target values is larger than the mean however, the
probability of failure initially falls and then gradually rises.

A more fundamental parameter when estimating probabilities of lognormal distributions is
the median, which represents the 50% probability location. Figure 9(b) shows how the
probability of design failure varies as a function of COVNc and the ratio of the target value 2=F
to the median. In this case the probabilistic interpretation is clearly defined. If the target is less
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Figure 8. (a) Lognormal plots with constant sNc and varying mNc : (b) Lognormal
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Figure 9. (a) Probability of Nc being less than 2=F as a function of COVNc for different ð2=F Þ=mNc values.
(b) Probability of Nc being less than 2=F as a function of COVNc for different ð2=F Þ=MedianNc values.
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than the median, the probability always increases as COVNc is increased, whereas if the target is
greater than the median, the probability always decreases. If the target equals the median, the
probability of failure is 50% irrespective of the value of COVNc : It might also be noted in Figure
9(b), that while the rate of change of probability is quite high at low values of COVNc ; the curves
tend to flatten out quite rapidly as COVNc is increased.

4.2. Results from pillar analyses

The influence of these rather complex interactions on the pillar stability analyses can be seen in
Figures 10(a)–(d) where the probability of design failure is shown as a function of the
correlation length Yln c for different values of COVc: Each of the four plots corresponds to a
different value of the factor of safety, where F ¼ 1:5; 2:0; 2:5; and 3.0, respectively. Consider in
more detail the results shown in Figure 10(a) for the case of F ¼ 1:5; where the target value is
2=F ¼ 1:33: To help with the interpretation, tabulated values of the statistics of Nc

corresponding to different values of COVc are presented.
Small values of COVc40:20; result in correspondingly small values of COVNc and high values

of mNc � 2 as shown in Table II, leading to low probabilities of design failure for all Yln c:
For larger values of COVc; e.g. COVc ¼ 0:4; the mean mNc has fallen but is still always higher

than the target value of 1.33 as shown in Table III. With 1:33=mNc51; the table indicates that
the increasing values of COVNc result in a gradually increasing probability of design failure. This
trend is also confirmed by Figure 9(a).

Consider now the behaviour of the probabilities for rather high values of COVc; such as
COVc ¼ 1:2: From Table IV, the mean values of mNc have fallen quite significantly, and are
often smaller than the target value of 1.33. More significantly in this case, the median of Nc is
always smaller than the target of 1.33. Small values of Yln c imply small values of COVNc and an
almost certain probability of design failure ð� 1Þ: With 1:33=MedianNc > 1; the table indicates
that the increasing values of COVNc result in a falling probability of design failure. This trend is
also confirmed by Figure 9(b).

For intermediate values of COVc; such as COVc ¼ 0:8; the probability of design failure from
Figure 10(a) is seen to rise and then fall. This interesting result implies a ‘worst case’
combination of COVc and Yln c which would give a maximum probability of design failure.

The results tabulated in Table V indicate that at low values of Yln c; the MedianNc is slightly
larger than the target and this, combined with the low value of COVNc ; gives a negligible
probability of failure. As Yln c is increased, COVNc increases and the MedianNc decreases. Both
of these effect cause the probability of failure to rise as confirmed by Figure 9(b).

At approximately Yln c ¼ 0:5; the MedianNc approaches the target, giving a maximum
probability of design failure close to 0.5. As indicated in Table V, further increase in Yln c causes
the 1:33=MedianNc ratio to fall quite consistently. Although COVNc is still rising, the overall
behaviour is dominated by the falling 1:33=MedianNc ratio and the probability of failure falls as
implied in Figure 9(b).

Figures 10(b), 10(c) and 10(d) corresponding to higher factors of safety, display similar
maxima in their probabilities, however there is an overall trend that shows the expected
reduction in the probability of failure as the factor of safety is increased. Figure 10(d),
corresponding to F ¼ 3; indicates that for a reasonable upper-bound value of COVNc ¼ 0:6; the
probability of design failure will be negligible for Yln c51:
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The program that was used to produce the results in this paper enables the reliability of rock
pillars with varying compressive strength and spatial correlation to be assessed. In particular, a
direct comparison can be made between the probability of failure and the more traditional
Factor of Safety.

Table VI shows the factor of safety and probability of failure for pillar strength as a function
of Yln c for the particular case of COVc ¼ 0:4: When COVc and Yln c are known, a factor of
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Figure 10. (a) Probability of design failure as a function of COVc and Yln c with F ¼ 1:5: (b) Probability of
design failure as a function of COVc and Yln c with F ¼ 2:0: (c) Probability of design failure as a function
of COVc and Yln c with F ¼ 2:5: (d) Probability of design failure as a function of COVc and Yln c with

F ¼ 3:0:
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safety can be chosen to meet the desired probability of failure or acceptable risk. For instance, if
a target probability of failure of 1% is desired for COVc ¼ 0:4 and Yln c ¼ 0:2; a factor of safety
of at least F ¼ 1:5 should be applied to the mean shear strength value. When Yln c is not known,
a conservative estimate should made that would lead to the most conservative prediction. For
instance, if a 1% probability of failure is acceptable for COVc ¼ 0:4 with unknown Yln c; a
factor of safety of at least F ¼ 2:75 is called for.

Figure 11 shows a plot of the results from Table IV.

Table II. Probability of design failure, F ¼ 1:5; COVc ¼ 0:2:

Yln c mNc COVNc 1:33=MedianNc pðNc51:33Þ

0.01 1.943 0.008 0.686 0.000
0.1 1.917 0.031 0.696 0.000
0.2 1.909 0.056 0.670 0.000
0.5 1.930 0.099 0.694 0.000
1.0 1.964 0.134 0.685 0.002
2.0 1.985 0.164 0.681 0.009
5.0 1.987 0.180 0.682 0.016

10.0 1.987 0.190 0.683 0.021
1 2.000 0.200 0.680 0.026

Table III. Probability of design failure, F ¼ 1:5; COVc ¼ 0:4:

Yln c mNc COVNc 1:33=MedianNc pðNc51:33Þ

0.01 1.809 0.014 0.737 0.000
0.1 1.747 0.058 0.764 0.000
0.2 1.721 0.107 0.779 0.010
0.5 1.770 0.193 0.767 0.083
1.0 1.847 0.264 0.747 0.130
2.0 1.880 0.310 0.743 0.163
5.0 1.944 0.358 0.728 0.181

10.0 1.953 0.380 0.730 0.196
1 2.000 0.400 0.718 0.195

Table IV. Probability of design failure, F ¼ 1:5; COVc ¼ 1:2:

Yln c mNc COVNc 1:33=MedianNc pðNc51:33Þ

0.01 1.189 0.028 1.122 1.000
0.1 1.083 0.136 1.242 0.946
0.2 1.055 0.239 1.299 0.867
0.5 1.125 0.468 1.309 0.727
1.0 1.283 0.662 1.246 0.643
2.0 1.479 0.838 1.176 0.588
5.0 1.719 1.003 1.099 0.545

10.0 1.801 1.108 1.105 0.545
1 2.000 1.200 1.041 0.517
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5. CONCLUDING REMARKS

The paper has shown that rock strength variability in the form of a spatially varying lognormal
distribution can significantly reduce the compressive strength of an axially loaded rock pillar.

The following more specific conclusions can be made:

1. As the coefficient of variation of the rock strength increases, the expected compressive
strength decreases. The decrease in compressive strength is greatest for small correlation
lengths, however there appears to be a critical value of the spatial correlation length for
which the reduction in mean compressive strength is greatest. It is speculated that as the
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Figure 11. Probability of design failure as a function of Yln c for different factors of safety F :

Table V. Probability of design failure, F ¼ 1:5; COVc ¼ 0:8:

Yln c mNc COVNc 1:33=MedianNc pðNc51:33Þ

0.01 1.478 0.022 0.902 0.000
0.1 1.387 0.103 0.966 0.370
0.2 1.371 0.178 0.988 0.472
0.5 1.429 0.336 0.984 0.481
1.0 1.542 0.472 0.956 0.460
2.0 1.659 0.607 0.940 0.456
5.0 1.816 0.754 0.920 0.450

10.0 1.905 0.738 0.870 0.416
1 2.000 0.800 0.854 0.411
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correlation length becomes vanishingly small, the compressive strength rises again (slowly)
towards the deterministic value.

2. The coefficient of variation of the compressive strength is observed to be positively
correlated with both the spatial correlation length and the coefficient of variation of the
rock strength.

3. The probability of failure is a function of mNc ; sNc and the ‘target’ design value 2=F : The
paper has shown that the interpretation of the probability of failure is most conveniently
explained by comparing the target design value with the median of the lognormal
distribution.

4. By interpreting the Monte-Carlo simulations in a probabilistic context, a direct
relationship between the factors of safety and probability of failure can be established.
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APPENDIX A

A lognormal distribution for the rock shear strength c has been adopted in this study,
meaning that ln c is normally distributed. If the mean and standard deviation of the shear
strength are mc and sc; respectively, then the standard deviation and mean of the underlying
normal distribution of ln c are given by

sln c ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ln 1 þ

sc
mc

� �2
( )vuut ðA1Þ

mln c ¼ ln mc �
1

2
s2

ln c ðA2Þ

Table VI. Probability of pillar failure (%) for COVc ¼ 0:4:

F Yln c

0.10 0.20 1.00 2.00 10.0

1.0 99% 93% 67% 64% 60%
1.25 7% 27% 34% 36% 36%
1.50 0% 1% 13% 13% 20%
1.75 0% 0% 4% 7% 10%
2.00 0% 0% 1% 3% 5%
2.25 0% 0% 0% 1% 2%
2.50 0% 0% 0% 0% 1%
2.75 0% 0% 0% 0% 1%
3.00 0% 0% 0% 0% 0%
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and the probability density function of the log-normal distribution by

f ðcÞ ¼
1

csln c

ffiffiffiffiffiffi
2p

p exp �
1

2

ln c� mln c

sln c

� �2
( )

ðA3Þ

In terms of the properties of the underlying normal distribution, the properties of the
lognormal distribution can therefore be summarized as

mc ¼ exp mln c þ
1

2
s2

ln c

� �
ðA4Þ

sc ¼ mc
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
expðs2

ln cÞ � 1
q

ðA5Þ

Medianc ¼ expðmln cÞ ðA6Þ

Modec ¼ expðmln c � s2
ln cÞ ðA7Þ
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