Probabilistic Slope Stability Analysis by Finite Elements
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Abstract: In this paper we investigate the probability of failure of a cohesive slope using both simple and more advanced probabilistic
analysis tools. The influence of local averaging on the probability of failure of a test problem is thoroughly investigated. In the simple
approach, classical slope stability analysis techniques are used, and the shear strength is treated as a single random variable. The advar
method, called the random finite-element metfiB&FEM), uses elastoplasticity combined with random field theory. The RFEM method

is shown to offer many advantages over traditional probabilistic slope stability techniques, because it enables slope failure to develo
naturally by “seeking out” the most critical mechanism. Of particular importance in this work is the conclusion that simplified probabi-
listic analysis, in which spatial variability is ignored by assuming perfect correlation, can lead to unconservative estimates of the
probability of failure. This contradicts the findings of other investigators who used classical slope stability analysis tools.
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Introduction ing of statistical geotechnical properties has long been recognized
by some investigatorge.g., Mostyn and Soo 1992it is still

Slope stability analysis is a branch of geotechnical engineering regularly omitted from many probabilistic slope stability analy-
that is highly amenable to probabilistic treatment, and it has re- ses. In recent years, the present authors have been pursuing a
ceived considerable attention in the literature. The earliest papersmore rigorous method of probabilistic geotechnical analgesig.,
appeared in the 1970®.g., Matsuo and Kuroda 1974; Alonso Fenton and Griffiths 1993; Paice 1997; Griffiths and Fenton
1976; Tang et al. 1976; Vanmarcke 197and have continued 2000, in which nonlinear finite-element methods are combined
steadily(e.g., D’Andrea and Sangrey 1982; Chowdhury and Tang with random field generation techniques. This method, called here
1987; Li and Lumb 1987; Mostyn and Li 1992; Christian et al. the “random finite-element methodRFEM), fully accounts for
1994; Lacasse 1994; Christian 1996; Lacasse and Nadim 1996:spatial correlation and averaging, and is also a powerful slope
Wolff 1996; Duncan 2000; Hassan and Wolff 2000; Whitman stability analysis tool that does not require a priori assumptions
2000. Most recently, El-Ramly et al2002 produced a useful  related to the shape or location of the failure mechanism.
review of the literature on this topic, and also noted that the In order to demonstrate the benefits of this method and to put
geotechnical profession was slow to adopt probabilistic ap- it into context, in this paper we investigate the probabilistic sta-
proaches to geotechnical design, especially for traditional prob- bility characteristics of a cohesive slope using both the simple and
lems such as slopes and foundations. more advanced methods. Initially, the slope is investigated using

Two main observations can be made in relation to the existing simple probabilistic concepts and classical slope stability tech-
body of work on this subject. First, the vast majority of probabi- niques, followed by an investigation on the role of spatial corre-
listic slope stability analyses, while using novel and sometimes lation and local averaging. Finally, results are presented from a
quite sophisticated probabilistic methodologies, continue to usefull-blown RFEM approach. Where possible throughout this
classical slope stability analysis techniguesg., Bishop 1956 paper, the probability of failurep) is compared with the tradi-
that have changed little in decades, and were never intended fottional factor of safetyFS) that would be obtained from charts or
use with highly variable soil shear strength distributions. An ob- classical limit equilibrium methods.
vious deficiency of traditional slope stability approaches is that  The slope under consideration, known as the “test problem” is
the shape of the failure surfa¢e.g., circulay is often fixed by the shown in Fig. 1, and consists of undrained clay, with shear
method, thus the failure mechanism is not allowed to “seek out” strength parameteis,=0 andc,. In this study, the slope incli-
the most critical path through the soil. Second, while the impor- nation and dimensions, given i3 H, andD, and the saturated
tance of spatial correlatiofor autocorrelationand local averag-  unit weight of the soil,ys,, are held constant, while the und-

rained shear strengtt), is assumed to be a random variable. In
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Fig. 1. Cohesive slope test problem
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shown in Fig. 2 for a typical case withc=100kN/nf ando ¢

Table 1. Factors of Safety Assuming Homogeneous Soil

C Factor of safety
0.15 0.88
0.17 1.00
0.20 1.18
0.25 1.47
0.30 1.77

Finally the median and mode of a log—normal distribution are
given by

median. = exp( i, c) (7)

mode:=expl e~ o ) 8)
A third parameter, the spatial correlation len@thc will also be

=50 kN/n?. The function encloses an area of unity, thus the prob- considered in this study. Since the actual undrained shear strength
ability of the strength dropping below a given value is easily field is log normally distributed, its logarithm yields an “under-
found from standard tables. The mean and standard deviation cafying” normal distributed(or Gaussiapfield. The spatial correla-
conveniently be expressed in terms of the dimensionless coeffi-tion length is measured with respect to this underlying field, that

cient of variation, defined as

Oc

Ve=— (2

Hc

is, with respect to I'€. The spatial correlation lengtro(, c) de-
scribes the distance over which the spatially random values will
tend to be significantly correlated in the underlying Gaussian
field. Thus, a large value df}, ¢ will imply a smoothly varying

Other useful relationships that relate to the log—normal function field, while a small value will imply a ragged field. The spatial
include the standard deviation and mean of the underlying normal correlation length can be estimated from a set of shear strength

distribution as follows:

one=In{1+VZi} ©)

Rinc=INpc— %Uﬁwc (4)
Rearrangement of Eq63) and(4) gives the inverse relationships
pe=eXpinct 305 o) (%)

oc=pevexplop ) —1 (6)
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Fig. 2. Typical log—normal distribution with mean of 100 and

standard deviation of 50M=0.5)

data taken over some spatial region simply by performing statis-
tical analyses on the log data. In practice, howe¥g[e is not
much different in magnitude from the correlation length in real
space and, for most purposes; and 6,,c are interchangeable
given their inherent uncertainty in the first place. In the current
study, the spatial correlation length has been nondimensionalized
by dividing it by the height of embankmeft and will be ex-
pressed in the form,

@C:emC/H (9)

It has been suggestddee, e.g., Lee et al. 1983; Kulhawy et al.
1991 that typical V. values for undrained shear strength lie in
the range of 0.1-0.5. The spatial correlation length, however, is
less well documented and may well exhibit anisotropy, especially
in the horizontal direction. While the advanced analysis tools used
later in this study have the capability of modeling an anisotropic
spatial correlation field, the spatial correlation, when considered,
will be assumed to be isotropic.

Preliminary Deterministic Study

To put the probabilistic analyses into context, an initial determin-
istic study has been performed assuming a homogeneous soil. For
the simple slope shown in Fig. 1, the factor of safety can readily
be obtained from Taylor's1937 charts or simple limit equilib-
rium methods to give the data in Table 1.

These results, plotted in Fig. 3, indicate the linear relationship
betweenC and FS. Fig. 3 also shows that the test slope becomes
unstable when the shear strength parameter falls belbw
=0.17.

Single Random Variable Approach

The first probabilistic analysis presented here investigates the in-
fluence of giving the shear strengtha log—normal probability
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Fig. 3. Linear relationship between factor of safety a@dfor a
cohesive slope with slope angle 8=26.57° and depth ratio of
D=2

density function similar to that shown in Fig. 2, based on a mean
pc and a standard deviation: . The slope is assumed to have
the same value o€ everywhere, however the value Gfis se-
lected randomly from the log—normal distribution. Anticipating
the random field analyses that will be described later in this paper,
this “single random variablédSRV) approach” implies a spatial
correlation length o =<0, so no local averaging is applicable.

The probability of failure py) in this case, is simply equal to
the probability that the shear strength param@&ewill be less
than 0.17. Quantitatively, this is equal to the area of the probabil-
ity density function that corresponds @<0.17.

For example, ifuc=0.25 ando-=0.125 /-=0.5), Eqs.(3)
and (4) give the mean and standard deviation of the underlying
normal distribution of the strength parameter ag,c=—1.498
ando, c=0.472.

The probability of failure is therefore given by

01 0

0.8

22
FS

Fig. 4. Probability of failure versus factor of safetpased on the
mear) in single random variable approach; the mean is fixef at
=0.25

of C=0.17. Fig. 5 shows that the medjaris key to understand-
ing how the probability of failure changes in this analysis. When
mediar<0.17, increasing/c causesp; to fall, whereas when
mediar>0.17, increasing/ causes to rise.

While the single random variable approach described in this

section leads to simple calculations and useful qualitative com-
parisons between the probability of failure and the factor of
safety, the quantitative merit of the approach is more question-
able. An important observation highlighted in Fig. 4 is that soil
with a mean strength of..=0.25 (implying FS=1.47) would
give a probability of failure as high ag;=0.28 for soil with
V-=0.5. Practical experience indicates that slopes with a factor
of safety as high as FSL1.47 rarely fail.

(ln 0'17_>HH1C
p;=p[C<0.17]=d| —— | =0.281 (10) 2 1

Oinc
where®=cumulative standard normal distribution function. EN

This approach has been repeated for a rangg ©ofand V¢ 5
values, for the slope under consideration, and it leads to Fig. 4 | Tt
which gives a direct relationship between the factor of safety and & Mediang=0.1
the probability of failure. It should be emphasized that the factor ., | ~~_ 1o
of safety in this plot is based on the value that would have been = | _ _ _ Median;m
obtained if the slope had consisted of homogeneous soil with a 3 --—-- Medianc=025 e T 7
shear strength equal to the mean valyein Fig. 3. From Fig. 4, I B Median=03 __.——" ]
the probability of failure ps) clearly increases as the factor of <] e e T
safety decreases, however it is also shown that, for EShe o // __/--/' PRl
probability of failure increases a# increases. The exception to // /—-/
this trend occurs when KSL. As shown in Fig. 4, the probability = / T
of failure in such cases is understandably high, however the role / //
of V¢ has the opposite effect, with lower values\&f tending to O 01 02 03 04 05 06 07 08 00 I
give the highest values of the probability of failure. This is ex- Ve

plained by the “bunching up” of the shear strength distribution at
low V¢ rapidly excluding area to the right of the critical value

Fig. 5. p; versusV. for different mediap values
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Fig. 6. Influence of different mean strength factoring strategies on
probability of failure versus factor of safety relationship) linear
factoring and(b) standard deviation factoring; all curves assume fac-
tor of safety=1.47 (based orC 4.~ 0.25)

An implication of this result is that either the perfectly corre-

All the results shown in Fig. 6 assume that after factorization,
Cqes= 0.25, implying a factor of safety of FS1.47. The probabil-

ity of failure of p;=0.28 with no factorizationf,=f,=0, has
also been highlighted for the case \6§=0.5. In both cases, an
increase in the strength reduction factor reduces the probability of
failure, which is to be expected, however, the nature of the two
sets of reduction curves is quite different, especially for higher
values ofV . From the linear mean strength reductj@y. (11)],
f,=0.6 would result in a probability of failure of about 0.6%. By
comparison, a mean strength reduction of one standard deviation
given by f,=1 [Eq. (12)] would result in a probability of failure

of about 2%. Fig. &) shows a gradual reduction of the probabil-
ity of failure for all values off; andV., however quite different
behavior is shown in Fig.(6), where standard deviation factoring
results in very rapid reduction of the probability of failure, espe-
cially for higher values ofV>2. This curious result is easily
explained by the functional relationship betwepp and V.,
where the design strength can be written as

Ces=0.25=pc—fooc=pc(1-f,Ve) (13)

hence asVo—1/f,, pwc—0o0. With the mean strength so much
greater than the critical value of 0.17, the probability of failure
falls very rapidly towards 0.

Spatial Correlation

Implicit in the single random variable approach described above
is that the spatial correlation length is infinite. In other words,
only homogeneous slopes are considered, in which the property
assigned to the slope is taken at random from a log—normal dis-
tribution. A more realistic model would properly take into account
smaller spatial correlation lengths in which the soil strength is
allowed to vary spatially within the slope. The parameter that
controls this is the spatial correlation lendth -, discussed ear-
lier. In this work, an exponentially decayiriilarkovian corre-
lation function of the following form is used:

p=e_<27“"" c) (14)

where p=familiar correlation coefficient; and=absolute dis-
tance between two points in a random field. A plot of this function
is given in Fig. 7 and it indicates, for example, that the strength at
two points separated b§y, ¢ (1/6,, c=1) will have an expected
correlation ofp=0.135. This correlation function is merely a way
of representing the field observation that soil samples taken close
together are more likely to have similar properties than samples

lated single random variable approach is entirely pessimistic in taken far apart. There is also the issue of anisotropic spatial cor-
the prediction of the probability of failure, and/or it is unconser- relation, in that soil is likely to have longer spatial correlation
vative to use the mean strength of variable soil to estimate thelengths in the horizontal direction than in the vertical, due to
factor of safety. Presented with a range of shear strengths at adepositional history. While the tools described in this paper can
given site, a geotechnical engineer would likely select a “pessi- take anisotropy into account, this refinement is left for future
mistic” or “lowest plausible” value for designCes, that would studies.

be lower than the mean. Assuming for the time being that the

single random variable approach is reasonable, Fig. 6 shows the o

influence on the probability of failure of two strategies for factor- Random Finite-Element Method

ing the mean strength prior to calculating the factor of safety
for the test problem. In Fig. (6), linear reduction in the mean
strength has been proposed using a fadtpr,where

Ces= oc(1—fy) (11)

and in Fig. &b), the mean strength has been reduced by a factor,
f,, of the standard deviation, where

A powerful general method of accounting for spatially random
shear strength parameters and spatial correlation is the random
finite-element method which combines elastoplastic finite-
element analysis with random field theory generated using the
local average subdivision meth@Benton and Vanmarcke 1990

The methodology has been described in detail in other publica-
tions (e.qg., Griffiths and Fenton 20Q1so only a brief description

12) will be given here.

Coessc—fa0c
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Fig. 7. Markov correlation function In brief, the analyses involve the application of gravity loading

and the monitoring of stress at all Gauss points. The slope stabil-
ity analyses use an elastic-perfectly plastic stress—strain law with
A typical finite-element mesh for the test problem considered a Tresca failure criterion which is appropriate for “undrained
in this paper is shown in Fig. 8. The majority of the elements are clays.” If the Tresca criterion is violated, the program attempts to
square, however the elements adjacent to the slope have degeneredistribute excess stress to neighboring elements that still have
ated into triangles. reserves of strength. This is an iterative process which continues
The code developed by the writers enables a random field of until the Tresca criterion and global equilibrium are satisfied at all
shear strength values to be generated and mapped onto the finitgpoints within the mesh under quite strict tolerances.
element mesh taking into full account the element size in the local ~ Plastic stress redistribution is accomplished using a viscoplas-
averaging process. In a random field, the value assigned to eachic algorithm with 8-node quadrilateral elements and reduced in-
cell (or finite element in this cagés itself a random variable, thus  tegration in both the stiffness and stress redistribution parts of the
the mesh in Fig. 8, which has 910 finite elements, contains 910 algorithm. The theoretical basis of the method is described more
random variables. The random variables can be correlated to ondully in Chap. 6 of the text by Smith and GriffitH4998, and for
another by controlling the spatial correlation lendify c de- a detailed discussion of the method applied to slope stability
scribed earlier, hence the single random variable approach dis-analysis, the reader is referred to work by Griffiths and Lane
cussed in “Spatial Correlation” where the spatial correlation (1999.
length is implicitly set to infinity can now be viewed as a special For a given set of input shear strength paramdi®esan, stan-
case of a much more powerful analytical tool. Fig& @nd b dard deviation, and spatial correlation lengtklonte Carlo simu-
show typical meshes that correspond to different spatial correla-lations are performed. This means that the slope stability analysis
tion lengths. Fig. 8a) shows a relatively low spatial correlation is repeated many times until the statistics of the output quantities
length of ®-=0.2 and Fig. &) shows a relatively high spatial  of interest become stable. Each “realization” of the Monte Carlo
correlation length of@-.=2. Dark and light regions depict process differs in the locations at which the strong and weak
“weak” and “strong” soil, respectively. It should be emphasized zones are situated. For example, in one realization, weak soil may
that both these shear strength distributions come from the samebe situated in locations where a critical failure mechanism devel-
log—normal distribution, and it is only the spatial correlation ops causing the slope to fail, whereas in another, strong soil in
length that is different. those locations means that the slope remains stable.

A
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{1— 2H 2H :}: 2H —b‘

unit weight 7y
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i
|

Fig. 8. Mesh used for random finite-element method slope stability analyses
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Fig. 11. Variance reduction function over a square element of side

Fig. 10. Influence of plastic iteration ceiling on computed probabil-
ity of failure

Variance Reduction over a Square Finite Element

In this study, it was determined that 1,000 realizations of the Here, an algorithm used to compute the locally averaged statistics
Monte Carlo process for each parametric group was sufficient to 2PPlied to the mesh is described. _ _ _
give reliable reproducible estimates of the probability of failure, ~ A l0g—normal distribution of random variablg, with point

which was simply defined as the proportion of 1,000 Monte Carlo Statistics given by meapc, standard deviationc, and spatial
slope stability analyses that failed. correlation lengthd,, ¢ is mapped onto a mesh of square finite

In this study, “failure” is said to have occurred if, for any elements. Each element is assigned a single value of the und-

given realization, the algorithm was unable to converge within '@ined strength parameter. .
500 iterations. While the choice of 500 as the iteration ceiling s 1he locally averaged statistics over the elements will be re-

subjective, Fig. 10 confirms, for the case 9f=0.25 and®. ferred to here as the “area” statistics by subscAptThus, with

=1, that the probability of failure defined this way is stable for 'eference to the underlying normal distribution otnthe mean,

iteration ceilings greater than about 200. which is unaffected by local averaging, is given by Cu and the
standard deviation, which is affected by local averaging, is given
by o Ca®

Local Averaging The variance reduction factor due to local averagyngs de-
fined as

The input parameters that relate to the mean, standard deviation, 5

and spatial correlation length of the undrained strength are as- _(U'n CA) (15)

sumed to be defined at the point level. While statistics at this Onc

resolution are obviously impossible to measure in practice, they
represent a fundamental baseline of the inherent soil variability
which can be corrected through local averaging to take in to ac-
count the sample size. —

Within the context of the RFEM approach, each element is P=EXH g, ¢ Tt Ty

assigned a constant property at each realization of the Monte ) ) )
Carlo process. The “sample” is represented by the size of each Wherer,=difference between thecoordinates of any two points

finite element used to discretize the slope. If the point distribution N the random field; and, =difference between thecoordinates.

is normal, local averaging results in reduced variance but the  FOrasquare finite element of side lengthy, ¢, shown in Fig.
mean is unaffected. In a log—normal distribution, however, both 11, it can be showrivanmarcke 1984that, for an isotropic spa-

the mean and the standard deviation are reduced by local averagtial correlation field, the variance reduction factor is given by

and is a function of the element size and the correlation function
from Eq. (14), repeated here in the form,

(16)

ing. This is because, from Eq&) and (6), the mean of a log— 4 WOme (oabnc 2
normal relationship depends on both the mean and the variance of y= — f J' exp{ 0 /—x2+y2) (@B c—X)
the underlying normal relationship. Thus the cruder the discreti- (abjhc)* Jo 0 Inc

zation of the slope stability problem and larger the elements, the
greater the influence of local averaging in the form of reduced X(abnc—y)dxdy a7
mean and standard deviation. These adjustments to the point staNumerical integration of this function leads to the variance reduc-
tistics are fully accounted for in the RFEM, and are implemented tion values given in Table 2 and plotted in Fig. 11.

before the elastoplastic finite-element slope stability analysis  Fig. 11 indicates that elements that are small relative to the
takes place. correlation lengtHa—0) lead to very little reduction in variance
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Table 2. Reduction in Variance over a Square Element

o Y
0.01 0.9896
0.1 0.9021
1 0.3965

10 0.0138

(y—1), whereas elements that are large relative to the correlation
length can lead to very significant variance reduciign-0).
The statistics of the underlying log field, including local aver-
aging, are therefore given by
Tinc,~YIn C\/; (18)
and
Kinc,=Hinc (19)

which leads to the following statistics of the log—normal field,
including local averaging, that is actually mapped on the finite-

element mesh from Eq¢5) and (6), thus
e, =eXPknc,+ 300 c,) (20)
¢, = e, eXPofc,) — 1 (21)

It is instructive to consider the range of locally averaged statistics,
since this helps to explain the influence of the spatial correlation
length® (=6, c/H) on the probability of failure in the RFEM
slope analyses that is described in “Locally Averaged Single Ran-
dom Variable Approach.”

Expressing the mean and the coefficient of variation of the
locally averaged variable as a proportion of the point values of
these quantities leads to Figs.(d2and B, respectively. In both
cases, there is virtually no reduction due to local averaging for
elements that are small relative to the spatial correlation length
(a—0). This is to be expected, since the elements are able to
model the point field quite accurately. For larger elements relative
to the spatial correlation length, however, Fig(d2ndicates that

the mean of the locally averaged field tends to the median, and™"

Fig. 12b) indicates that the coefficient of variation of the locally
averaged field tends toward zero.

From Eqgs.(18)—(21), the expression plotted in Fig. (& for
the mean can be written as

ke, 1
He  (1+V3)(A-mPe

(22)

which gives the following: Wheny—0, }LCA/}LC—>1/(1
+V2)¥2 thus pc,—e"nc=median . The expression plotted in

Fig. 12b) for the coefficient of variation of the locally averaged
variable can be written as

Ve, V(1+VE)r—1

Ve oo Ve oo
which gives the following: wheny—0, V¢, /Vc—0, thusVc,
—0.

Further examination of Eq$22) and (23) shows that for all
values ofy,

(23)

mediar¢A= median (24)

hence it can be concluded that
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Fig. 12. Influence of element size expressed in the form of a size
parameterx on local averaging: influence on tiie) mean andb)
coefficient of variation

1. Local averaging reduces both the mean and the variance of a
log—normal point distribution;

Local averaging preserves the median of the point distribu-
tion; and

With significant levels of local averaging, the variance tends
to zero and the mean tends to the median.

Locally Averaged Single Random Variable Approach

Here the probability of failure is reworked with the single random
variable approach using properties derived from local averaging
over an individual finite element, termed “finite element locally
averaged properties” throughout the rest of this paper. With ref-
erence to the mesh shown in Fig. 8, the square elements have a
side length of 0.H, thus®.=0.1kx. Fig. 13 shows the probabil-

ity of failure p; as a function of® . for a range of input point
coefficients of variation, with the point mean fixedg¢=0.25.

The probability of failure is defined, as before, pyC<0.17),

but this time the calculation is based on the finite-element locally
averaged properties,c, andoc, from Egs.(20) and (21). Fig.

13 clearly shows two tails to the results, wiph—1 as®-—0

for all Vc>1.0783, angp;— 0 as®.—0 for all V;<1.0783. The
horizontal line atp;=0.5 is given byV-.=1.0783, which is the
special value of the coefficient of variation that causes the
median: to equal 0.17. If we recall that, in Table 1, this is the
critical value ofC that would give FS1 in the test slope. Higher
values ofV lead to mediag<<0.17 and a tendency fg;—1 as
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Fig. 13. Probability of failure versus spatial correlation length based
on finite-element locally averaged properties; the mean is fixed at

Fig. 15. Typical random field realizations and deformed mesh at
slope failure for two different spatial correlation lengths

©®.—0. Conversely, lower values &f: lead to mediag>0.17

and a tendency foo— 0. Fig. 14 shows the same data plotted the Results of Random Finite-Element Method Analyses

other way round withV. along the abscissa. Fig. 14 clearly

shows the full influence of spatial correlation in the range of 0 Now, the results of full nonlinear RFEM analyses with Monte

<0Oc<«. All the curves cross over at the critical value 6§ Carlo simulations are described based on a range of parametric
=1.0783, and it is of interest to note the step function that corre- variations of.c, Ve, and®.
sponds to® =0 whenp; changes suddenly from zero to unity. In the elastoplastic RFEM approach, the failure mechanism is

It should be emphasized that the results presented in this secfree to “seek out” the weakest path through the soil. Fig. 15
tion involved no actual finite-element analysis, and were basedshows two typical random field realizations and the associated
solely on a SRV approach using locally averaged properties de-failure mechanisms for slopes with-=0.5 and 2. The convo-
rived from a typical finite element in a mesh such as that shown in luted nature of the failure mechanisms, especially witgg
Fig. 8. =0.5, would defy analysis by conventional slope stability analy-
sis tools. While the mechanism is attracted to the weaker zones
within the slope, it will inevitably pass through elements assigned
many different strength values. This weakest path determination,
and the strength averaging that goes with it, occurs quite naturally
in the finite-element slope stability method, and represents a very
significant improvement over traditional limit equilibrium ap-
proaches to probabilistic slope stability analysis. In these tradi-

1.1

0.9

T tional methods, if local averaging is included at all, it has to be
oo | y Pl . . . .
S e computed over a failure mechanism that is preset by the particular
i s analysis methode.g., a circular failure mechanism when using

0.7

Bishop’s methoyl
In fixing the point mean strength ai-=0.25, Figs. 16 and 17
show the effect of spatial correlation lendth. and coefficient of

0.6

&7 variationV¢ on the probability of failure for the test problem. Fig.
3 0c=0.0 16 clearly indicates two branches, with the probability of failure
. ‘ gci-ng tending toward unity or zero for higher and lower valuesvef,

s 92;0:125 respectively. This behavior is qualitatively similar to that ob-
o O served in Fig. 13, in which a single random variable approach was
used to predict the probability of failure based solely on finite-
S element locally averaged properties. Fig. 17 shows the same re-
o] sults as Fig. 16, but plotted the other way round with the coeffi-
- cient of variation along the abscissa. Fig. 17 also shows the
¢ . — : — T theoretically obtained result corresponding@g@ =<, indicating
! T SR TS that a single random variable approach with no local averagin
10 10 10 g 0]0] ging
Ve will overestimate the probability of failuréconservative when

the coefficient of variation is relatively small and underestimate
the probability of failure(unconservativewhen the coefficient of
variation is relatively high. Fig. 17 also confirms that the single
random variable approach described earlier in the paper, which

Fig. 14. Probability of failure versus coefficient of variation based
on finite-element locally averaged properties; the mean is fixed at
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Fig. 18. Comparison of the probability of failure predicted by ran-

dom finite-element method and by finite-element local averaging
only; the curve with points comes from random finite-element
method analyses; the mean is fixedugt=0.25

Fig. 16. Probability of failure versus spatial correlation length from
random finite-element method; the mean is fixeghat=0.25

gavep;=0.28 corresponding tp.c=0.25 andV-=0.5 with no

local averaging, is indeed pessimistic. The RFEM results show occurred atV=1.0783, whereas by the RFEM it occurred at

that the inclusion of spatial correlation and local averaging in this V~0.65. In terms of the probability of failure with only finite-

case will always lead to a smaller probability of failure. element local averaging, the crossover occurredpat0.5
Comparison of Figs. 13 and 14 with Figs. 16 and 17 highlights whereas by the RFEM it (,)ccurred at~0.38. The RFEM solu-

the influence of the finite-element approach to slope stability, tions show that the single random variable approach becomes

W.Tﬁ.r N ﬂt1he falll;reF mecEgms;nLl IS (fjrele? t.ct’ .Ioclate tlLsetIfthopflmalllg/ unconservative over a wider range 6§ values than would be
within theé mesh. =rom FIgs. 14 an LIS clear that the 'weak™ ., qicated by finite-element local averaging alone.

est path” concept made possible by the RFEM approach has re- Fig. 18 gives a direct comparison between Figs. 13 and 16: it

sulted in the crossover point falling to lower yalues of bitg indicates clearly that, for higher values ¥f., RFEM always
andp;. With only finite-element local averaging, the crossover gives a higher probability of failure than using finite-element
local averaging alone. This is caused by the weaker elements in
—v the distribution that dominate the strength of the slope and the
o T % failure mechanism that seeks out the weakest path through the
. S e soil.
. Va P At lower values ofV, the locally averaged results tend to
e overestimate the probability of failure and give conservative re-
o B=00 sults compared to RFEM. In this case the stronger elements of the
e slope dominate the solution and the higher median combined with
> bunching up of the locally averaged solution at low value®gf
/n means that potential failure mechanisms cannot readily find a
v weak path through the soil.

In all cases, a®) ¢ increases, the RFEM and the locally aver-
aged solutions converge on the single random variable solution
that corresponds t® .=« with no local averaging. The;
=0.28 value, corresponding ¥-=0.5, discussed earlier in the
paper is also indicated in Fig. 18.

All of the above results and discussion in “Results of Random
Finite-Element Method Analyses” so far were applied to the test
slope in Fig. 1 with the mean strength fixedat=0.25, corre-

i /// i sponding to a factor of safetfpased on the meawf 1.47. In the
e /";'— "% T T T T | next set of resultguc is varied whileV¢ is held constant at 0.5.
10 o 10° P e Fig. 19 shows the relationship between ffsed on the mean
Ve and p; assuming finite-element local averaging only, and Fig. 20
shows the same relationship computed using RFEM.

Fig. 19, based on finite-element local averaging only, shows

the full range of behavior for € ® <. Fig. 19 shows tha® -
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Fig. 17. Probability of failure versus coefficient of variation from
random finite-element method; the mean is fixeghat=0.25
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Fig. 19. Probability of failure versus factor of safetpased on the Fig. 21. Probability of failure versus factor of safetpased on the
mear) using finite-element local averaging only for the test slope; the mean using finite-element local averaging alone and random finite-
coefficient of variation is fixed a¢-=0.5 element method for the test slopé;=0.5 and®-.=0.5

only starts to have a significant influence on the FS vesus
relationship when the correlation length becomes significantly
smaller than the slope heigh®¢<1). The step function in
which p; jumps from zero to unity occurs whelc=0, and it
corresponds to a local average with zero variance. In this limiting
case, the local average of the soil is deterministic and yields con-

stant strength everywhere in the slope. Witg= 05 the cri_tical dicted p; is higher than it should be. When E3.12, however
value of mean shear strength that would giwe, =mediar failure to account for local averaging is unconservative.

=0.17 is easily shown by E¢22) to bep.c=0.19, which corre- Fig. 20 gives the same relationships as those computed using
RFEM. By comparison with Fig. 19, the RFEM results are more
spread out, implying that the probability of failure is more sensi-
tive to spatial correlation length . Of greater significance is

- 3 that the crossover point has again shifted by RFEM as it seeks out
) the weakest path through the slope. In Fig. 20, the crossover
occurs at F&1.37, which is significantly higher and of greater
practical significance than the crossover point of~ASL2 by
finite-element local averaging alone. The theoretical line corre-
sponding to® .=« is also shown in this plot. From a practical
viewpoint, the RFEM analysis indicates that failure to properly
account for local averaging is unconservative over a wider range
of factors of safety than would be the case by finite-element local
averaging alone. To further highlight this difference, the results in
Figs. 19 and 20 that correspond ®-=0.5 (the spatial correla-
tion length equal to half the embankment hejgite replotted in

Fig. 21.

sponds to a FS1.12. For higher values dd ., the relationship
between FS ang; is quite “bunched up,” and generally insensi-
tive to O.. For example, there is little difference between the
curves corresponding t® .= and 0.5. It should also be ob-
served in Fig. 19 that, for ES1.12, failure to account for local
averaging by assumin@ .=« is conservative, in that the pre-

1.1

%3
05 06 07 08 09
1

0.4

02 03

0.1

Concluding Remarks

In this paper we have investigated the probability of failure of a
08 1 1 4 6 13 2 cohesive slope using both simple and more advanced probabilistic
FS analysis tools. The simple approach treated the strength of the
entire slope as a single random variable, and ignored spatial cor-
relation and local averaging. In the simple studies, the probability
of failure was estimated as the probability that the shear strength
would fall below a critical value based on a log—normal probabil-

-0.1

Fig. 20. Probability of failure versus factor of safetpased on the
mean using random finite-element method for the test slope; the
coefficient of variation is fixed a¢-=0.5
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ity density function. These results led to a discussion on the ap- ¢ = standard deviation of;

propriate choice of design shear strength value suitable for deter- oc, = locally averaged standard deviation ®fover a

ministic analysis. Two factorization methods were proposed that square finite element;

were able tq brln_g the_ probab_|I|ty of fal_lure and the factor of onc = standard deviation of I&

safety more into line with practlca.l experience. N locally averaged standard deviation of@rover a
The second half of the paper implemented the random finite square finite element;

element method on the same test problem. The nonlinear elasto- _ _ ., <01 4o distance between two points:

plastic analyses with Monte Carlo simulation were able to take 1, = x-component of distance between two points;

into full apc_ount spatial correlatlc_)_n and I(_)cal averaging, and o_b- T, = y-component of distance between two points; and

serve their impact on the probability of failure using a parametric d)y — undrained friction angle

approach. The elastoplastic finite-element slope stability method ™" '

makes no a priori assumptions about the shape or location of the

critical failure mechanism, and therefore offers very significant References
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