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Bearing-capacity prediction of spatially random
c − φ soils

Gordon A. Fenton and D.V. Griffiths

Abstract: Soils with spatially varying shear strengths are modeled using random field theory and elasto-plastic finite
element analysis to evaluate the extent to which spatial variability and cross-correlation in soil properties (c and φ) affect
bearing capacity. The analysis is two dimensional, corresponding to a strip footing with infinite correlation length in
the out-of-plane direction, and the soil is assumed to be weightless with footing placed on the soil surface. Theoretical
predictions of the mean and standard deviation of bearing capacity, for the case where c and φ are independent, are
derived using a geometric averaging model and then verified via Monte Carlo simulation. The standard deviation
prediction is found to be quite accurate, while the mean prediction is found to require some additional semi-empirical
adjustment to give accurate results for “worst case” correlation lengths. Combined, the theory can be used to estimate the
probability of bearing-capacity failure, but also sheds light on the stochastic behaviour of foundation bearing failure.

Key words: bearing capacity, probability, random fields, geometric averaging, c–φ soil, Monte Carlo simulation.

Résumé : Les sols ayant des résistances au cisaillement variables dans l’espace sont modélisés au moyen de la théorie de
champ aléatoire et d’une analyse élasto-plastique en éléments finis pour évaluer jusqu’à quel point la variabilité spatiale et
la corrélation en travers dans les propriétés des sols (c et φ) influence la capacité portante. L’analyse est bidimensionnelle,
correspondant à une semelle filante avec une longueur infinie de corrélation dans la direction sortant du plan, et le sol est
supposé être sans poids avec la semelle placée sur la surface du sol. On dérive les prédictions théoriques des déviations
moyenne et standard de la capacité portante, pour le cas où c et sont indépendants, en utilisant un modèle de moyenne
géométrique, et elles sont ensuite vérifiées par la simulation de Monte Carlo. On trouve que la prédiction de la déviation
standard est très précise, alors que la prédiction de la moyenne requiert des ajustements semi-empiriques additionnels pour
donner des résultats précis pour le « pire cas » de longueurs corrélées. En combinaison, la théorie peut être utilisée pour
estimer la probabilité de rupture en capacité portante, mais elle éclaircit aussi le comportement stochastique de la rupture
en portance des fondations.

Mots clés : capacité portante, probabilité, champs aléatoires, moyenne géométrique de c–φ du sol, simulation de Monte
Carlo.

[Traduit par la Rédaction]

Introduction

The design of a footing involves two limit states: a service-
ability limit state, which generally translates into a maximum
settlement or differential settlement, and an ultimate limit state.
The latter is concerned with the maximum load that can be
placed on the footing just prior to a bearing-capacity failure.
This paper looks at the ultimate bearing capacity of a smooth
strip footing founded on a soil having spatially random proper-
ties.

Most modern bearing-capacity predictions involve a relation-
ship of the form (Terzaghi 1943)

[1] qf = cNc + q̄Nq + 1
2γBNγ

where qf is the ultimate bearing stress, c is the cohesion, q̄ is
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the overburden stress, γ is the unit soil weight, B is the footing
width, and Nc, Nq , and Nγ are the bearing-capacity factors.
To simplify the analysis in this paper, and to concentrate on
the stochastic behaviour of the most important term (at least
as far as spatial variation is concerned), the soil is assumed
to be weightless. Under this assumption, the bearing-capacity
equation simplifies to

[2] qf = cNc

Bearing-capacity predictions, involving specification of the
N factors, are often based on plasticity theory (see, e.g., Prandtl
1921; Terzaghi 1943; Sokolovski 1965) of a rigid base punching
into a softer material. These theories assume a homogeneous
soil underlying the footing, that is, the soil is assumed to have
properties that are spatially constant. Under this assumption,
most bearing-capacity theories (e.g., Prandtl 1921; Meyerhof
1951, 1963) assume that the failure slip surface takes on a log-
arithmic spiral shape to give

[3] Nc =
eπ tan φ tan2

(
π
4 + φ

2

)
− 1

tan φ

This relationship has been found to give reasonable agree-
ment with test results (Bowles 1996) under ideal conditions.
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In practice, however, it is well known that the actual failure
conditions will be somewhat more complicated than a simple
logarithmic spiral. Because of spatial variation in soil properties
the failure surface under the footing will follow the weakest path
through the soil, constrained by the stress field. For example,
Fig. 1 illustrates the bearing failure of a realistic soil with spa-
tially varying properties. It can be seen that the failure surface
only approximately follows a log spiral on the right side and is
certainly not symmetric. In this plot lighter regions represent
stronger soil and darker regions indicate weaker soil. The weak
(dark) region near the ground surface to the right of the footing
has triggered a nonsymmetric failure mechanism that is typi-
cally at a lower bearing load than that predicted by traditional
homogeneous and symmetric failure analysis.

The problem of finding the minimum strength failure slip
surface through a soil mass is very similar in nature to the slope
stability problem, and one that currently lacks a closed form
stochastic solution, so far as the authors are aware. In this pa-
per the traditional relationships shown above will be used as a
starting point to this problem.

For a realistic soil, both c and φ are random, so that both
quantities in the right hand side of eq. [2] are random. This
equation can be nondimensionalized by dividing through by
the cohesion mean,

[4] Mc = qf

µc

= c

µc

Nc

where µc is the mean cohesion and Mc is the stochastic equiv-
alent of Nc, i.e., qf = µcMc. The stochastic problem is now
boiled down to finding the distribution of Mc. A theoretical
model for the first two moments (mean and variance) of Mc,
based on geometric averaging, are given in the next section.
Monte Carlo simulations are then performed to assess the qual-
ity of the predictions and determine the approximate form of
the distribution of Mc. This is followed by an example illustrat-
ing how the results can be used to compute the probability of
a bearing-capacity failure. Finally, an overview of the results is
given, including their limitations.

The random soil model

In this study, the soil cohesion, c, is assumed to be lognor-
mally distributed with mean µc, standard deviation σc, and
spatial correlation length θln c. The lognormal distribution is
selected because it is commonly used to represent non-negative
soil properties and has a simple relationship with the normal.
A lognormally distributed random field is obtained from a nor-
mally distributed random field,Gln c(x∼), having zero mean, unit

variance, and spatial correlation length θln c through the trans-
formation

[5] c(x∼) = exp[µln c + σln cGln c(x∼)]

where x∼ is the spatial position at which c is desired. The pa-

rametersµln c and σln c are obtained from the specified cohesion

mean and variance using the lognormal distribution transforma-
tions,

σ 2
ln c = ln

(
1 + σ 2

c

µ2
c

)
[6a]

µln c = lnµc − 1
2σ

2
ln c[6b]

The correlation coefficient between the log cohesion at a
point x∼1 and a second point x∼2 is specified by a correlation

function, ρln c(τ ), where τ = |x∼1 − x∼2| is the absolute distance

between the two points. In this paper, a simple exponentially
decaying (Markovian) correlation function will be assumed,
having the form

[7] ρln c(τ ) = exp

(
−2|τ |
θln c

)

The spatial correlation length, θln c, is loosely defined as the
separation distance within which two values of ln c are signifi-
cantly correlated. Mathematically, θln c is defined as the area un-
der the correlation function, ρln c(τ ) (Vanmarcke 1984). (Note
that geostatisticians often define the correlation length as the
area under the non-negative half of the correlation function so
that there is a factor of two difference between the two lengths;
under their definition, the factor of 2 appearing in eq. [7] is ab-
sent. The more general definition is retained here since it can be
used also in higher dimensions where the correlation function
is not necessarily symmetric in all directions about the origin.)

It should also be noted that the correlation function selected
above acts between values of ln c. This is because ln c is nor-
mally distributed, and a normally distributed random field is
simply defined by its mean and covariance structure. In prac-
tice, the correlation length θln c can be estimated by evaluating
spatial statistics of the log-cohesion data directly (see, e.g., Fen-
ton 1999). Unfortunately, such studies are scarce, so that little
is currently known about the spatial correlation structure of nat-
ural soils. For the problem considered here, it turns out that a
worst case correlation length exists that should be assumed in
the absence of improved information.

The random field is also assumed here to be statistically
isotropic (the same correlation length in any direction through
the soil). Although the horizontal correlation length is often
greater than the vertical, because of soil layering, taking this
into account was deemed to be a refinement beyond the scope
of this study. The main aspects of the stochastic behaviour of
bearing capacity needs to be understood for the simplest case
first, and more complex variations on the theme, such as site
specific anisotropy, left for later work.

The friction angle, φ, is assumed to be bounded both above
and below, so that neither normal nor lognormal distributions
are appropriate. A beta distribution is often used for bounded
random variables. Unfortunately, a beta-distributed random field
has a very complex joint distribution, and simulation is cum-
bersome and numerically difficult. To keep things simple, a
bounded distribution is selected that resembles a beta distri-
bution but that arises as a simple transformation of a standard
normal random field, Gφ(x∼), according to
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Fig. 1. Typical deformed mesh at failure, where the darker regions indicate weaker soil.

[8] φ(x∼) = φmin + 1
2 (φmax −φmin)

[
1 + tanh

(
sGφ(x∼)

2π

)]

where φmin and φmax are the minimum and maximum friction
angles, respectively, and s is a scale factor that governs the fric-
tion angle variability between its two bounds. Figure 2 shows
how the distribution of φ (normalized to the interval [0, 1])
changes as s changes, going from an almost uniform distribu-
tion at s = 5 to a very normal looking distribution for smaller
values of s. In all cases, the distribution is symmetric, so that
the midpoint between φmin and φmax is the mean. Values of s
greater than about 5 lead to a U-shaped distribution (higher at
the boundaries), which is not deemed realistic. Thus, varying s
between about 0.1 and 5.0 leads to a wide range in the stochastic
behaviour of φ.

The random field,Gφ(x∼), has zero mean and unit variance, as

doesGln c(x∼). Conceivably,Gφ(x∼) could also have its own cor-

relation length θφ distinct from θln c. However, it seems reason-
able to assume that if the spatial correlation structure is caused
by changes in the constitutive nature of the soil over space, then
both cohesion and friction angle would have similar correlation
lengths. Thus, θφ is taken to be equal to θln c in this study. Both
lengths will be referred to generically from now on simply as θ ,
remembering that this length reflects correlation between points
in the underlying normally distributed random fields, Gln c(x∼)
and Gφ(x∼), and not directly between points in the cohesion

and friction fields. As mentioned above, both lengths can be
estimated from data sets obtained over some spatial domain by
statistically analyzing the suitably transformed data (inverses
of eqs. [5] and [8]). After transforming to the c and φ fields, the
transformed correlation lengths will no longer be the same, but
since both transformations are monotonic (i.e., larger values of
Gln c give larger values of c, etc.), the correlation lengths will
be similar (for s = 1.0, the difference is less than 15% from
each other and from the original correlation length). In that all
engineering soil properties are derived through various transfor-
mations of the physical soil behaviour (e.g., cohesion is a com-
plex function of electrostatic forces between soil particles), the
final correlation lengths between engineering properties can-

not be expected to be identical, only similar. For the purposes
of a generic non-site specific study, the above assumptions are
believed reasonable.

The question as to whether the two parameters c and φ are
correlated is still not clearly decided in the literature, and no
doubt depends very much on the soil being studied. Cherubini
(2000) quotes values of ρ ranging from −0.24 to −0.70, as
does Wolff (1985) (see also Yuceman et al. 1973; Lumb 1970;
Cherubini 2000). As stated by Wolff (T.H. Wolff, private cor-
respondence, 2000): “The practical meaning of this [negative
correlation] is that we are more certain of the undrained strength
at a certain confining pressure than the values of the two pa-
rameters we use to define it.” This observation arises from the
fact that the variance of the shear strength is reduced if there is
a negative correlation between c and φ.

In that the correlation between c and φ is not certain, this pa-
per investigates the correlation extremes to determine if cross-
correlation makes a significant difference.As will be seen, under
the given assumptions regarding the distributions of c (lognor-
mal) and φ (bounded), varying the cross-correlation ρ from −1
to 1 was found to have only a minor influence on the stochastic
behaviour of the bearing capacity.

Bearing-capacity mean and variance

The determination of the first two moments of the bearing
capacity (mean and variance) requires first a failure model.
Equations [2] and [3] assume that the soil properties are spa-
tially uniform. When the soil properties are spatially varying,
the slip surface no longer follows a smooth log spiral, and the
failure becomes unsymmetric. The problem of finding the con-
strained path having the lowest total shear strength through the
soil is mathematically difficult, especially since the constraints
are supplied by the stress field. A simpler approximate model
will be considered here wherein geometric averages of c and
φ, over some region under the footing, are used in eqs. [2] and
[3]. The geometric average is proposed because it is dominated
more by low strengths than is the arithmetic average. This is
deemed reasonable since the failure slip surface preferentially
travels through lower strength areas.

Consider a soil region of some size D discretized into a se-
quence of non-overlapping rectangles, each centered on x∼i , i =
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Fig. 2. Bounded distribution of friction angle normalized to the interval [0, 1].

1, 2, . . . , n. The geometric average of the cohesion, c, over the
domain D may then be defined as

[9] c̄ =
[

n∏
i=1

c(x∼ i )

]1/n

= exp

[
1

n

n∑
i=1

ln c(x∼ i )

]

= exp
(
µln c + σln cḠln c

)
where Ḡln c is the arithmetic average of Gln c over the domain
D. Note that an assumption is made in the above concerning
c(x∼i ) being constant over each rectangle. In that cohesion is

generally measured using some representative volume (e.g., a
laboratory sample), the values of c(x∼i ) used above are deemed

to be such measures.
In a similar way, the exact expression for the geometric av-

erage of φ over the domain D is

[10] φ̄ = exp

[
1

n

n∑
i=1

ln φ(x∼ i )

]

where φ(x∼i ) is evaluated using eq. [8]. A close approximation

to the above geometric average, accurate for s ≤ 2.0, is

[11] φ̄ 
 φmin + 1
2 (φmax − φmin)

[
1 + tanh

(
sḠφ

2π

)]

where Ḡφ is the arithmetic average of Gφ over the domain D.
For φmin = 5◦ and φmax = 45◦, this expression has relative
error of less than 5% for n = 20 independent samples. While
the relative error rises to about 12%, on average, for s = 5.0,
this is an extreme case, corresponding to a uniformly distributed
φ between the minimum and maximum values, which is felt to
be unlikely to occur very often in practice. Thus, the above
approximation is believed reasonable in most cases.

Using the latter result in eq. [3] gives the “effective” value of
Nc, N̄c, where the log-spiral model is assumed to be valid using
a geometric average of soil properties within the failed region,

[12] N̄c =
eπ tan φ̄ tan2

(
π
4 + φ̄

2

)
− 1

tan φ̄

so that, now

[13] Mc = c̄

µc

N̄c

If c is lognormally distributed, an inspection of eq. [9] indi-
cates that c̄ is also lognormally distributed. If we can assume
that N̄c is at least approximately lognormally distributed, then
Mc will also be at least approximately lognormally distributed
(the central limit theorem helps out somewhat here). In this
case, taking logarithms of eq. [13] gives

[14] lnMc = ln c̄ + ln N̄c − lnµc

so that, under the given assumptions, lnMc is at least approxi-
mately normally distributed.

The task now is to find the mean and variance of lnMc. The
mean is obtained by taking expectations of eq. [14],

[15] µlnMc = µln c̄ + µln N̄c
− lnµc

where

[16] µln c̄ = E
[
µln c + σln cḠln c

]
= µln c + σln cE

[
Ḡln c

]
= µln c

= lnµc − 1
2 ln

(
1 + σ 2

c

µ2
c

)

which used the fact that since Ḡln c is normally distributed, its
arithmetic average has the same mean asGln c, that is E

[
Ḡln c

] =
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E [Gln c] = 0. The above result is as expected since the geo-
metric average of a lognormally distributed random variable
preserves the mean of the logarithm of the variable. Also eq.
[6b] was used to express the mean in terms of the prescribed
statistics of c.

A second-order approximation to the mean of the logarithm
of eq. [12], µln N̄c

, is

[17] µln N̄c

 ln N̄c(µφ̄) + σ 2

φ̄

(
d2 ln N̄c

dφ̄2

∣∣∣
µφ̄

)

where µφ̄ is the mean of the geometric average of φ. Since

Ḡφ is an arithmetic average, its mean is equal to the mean of
Gφ , which is zero. Thus, since the assumed distribution of φ
is symmetric about its mean, µφ̄ = µφ so that ln N̄c(µφ̄) =
lnNc(µφ).

A first-order approximation to σ 2
φ̄

is

[18] σ 2
φ̄

=
[ s

4π
(φmax − φmin)σḠφ

]2

where, from local averaging theory (Vanmarcke 1984), the vari-
ance of a local average over the domainD is given by (recalling
that Gφ is normally distributed with zero mean and unit vari-
ance),

[19] σ 2
Ḡφ

= σ 2
Gφ

γ (D) = γ (D)

where γ (D) is the “variance function” that reflects the amount
by which the variance is reduced as a result of local arithmetic
averaging. It can be obtained directly from the correlation func-
tion (see Appendix A).

The derivative in eq. [17] is most easily obtained numerically
using any reasonably accurate (Nc is quite smooth) approxima-
tion to the second derivative (see, e.g., Press et al. 1997). If
µφ̄ = µφ = 25◦ = 0.436 rad (note that in all mathematical
expressions, φ is assumed to be in radians), then

[20]
d2 ln N̄c

dφ̄2

∣∣∣
µφ̄

= 5.2984 rad−2

Using these results with φmax = 45◦ and φmin = 5◦, so that
µφ = 25◦ gives

[21] µln N̄c
= ln(20.72) + 0.0164s2γ (D)

Some comments need to be made about this result: first of
all it increases with increasing variability in φ (increasing s). It
seems doubtful that this increase would occur since increasing
variability in φ would likely lead to more lower strength paths
through the soil mass for moderate θ . Aside from ignoring the
weakest path issue, some other sources of error in the above
analysis are

(1) The geometric average of φ given by eq. [10] actually
shows a slight decrease with s (about 12% less, relatively,
when s = 5). Although the decrease is only slight, it at
least is in the direction expected.

(2) An error analysis of the second-order approximation in
eq. [17] and the first-order approximation in eq. [18] has
not been carried out. Given the rather arbitrary nature
of the assumed distribution on φ, and the fact that this
paper is primarily aimed at establishing the approximate
stochastic behaviour, such refinements have been left for
later work.

In light of these observations, a first-order approximation to
µln N̄c

may actually be more accurate. Namely

[22] µln N̄c

 ln N̄c(µφ̄) 
 lnNc(µφ)

Finally, combining eqs. [16] and [22] into eq. [15] gives

[23] µlnMc 
 lnNc(µφ) − 1
2 ln

(
1 + σ 2

c

µ2
c

)

For independent c and φ, the variance of lnMc is

[24] σ 2
lnMc

= σ 2
ln c̄ + σ 2

ln N̄c

where

[25] σ 2
ln c̄ = γ (D)σ 2

ln c = γ (D) ln

(
1 + σ 2

c

µ2
c

)

and, to first order,

[26] σ 2
ln N̄c


 σ 2
φ̄

(
d ln N̄c

dφ̄

∣∣∣
µφ̄

)2

The derivative appearing in eq. [26], which will be denoted
as β(φ), is

[27] β(φ) = d ln N̄c

dφ̄
= d lnNc

dφ

= bd

bd2 − 1

[
π(1 + a2)d + 1 + d2

]
− 1 + a2

a

where a = tan(φ), b = eπa , and d = tan
(
π
4 + φ

2

)
.

The variance of lnMc is thus

[28] σ 2
lnMc


 γ (D)

×
{

ln

(
1 + σ 2

c

µ2
c

)
+
[( s

4π

)
(φmax − φmin)β(µφ)

]2
}

where φ is measured in radians.

Monte Carlo simulation

A finite-element computer program was written to compute
the bearing capacity of a smooth rigid strip footing (plane strain)
founded on a weightless soil with shear strength parameters
c and φ represented by spatially varying and cross-correlated
(point-wise) random fields, as discussed above. The bearing-
capacity analysis uses an elastic-perfectly plastic stress–strain
law with a classical Mohr–Coulomb failure criterion. Plastic
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Table 1. Random field parameters
used in the study.

Parameter Value
θ 0.5, 1.0, 2.0, 4.0, 8.0, 50
COV 0.1, 0.2, 0.5, 1.0, 2.0, 5.0
ρ –1.0, 0.0, 1.0

stress redistribution is accomplished using a viscoplastic algo-
rithm. The program uses eight-node quadrilateral elements and
reduced integration in both the stiffness and stress redistribution
parts of the algorithm. The theoretical basis of the method is de-
scribed more fully in Chap. 6 of the text by Smith and Griffiths
(1998). The finite-element model incorporates five parameters:
Young’s modulus (E), Poisson’s ratio (ν), dilation angle (ψ),
shear strength (c), and friction angle (φ). The program allows
for random distributions of all five parameters; however, in the
present study,E, ν, andψ are held constant (at 100 000 kN/m2,
0.3, and 0, respectively) while c and φ are randomized. The
Young’s modulus governs the initial elastic response of the soil,
but does not affect bearing capacity. Setting the dilation angle
to zero means that there is no plastic dilation during yield of
the soil. The finite element mesh consists of 1000 elements, 50
elements wide by 20 elements deep. Each element is a 0.1 ×
0.1 m square, and the strip footing occupies 10 elements, giving
it a width of B = 1 m.

The random fields used in this study are generated using the
local average subdivision method (Fenton 1994; Fenton and
Vanmarcke 1990). Cross-correlation between the two soil prop-
erty fields (c and φ) is implemented via covariance matrix de-
composition (Fenton 1994). The algorithm is given inAppendix
B.

In the parametric studies that follow, the mean cohesion
(µc) and mean friction angle (µφ) have been held constant at
100 kN/m2 and 25◦ (with φmin = 5◦ and φmax = 45◦), respec-
tively, while the COV (= σc/µc), spatial correlation length (θ ),
and correlation coefficient, ρ, between Gln c and Gφ are varied
systematically according to Table 1.

It will be noticed that COVs up to 5.0 are considered in this
study, which is an order of magnitude higher than generally
reported in the literature (see, e.g., Phoon and Kulhawy 1999).
There are two considerations that complicate the problem of
defining typical COVs for soils that have not yet been clearly
considered in the literature (although Fenton (1999) does intro-
duce these issues). The first has to do with the level of informa-
tion known about a site. Prior to any site investigation, there will
be plenty of uncertainty about soil properties, and an appropri-
ate COV comes by using a COV obtained from regional data
over a much larger scale. Such a COV will typically be much
greater than that found when soil properties are estimated over
a much smaller scale, such as a specific site. As investigation
proceeds at the site of interest, the COV drops. For example, a
single sample at the site will reduce the COV slightly, but as the
investigation intensifies, the COV drops towards zero, reaching
zero when the entire site has been sampled (which, of course, is
clearly impractical). The second consideration, which is actu-
ally closely tied to the first, has to do with scale. If one were to
take soil samples every 10 km over 5000 km (macroscale), one
will find that the COV of those samples will be very large. A
COV of 5.0 would not be unreasonable. Alternatively, suppose

one were to concentrate one’s attention on a single cubic metre
of soil. If several 50 mm2 samples were taken and sent to the
laboratory, one would expect a fairly small COV. On the other
hand, if samples of size 0.1 µm3 were taken and tested (assum-
ing this was possible), the resulting COV could be very large,
since some samples might consist of very hard rock particles,
others of water, and others just of air (i.e., the sample location
falls in a void). In such a situation, a COV of 5.0 could easily
be on the low side. While the last scenario is only conceptual, it
does serve to illustrate that COV is highly dependent on the ratio
between sample volume and sampling domain volume. This de-
pendence is certainly pertinent to the study of bearing capacity,
since it is currently not known at what scale bearing-capacity
failure operates. Is the weakest path through a soil dependent
on property variations at the microscale (having a large COV)
or does the weakest path “smear” the small-scale variations and
depend primarily on local average properties over, say, labora-
tory scales (small COV)? Since laboratory scales are merely
convenient for us, it is unlikely that nature has selected that
particular scale to accommodate us. From the point of view of
reliability estimates, where the failure mechanism might de-
pend on microscale variations for failure initiation, the small
COVs reported in the literature might very well be dangerously
unconservative. Much work is still required to establish the re-
lationship between COV, site investigation intensity, and scale.
In the meantime, this paper considers COVs over a fairly wide
range, since it is entirely possible that the higher values more
truly reflect failure variability.

In addition, it is assumed that when the variability in the
cohesion is large, the variability in the friction angle will also
be large. Under this reasoning, the scale factor, s, used in eq.
[8] is set to s = σc/µc = COV. This choice is arbitrary, but
results in the friction angle varying from quite narrowly (when
COV = 0.1 and s = 0.1) to very widely (when COV = 5.0
and s = 5) between its lower and upper bounds, 5◦ and 45◦, as
illustrated in Fig. 2.

For each set of assumed statistical properties given by Ta-
ble 1, Monte Carlo simulations have been performed. These
involve 1000 realizations of the soil property random fields and
the subsequent finite-element analysis of bearing capacity. Each
realization, therefore, has a different value of the bearing capac-
ity and, after normalization by the mean cohesion, a different
value of the bearing-capacity factor,

[29] Mci = qfi

µc

, i = 1, 2, . . . , 1000

=⇒ µ̂lnMc = 1

1000

1000∑
i=1

lnMci

where µ̂lnMc is the sample mean of lnMc estimated over the
ensemble of realizations. Because of the non-linear nature of the
analysis, the computations are quite intensive. One run of 1000
realizations typically takes about 2 days on a dedicated 800-
MHz Pentium� III computer (which, by the time of printing,
is likely obsolete). For the 108 cases considered in Table 1,
the total single CPU time required is about 220 days (run time
varies with the number of iterations required to analyze various
realizations).
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Fig. 3. (a) Sample mean of log bearing-capacity factor, lnMc, and (b) its sample standard deviation.

Simulation results
Figure 3a shows how the sample mean log bearing-capacity

factor, taken as the average over the 1000 realizations of lnMci
and referred to as µ̂lnMc in Fig. 3, varies with correlation length,
soil variability, and cross-correlation between c andφ. For small
soil variability, µ̂lnMc tends towards the deterministic value
of ln(20.72) = 3.03, which is found when the soil takes on
its mean properties everywhere. For increasing soil variability,
the mean bearing-capacity factor becomes quite significantly
reduced from the traditional case. What this implies from a
design standpoint is that the bearing capacity of a spatially
variable soil will, on average, be less than the Prandtl solu-
tion based on the mean values alone. The greatest reduction
from the Prandtl solution is observed for perfectly correlated
c and φ (ρ = 1), the least reduction when c and φ are nega-
tively correlated (ρ = −1), and the independent case (ρ = 0)
lies between these two extremes. However, the effect of cross-
correlation is seen to be not particularly large. If the negative
cross-correlation indicated by both Cherubini (2000) and Wolff
(1985) is correct, then the independent, ρ = 0, case is conser-
vative, having mean bearing capacities consistently somewhat
less than the ρ = −1 case.

The cross-correlation between c and φ is seen to have min-
imal effect on the sample standard deviation, σ̂lnMc , as shown
in Fig. 3b. The sample standard deviation is most strongly af-
fected by the correlation length and somewhat less so by the soil
property variability. A decreasing correlation length results in a
decreasing σ̂lnMc . As suggested by eq. [28], the function γ (D)
decays approximately with θ/D and so decreases with decreas-
ing θ . This means that σ̂lnMc should decrease as the correlation
length decreases, which is as seen in Fig. 3b.

Figure 3a also seems to show that the correlation length,
θ , does not have a significant influence in that the θ = 0.1
and θ = 8 curves for ρ = 0 are virtually identical. However,
the θ = 0.1 and θ = 8 curves are significantly lower than
that predicted by eq. [23] implying that the plot is somewhat
misleading with respect to the dependence on θ . For example,

when the correlation length goes to infinity, the soil proper-
ties become spatially constant, albeit still random from real-
ization to realization. In this case, because the soil properties
are spatially constant, the weakest path returns to the log spi-
ral and µlnMc will rise towards that given by eq. [23], namely
µlnMc = ln(20.72)− 1

2 ln(1+σ 2
c /µ

2
c), which is also shown on

the plot. This limiting value holds because µlnNc 
 lnNc(µφ),
as discussed for eq. [22], where for spatially constant properties
φ̄ = φ.

Similarly, when θ → 0, the soil property field becomes in-
finitely “rough”, in that all points in the field become indepen-
dent. Any point at which the soil is weak will be surrounded
by points where the soil is strong. A path through the weak-
est points in the soil might have very low average strength, but
at the same time will become infinitely tortuous and thus in-
finitely long. This, combined with shear interlocking dictated
by the stress field, implies that the weakest path should return
to the traditional log spiral with average shear strength along
the spiral given byµc andµφ . Again, in this case,µlnMc should
rise to that given by eq. [23].

The variation of µlnMc with respect to θ is more clearly seen
in Fig. 4. Over a range of values of σc/µc, the value of µlnMc

rises towards that predicted by eq. [23] at both high and low cor-
relation lengths. At intermediate correlation lengths, the weak-
est path issue is seen to result in µlnMc being less than that
predicted by eq. [23] (see Fig. 3a), the greatest reduction in
µlnMc occurring when θ is of the same order as the footing
width, B. It is hypothesized that θ 
 B leads to the greatest
reduction in µlnMc because it allows enough spatial variability
for a failure surface that deviates somewhat from the log spiral
but that is not too long (as occurs when θ is too small) yet has
significantly lower average strength than the θ → ∞ case. The
apparent agreement between the θ = 0.1 and θ = 8 curves in
Fig. 3a is only because they are approximately equispaced on
either side of the minimum at θ 
 1.

As noted above, in the case where c and φ are independent
(ρ = 0) the predicted mean, µlnMc , given by eq. [23] does
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Fig. 4. Sample mean of log bearing-capacity factor, lnMc, versus
normalized correlation length.

not decrease as fast as observed in Fig. 3a for intermediate
correlation lengths. Nor does eq. [23] account for changes in
θ . Although an analytic prediction for the mean strength of the
constrained weakest path through a spatially random soil has
not yet been determined, eq. [23] can be improved by making
the following empirical corrections for the worst case (θ 
 B):

[30] µlnMc 
 0.92 lnNc(µφ) − 0.7 ln

(
1 + σ 2

c

µ2
c

)

where the overall reduction with σc/µc is assumed to follow
the same form as that predicted in eq. [23]. Some portion of
the above correction may be due to finite element model error
(for example, the finite element model slightly underestimates
the deterministic value of Nc, giving Nc = 19.6 instead of
20.7, a 2% relative error in lnNc), but most is attributed to the
weakest path issue and model errors arising by relating a spatial
geometric average to a failure that is actually taking place along
a curve through the two-dimensional soil mass.

Figure 5 illustrates the agreement between the sample mean
of lnMc and that predicted by eq. [30] and between the sam-
ple standard deviation of lnMc and eq. [28] for ρ = 0. The
estimated mean is seen to be in quite good agreement with the
sample mean for all θ when σc/µc < 2, and with the worst case
(θ = B) for σc/µc > 2.

The predicted standard deviation was obtained by assuming
a geometric average over a region under the footing of depth
equal to the mean wedge zone depth,

[31] w 
 1
2B tan

(π
4

+ µφ

2

)
and width of about 5w. This is a rough approximation to the
area of the failure region within the mean log-spiral curve on
either side of the footing. Thus, D used in the variance function
of eq. [28] is a region of size 5w × w.

Although eq. [23] fails to reflect the effect of θ on the the re-
duction in the mean log bearing-capacity factor with increasing

soil variability, the sample standard deviation is extremely well
predicted by eq. [28], being only somewhat underpredicted for
very small correlation lengths. To some extent the overall agree-
ment in variance is as expected, since the variability along the
weakest path will be similar to the variability along any nearby
path through a statistically homogeneous medium.

The Monte Carlo simulation also allows the estimation of the
probability density function of Mc. A chi-square goodness-of-
fit test performed across allσc/µc, θ , andρ parameter variations
yields an average p value of 33%. This is encouraging, since
large p values indicate good agreement between the hypothe-
sized distribution (lognormal) and the data. However, approx-
imately 30% of the simulations had p values of less than 5%,
indicating that a fair proportion of the runs had distributions
that deviated from the lognormal to some extent. Some 10% of
runs had p values of less than 0.01%. Figure 6a illustrates one
of the better fits, with a p value of 43% (σc/µc = 0.1, θ = 4,
and ρ = 0), while Fig. 6b illustrates one of the poorer fits, with
a p value of 0.01% (σc/µc = 5, θ = 1, and ρ = 0). It can be
seen that even when the p value is as low as 0.01%, the fit is
still reasonable. There was no particular trend in degree of fit
as far as the three parameters σc/µc, θ , and ρ were concerned.
It appears, then, that Mc at least approximately follows a log-
normal distribution. Note that if Mc does indeed arise from a
geometric average of the underlying soil properties, c and Nc,
then Mc will tend towards a lognormal distribution by the cen-
tral limit theorem. It is also worth pointing out that this may be
exactly why so many soil properties tend to follow a lognormal
distribution.

Probabilistic interpretation

The results of the previous section indicated that Prandtl’s
bearing-capacity formula is still largely applicable in the case
of spatially varying soil properties if geometrically averaged
soil properties are used in the formula. The theoretical results
presented above, combined with the empirical correction to the
mean proposed in the last section, allows the approximate com-
putation of probabilities associated with bearing capacity of a
smooth strip footing. To illustrate this, consider an example
strip footing of width B = 2 m founded on a weightless soil
having µc = 75 kPa, σc = 50 kPa, and θ = B = 2 m (as-
suming the worst case correlation length). Assume also that the
friction angle φ is independent of c (conservative assumption)
and ranges from 5◦ to 35◦, with mean 20◦ and s = 1. In this
case, the deterministic value of Nc, based purely on µφ is

[32] Nc(µφ) = eπ tanµφ tan2
(
π
4 + µφ

2

)− 1

tanµφ

= 14.835

so that, by eq. [30],

[33] µln M̄c
= 0.92 ln(14.835)−0.7 ln

(
1 + 502

752

)
= 2.2238

For a footing width of B = 2, the wedge zone depth is

[34] w = 1
2B tan

(π
4

+ µφ

2

)
= tan

(
π

4
+ 20π

360

)
= 1.428
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Fig. 5. (a) Sample and estimated mean (via eq. [30]) of lnMc, and (b) its sample and estimated standard deviation (via eq. [28]).

Fig. 6. (a) Fitted lognormal distribution for s = σc/µc = 0.1, θ = 4, and ρ = 0 where the p value is large (0.43) and (b) fitted
lognormal distribution for s = σc/µc = 5, θ = 1, and ρ = 0 where the p value is quite small (0.0001).

Averaging over depth w by width 5w results in the variance
reduction

γ (D) = γ (5w,w) = 0.1987

using the algorithm given in Appendix A for the Markov corre-
lation function.

The slope of lnNc at µφ = 20◦ is 3.62779 rad−1, using eq.
[27]. These results applied to eq. [28] give

[35] σ 2
ln M̄c

= 0.1987

×
{

ln

(
1 + 502

752

)
+
[ s

4π
(φmax − φmin)β(µφ)

]2
}

= 0.07762

so that σln M̄c
= 0.2778.

The probability that Mc is less than half the deterministic
value of Nc, based on µφ , is then

[36] P

[
Mc ≤ 14.835

2

]
= %

(
ln(14.835/2) − µlnMc

σlnMc

)
= %(−0.79)

= 0.215

where% is the cumulative distribution function for the standard
normal and where Mc is assumed lognormally distributed, as
was found to be reasonable above. A simulation of the above
problem yields P

[
Mc ≤ 14.835

2

]
= 0.2155.Although this amaz-

ing agreement seems too good to be true, this is, in fact, the
first example problem that the authors considered. The caveat,
however, is that predictions derived from the results of a finite
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element program are being compared with the results of the
same finite element program, albeit at different parameter val-
ues. Nevertheless, the fact that the agreement here is so good is
encouraging, since it indicates that the theoretical results given
above may have some overall generality, namely that Prandtl’s
bearing-capacity solution is applicable to spatially variable soils
if the soil properties are taken from geometric averages, suit-
ably modified to reflect weakest path issues. Inasmuch as the
finite element method represents the actual soil behaviour, this
observation seems reasonable.

Concluding remarks

Most soil properties are local averages of some sort and are
derived from measurements of properties over some finite vol-
ume. In the case of the shear resistance of a soil sample, tests
involve determining the average shear resistance over some sur-
face through the soil sample. Since this surface will tend to
avoid the high strength areas in favour of low strength areas,
the average will be less than a strictly arithmetic mean over
a flat plane. Of the various common types of averages, arith-
metic, geometric, and harmonic, the one that generally shows
the best agreement with “block” soil properties is the geomet-
ric average. The geometric average favours low strength areas,
although not as drastically as does a harmonic average, lying
between the arithmetic and harmonic averages.

The bearing-capacity factor of Prandtl (1921) has been ob-
served in practice to give reasonable agreement with test results,
particularly under controlled conditions. When soil properties
become spatially random, the failure surface migrates from the
log-spiral surface to some nearby surface that is weaker. The
results presented in this paper indicate that the statistics of the
resulting surface are well represented by geometrically averag-
ing the soil properties over a domain of about the size of the
plastically deformed bearing failure region (taken to be 5w×w
in this study). That is, the results indicate that Prandtl’s formula
can be used to predict the statistics of bearing capacity if the soil
properties used in the formula are based on geometric averages,
with some empirical adjustment for the mean.

In this sense, the weakest path through the soil is what gov-
erns the stochastic bearing-capacity behaviour. This means that
the details of the distributions selected for c and φ are not par-
ticularly important, so long as they are physically reasonable,
unimodal, and continuous. Although the lognormal distribu-
tion, for example, is mathematically convenient when dealing
with geometric averages, very similar bearing-capacity results
are expected using other distributions, such as the normal dis-
tribution (suitably truncated to avoid negative strengths). The
distribution selected for the friction angle basically resembles
a truncated normal distribution over most values of s, but, for
example, it is believed that a beta distribution could also have
been used here without significantly affecting the results.

In the event that the soil is statistically anisotropic, that is,
the correlation lengths differ in the vertical and horizontal direc-
tions, it is felt that the above results can still be used with some
accuracy by using the algorithm of Appendix A with differing
vertical and horizontal correlation lengths. However, some ad-
ditional study is necessary to establish whether the mean bear-
ing capacity in the anisotropic case is at least conservatively

represented by eq. [30].
Some limitations to this study are noted as follows;

(1) The simulations were performed using a finite-element
analysis in which the values of the underlying normally
distributed soil properties assigned to the elements are
derived from arithmetic averages of the soil properties
over each element domain. While this is believed to be a
very realistic approach, intimately related to the soil prop-
erty measurement process, it is nevertheless an approach
where geometric averaging is being performed at the ele-
ment scale (at least for the cohesion, note that arithmetic
averaging of a normally distributed field corresponds to
geometric averaging of the associated lognormally dis-
tribution random field) in a method that is demonstrating
that geometric averaging is applicable over the site scale.
Although it is felt that the fine scale averaging assump-
tions should not significantly effect the large-scale results
through the finite-element method, there is some possi-
bility that there are effects that are not reflected in reality.

(2) Model error has been entirely neglected in this analysis.
That is, the ability of the finite element method to reflect
the actual behaviour of an ideal soil and the ability of eq.
[3] to do likewise have not been considered. It has been
assumed that the finite-element method and eq. [3] are
sufficiently reasonable approximations to the behaviour
of soils to allow the investigation of the major features
of stochastic soil behaviour under loading from a smooth
strip footing. Note that the model error associated with
traditional usage of eq. [3] may be due in large part pre-
cisely to spatial variation of soil properties, so that this
study may effectively be reducing, or at least quantifying,
model error (although whether this is really true or not
will have to wait until sufficient experimental evidence
has been gathered).

The geometric averaging model has been shown to be a rea-
sonable approach to estimating the statistics of bearing capac-
ity. This is particularly true of the standard deviation. Some
adjustment was required to the mean, since the geometric av-
erage was not able to completely account for the weakest path
at intermediate correlation lengths. The proposed relationships
for the mean and standard deviation, along with the simulation
results indicating that the bearing capacity factor, Mc, is log-
normally distributed, allow reasonably accurate calculations of
probabilities associated with the bearing capacity. In the event
that little is known about the cross-correlation of c and φ at a
particular site, assuming that these properties are independent
is deemed to be conservative (as long as the actual correlation
is negative). In any case, the cross-correlation was not found
to be a significant factor in the stochastic behaviour of bearing
capacity.

Perhaps more importantly, since little is generally known
about the correlation length at a site, the results of this study in-
dicate that there exists a worst case correlation length of θ 
 B.
Using this value, in the absence of improved information, allows
conservative estimates of the probability of bearing failure. The
estimate of the mean log bearing-capacity factor (eq. [30]) is
based on this conservative case.
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Appendix A:

The variance reduction function γ (D) gives the amount that
the variance of a local average over the domain D is reduced
from the point variance. IfD is a rectangle of dimensionX×Y ,
then γ is actually a function of X and Y and is defined as

[A.1] γ (X, Y ) = 1

X2Y 2

×
∫ X

0

∫ X

0

∫ Y

0

∫ Y

0
ρ(ξ1−η1, ξ2−η2) dξ1 dη1 dξ1 dη2

where ρ(τ1, τ2) = ρln c

(√
τ 2

1 + τ 2
2

)
(see eq. [7]). Since ρ is

quandrant symmetric (ρ(τ1, τ2) = ρ(−τ1, τ2) = ρ(τ1,−τ2) =
ρ(−τ1,−τ2)), the fourfold integration in eq. [A.1] can be re-
duced to a twofold integration:

[A.2] γ (X, Y )

= 4

X2Y 2

∫ X

0

∫ Y

0
(X − τ1) (Y − τ2) ρ(τ1, τ2) dτ1 dτ2

which can be numerically calculated accurately and efficiently
using a five-point Gauss integration scheme as follows:

[A.3] γ (X, Y ) = 1

4

5∑
i=1

wi(1 − zi)

5∑
j=1

wj(1 − zj )ρ(ξi, ηj )

where

[A.4] ξi = X

2
(1 + zi) ηj = Y

2
(1 + zj )

and the weights, wi , and Gauss points, zi , are as follows:

i wi zi

1 0.236 926 885 056 189 –0.906 179 845 938 664
2 0.478 628 670 499 366 –0.538 469 310 105 683
3 0.568 888 888 888 889 0.000 000 000 000 000
4 0.478 628 670 499 366 0.538 469 310 105 683
5 0.236 926 885 056 189 0.906 179 845 938 664

Appendix B:

The cross-correlated random c and φ fields are obtained via
covariance matrix decomposition, as follows:

(1) Specify the cross-correlation coefficient, ρ(−1 ≤ ρ ≤
1), from statistical analyses. Three extreme cases are con-
sidered in this study: ρ = −1, 0, and 1, corresponding to
completely negatively correlated, uncorrelated, and com-
pletely positively correlated, respectively.
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(2) Form the correlation matrix betweenGln c(x∼) andGφ(x∼),
assumed to be stationary, i.e., the same at all points x∼ in

the field:

ρ
≈

=
[

1.0 ρ
ρ 1.0

]

(3) Compute the Cholesky decomposition of ρ
≈

. That is, find

a lower triangular matrix L
≈

such that L
≈

L
≈

T = ρ
≈

. This is

sometimes referred to as the square root of ρ
≈

. Note that

when ρ = ±1, L
≈

has the special form

L =
[

1.0 0.0
±1.0 0.0

]

(4) Generate two independent standard normally distributed
random fields,G1(x∼) andG2(x∼), each having spatial cor-

relation length θ (see eq. [7]).

(5) At each spatial point, x∼i
, form the underlying point-wise

correlated random fields:{
Gln c(x∼i

)

Gφ(x∼i
)

}
=
[
L11 0.0
L21 L22

]{G1(x∼i
)

G2(x∼i
)

}

(6) Use eqs. [5] and [8] to form the final c and φ random
fields which are then mapped to the finite element mesh
to specify the properties of each element.

List of symbols

a tan φ in eq. [27]
b eπ tan φ in eq. [27]
B footing width
c cohesion
c̄ geometric average of cohesion field over domain D

d tan( π4 + φ

2 ) in eq. [27]
D averaging domain (5w × w)
E elastic modulus

E [�] expectation operator
G1(x∼) standard normal random field

G2(x∼) standard normal random field

Gln c standard normal random field (log cohesion)
Gφ standard normal random field (underlying

friction angle)
Ḡln c arithmetic average of Gln c over domain D

Ḡφ arithmetic average of Gφ over domain D

L
≈

lower triangular matrix, square root of covariance

matrix

Mc stochastic equivalent of the Nc factor
Mci ith realization of Mc

Nc N factor associated with cohesion
N̄c cohesion N factor based on a geometric average of

cohesion
Nq N factor associated with overburden
Nγ N factor associated with the base width and unit

weight
qf ultimate bearing stress
q̄ overburden stress
s scale factor in distribution of φ
x∼ spatial coordinate, (x1, x2) in two dimensions

x∼i

spatial coordinate of the center of the ith element

β(φ) derivated of Nc, with respect to φ, at φ
φ friction angle (radians unless otherwise stated)
φ̄ geometric average of φ over domain D

φmin minimum friction angle
φmax maximum friction angle
% standard normal cumulative distribution function

γ (D) variance function giving variance reduction due to
averaging over domain D

µc cohesion mean
µln c log-cohesion mean

µlnMc
mean of lnMc

µ̂lnMc
sample mean of lnMc (from simulations)

µln c̄ mean of the logarithm of c̄
µln N̄c

mean of the logarithm of N̄c

µφ mean friction angle
µφ̄ mean of φ̄
ν Poisson’s ratio
θ correlation length of the random fields

θln c correlation length of the log-cohesion field
θφ correlation length of the Gφ field
ρ correlation coefficient

ρln c(τ ) correlation function giving correlation between two
points in the log-cohesion field

ρ
≈

correlation matrix

σc cohesion standard deviation
σln c log-cohesion standard deviation
σln c̄ standard deviation of ln c̄
σφ̄ standard deviation of φ̄
σGφ

standard deviation of Gφ (which is 1.0)
σḠφ

standard deviation of Ḡφ

σlnMc
standard deviation of lnMc

σ̂lnMc
sample standard deviation of lnMc (from simulations)

τ distance between two points in the soil domain
ψ dilation angle
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