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Probabilistic Slope Stability Analysis by Finite Elements
D. V. Griffiths, F.ASCE,1 and Gordon A. Fenton, M.ASCE2

Abstract: In this paper we investigate the probability of failure of a cohesive slope using both simple and more advanced pro
analysis tools. The influence of local averaging on the probability of failure of a test problem is thoroughly investigated. In th
approach, classical slope stability analysis techniques are used, and the shear strength is treated as a single random variable.
method, called the random finite-element method~RFEM!, uses elastoplasticity combined with random field theory. The RFEM m
is shown to offer many advantages over traditional probabilistic slope stability techniques, because it enables slope failure
naturally by ‘‘seeking out’’ the most critical mechanism. Of particular importance in this work is the conclusion that simplified p
listic analysis, in which spatial variability is ignored by assuming perfect correlation, can lead to unconservative estimat
probability of failure. This contradicts the findings of other investigators who used classical slope stability analysis tools.
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Introduction

Slope stability analysis is a branch of geotechnical engine
that is highly amenable to probabilistic treatment, and it ha
ceived considerable attention in the literature. The earliest p
appeared in the 1970s~e.g., Matsuo and Kuroda 1974; Alon
1976; Tang et al. 1976; Vanmarcke 1977! and have continue
steadily~e.g., D’Andrea and Sangrey 1982; Chowdhury and T
1987; Li and Lumb 1987; Mostyn and Li 1992; Christian et
1994; Lacasse 1994; Christian 1996; Lacasse and Nadim
Wolff 1996; Duncan 2000; Hassan and Wolff 2000; Whitm
2000!. Most recently, El-Ramly et al.~2002! produced a usefu
review of the literature on this topic, and also noted that
geotechnical profession was slow to adopt probabilistic
proaches to geotechnical design, especially for traditional p
lems such as slopes and foundations.

Two main observations can be made in relation to the exi
body of work on this subject. First, the vast majority of prob
listic slope stability analyses, while using novel and somet
quite sophisticated probabilistic methodologies, continue to
classical slope stability analysis techniques~e.g., Bishop 1955!
that have changed little in decades, and were never intende
use with highly variable soil shear strength distributions. An
vious deficiency of traditional slope stability approaches is
the shape of the failure surface~e.g., circular! is often fixed by the
method, thus the failure mechanism is not allowed to ‘‘seek
the most critical path through the soil. Second, while the im
tance of spatial correlation~or autocorrelation! and local averag
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ing of statistical geotechnical properties has long been recog
by some investigators~e.g., Mostyn and Soo 1992!, it is still
regularly omitted from many probabilistic slope stability an
ses. In recent years, the present authors have been purs
more rigorous method of probabilistic geotechnical analysis~e.g.,
Fenton and Griffiths 1993; Paice 1997; Griffiths and Fe
2000!, in which nonlinear finite-element methods are comb
with random field generation techniques. This method, called
the ‘‘random finite-element method’’~RFEM!, fully accounts fo
spatial correlation and averaging, and is also a powerful s
stability analysis tool that does not require a priori assump
related to the shape or location of the failure mechanism.

In order to demonstrate the benefits of this method and t
it into context, in this paper we investigate the probabilistic
bility characteristics of a cohesive slope using both the simple
more advanced methods. Initially, the slope is investigated
simple probabilistic concepts and classical slope stability
niques, followed by an investigation on the role of spatial co
lation and local averaging. Finally, results are presented fr
full-blown RFEM approach. Where possible throughout
paper, the probability of failure (pf) is compared with the trad
tional factor of safety~FS! that would be obtained from charts
classical limit equilibrium methods.

The slope under consideration, known as the ‘‘test problem
shown in Fig. 1, and consists of undrained clay, with s
strength parametersfu50 andcu . In this study, the slope incl
nation and dimensions, given byb, H, andD, and the saturate
unit weight of the soil,gsat, are held constant, while the un
rained shear strengthcu is assumed to be a random variable
the interest of generality, the undrained shear strength w
expressed in dimensionless formC, whereC5cu /(gsatH).

Probabilistic Description of Shear Strength

In this study, shear strengthC is assumed to be characteriz
statistically by a log–normal distribution defined by a mean,mC ,
and a standard deviationsC .

The probability density function of a log–normal distribut

is given by
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Cs ln CA2p
expF2

1

2 S ln C2m ln C

s ln C
D 2G (1)

shown in Fig. 2 for a typical case withmC5100 kN/m2 and sC

550 kN/m2. The function encloses an area of unity, thus the p
ability of the strength dropping below a given value is ea
found from standard tables. The mean and standard deviatio
conveniently be expressed in terms of the dimensionless c
cient of variation, defined as

VC5
sC

mC
(2)

Other useful relationships that relate to the log–normal func
include the standard deviation and mean of the underlying no
distribution as follows:

s ln C5Aln$11VC
2 % (3)

m ln C5 ln mC2 1
2 s ln C

2 (4)

Rearrangement of Eqs.~3! and~4! gives the inverse relationshi

mC5exp~m ln C1 1
2s ln C

2 ! (5)

sC5mCAexp~s ln C
2 !21 (6)

Fig. 1. Cohesive slope test problem

Fig. 2. Typical log–normal distribution with mean of 100 a
standard deviation of 50 (VC50.5)
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Finally the median and mode of a log–normal distribution
given by

medianC5exp~m ln C! (7)

modeC5exp~m ln C2s ln C
2 ! (8)

A third parameter, the spatial correlation lengthu ln C will also be
considered in this study. Since the actual undrained shear st
field is log normally distributed, its logarithm yields an ‘‘und
lying’’ normal distributed~or Gaussian! field. The spatial correla
tion length is measured with respect to this underlying field,
is, with respect to lnC. The spatial correlation length (u ln C) de-
scribes the distance over which the spatially random values
tend to be significantly correlated in the underlying Gaus
field. Thus, a large value ofu ln C will imply a smoothly varying
field, while a small value will imply a ragged field. The spa
correlation length can be estimated from a set of shear str
data taken over some spatial region simply by performing s
tical analyses on the log data. In practice, however,u ln C is not
much different in magnitude from the correlation length in
space and, for most purposes,uC and u ln C are interchangeab
given their inherent uncertainty in the first place. In the cur
study, the spatial correlation length has been nondimension
by dividing it by the height of embankmentH and will be ex-
pressed in the form,

QC5u ln C /H (9)

It has been suggested~see, e.g., Lee et al. 1983; Kulhawy et
1991! that typicalVC values for undrained shear strength lie
the range of 0.1–0.5. The spatial correlation length, howev
less well documented and may well exhibit anisotropy, espec
in the horizontal direction. While the advanced analysis tools
later in this study have the capability of modeling an anisotr
spatial correlation field, the spatial correlation, when consid
will be assumed to be isotropic.

Preliminary Deterministic Study

To put the probabilistic analyses into context, an initial deter
istic study has been performed assuming a homogeneous so
the simple slope shown in Fig. 1, the factor of safety can re
be obtained from Taylor’s~1937! charts or simple limit equilib
rium methods to give the data in Table 1.

These results, plotted in Fig. 3, indicate the linear relation
betweenC and FS. Fig. 3 also shows that the test slope bec
unstable when the shear strength parameter falls beloC
50.17.

Single Random Variable Approach

The first probabilistic analysis presented here investigates th

Table 1. Factors of Safety Assuming Homogeneous Soil

C Factor of safety

0.15 0.88
0.17 1.00
0.20 1.18
0.25 1.47
0.30 1.77
fluence of giving the shear strengthC a log–normal probability
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density function similar to that shown in Fig. 2, based on a m
mC and a standard deviationsC . The slope is assumed to ha
the same value ofC everywhere, however the value ofC is se-
lected randomly from the log–normal distribution. Anticipat
the random field analyses that will be described later in this p
this ‘‘single random variable~SRV! approach’’ implies a spati
correlation length ofQC5`, so no local averaging is applicab

The probability of failure (pf) in this case, is simply equal
the probability that the shear strength parameterC will be less
than 0.17. Quantitatively, this is equal to the area of the prob
ity density function that corresponds toC<0.17.

For example, ifmC50.25 andsC50.125 (VC50.5), Eqs.~3!
and ~4! give the mean and standard deviation of the underl
normal distribution of the strength parameter asm ln C521.498
ands ln C50.472.

The probability of failure is therefore given by

pf5p@C,0.17#5FS ln 0.172m ln C

s ln C
D50.281 (10)

whereF5cumulative standard normal distribution function.
This approach has been repeated for a range ofmC and VC

values, for the slope under consideration, and it leads to F
which gives a direct relationship between the factor of safety
the probability of failure. It should be emphasized that the fa
of safety in this plot is based on the value that would have
obtained if the slope had consisted of homogeneous soil w
shear strength equal to the mean valuemC in Fig. 3. From Fig. 4
the probability of failure (pf) clearly increases as the factor
safety decreases, however it is also shown that, for FS.1, the
probability of failure increases asVC increases. The exception
this trend occurs when FS,1. As shown in Fig. 4, the probabili
of failure in such cases is understandably high, however the
of VC has the opposite effect, with lower values ofVC tending to
give the highest values of the probability of failure. This is
plained by the ‘‘bunching up’’ of the shear strength distributio

Fig. 3. Linear relationship between factor of safety andC for a
cohesive slope with slope angle ofb526.57° and depth ratio o
D52
low VC rapidly excluding area to the right of the critical value

JOURNAL OF GEOTECHNICAL AN
of C50.17. Fig. 5 shows that the medianC is key to understand
ing how the probability of failure changes in this analysis. W
medianC,0.17, increasingVC causespf to fall, whereas whe
medianC.0.17, increasingVC causespf to rise.

While the single random variable approach described in
section leads to simple calculations and useful qualitative
parisons between the probability of failure and the facto
safety, the quantitative merit of the approach is more ques
able. An important observation highlighted in Fig. 4 is that
with a mean strength ofmC50.25 ~implying FS51.47! would
give a probability of failure as high aspf50.28 for soil with
VC50.5. Practical experience indicates that slopes with a f
of safety as high as FS51.47 rarely fail.

Fig. 4. Probability of failure versus factor of safety~based on th
mean! in single random variable approach; the mean is fixed amC

50.25

Fig. 5. pf versusVC for different medianC values
D GEOENVIRONMENTAL ENGINEERING © ASCE / MAY 2004 / 509
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An implication of this result is that either the perfectly cor
lated single random variable approach is entirely pessimis
the prediction of the probability of failure, and/or it is uncons
vative to use the mean strength of variable soil to estimat
factor of safety. Presented with a range of shear strengths
given site, a geotechnical engineer would likely select a ‘‘pe
mistic’’ or ‘‘lowest plausible’’ value for design,Cdes, that would
be lower than the mean. Assuming for the time being tha
single random variable approach is reasonable, Fig. 6 show
influence on the probability of failure of two strategies for fac
ing the mean strengthmC prior to calculating the factor of safe
for the test problem. In Fig. 6~a!, linear reduction in the mea
strength has been proposed using a factor,f 1 , where

Cdes5mC~12 f 1! (11)

and in Fig. 6~b!, the mean strength has been reduced by a fa
f 2 , of the standard deviation, where

C 5m 2 f s (12)

Fig. 6. Influence of different mean strength factoring strategie
probability of failure versus factor of safety relationship:~a! linear
factoring and~b! standard deviation factoring; all curves assume
tor of safety51.47 ~based onCdes50.25)
des C 2 C

510 / JOURNAL OF GEOTECHNICAL AND GEOENVIRONMENTAL ENGINE
All the results shown in Fig. 6 assume that after factoriza
Cdes50.25, implying a factor of safety of FS51.47. The probabi
ity of failure of pf50.28 with no factorization,f 15 f 250, has
also been highlighted for the case ofVC50.5. In both cases, a
increase in the strength reduction factor reduces the probabi
failure, which is to be expected, however, the nature of the
sets of reduction curves is quite different, especially for hi
values ofVC . From the linear mean strength reduction@Eq. ~11!#,
f 150.6 would result in a probability of failure of about 0.6%.
comparison, a mean strength reduction of one standard dev
given by f 251 @Eq. ~12!# would result in a probability of failur
of about 2%. Fig. 6~a! shows a gradual reduction of the proba
ity of failure for all values off 1 andVC , however quite differen
behavior is shown in Fig. 6~b!, where standard deviation factori
results in very rapid reduction of the probability of failure, es
cially for higher values ofVC.2. This curious result is eas
explained by the functional relationship betweenpf and VC ,
where the design strength can be written as

Cdes50.255mC2 f 2sC5mC~12 f 2VC! (13)

hence asVC→1/f 2 , mC→`. With the mean strength so mu
greater than the critical value of 0.17, the probability of fai
falls very rapidly towards 0.

Spatial Correlation

Implicit in the single random variable approach described a
is that the spatial correlation length is infinite. In other wo
only homogeneous slopes are considered, in which the pro
assigned to the slope is taken at random from a log–norma
tribution. A more realistic model would properly take into acco
smaller spatial correlation lengths in which the soil streng
allowed to vary spatially within the slope. The parameter
controls this is the spatial correlation lengthu ln C , discussed ea
lier. In this work, an exponentially decaying~Markovian! corre-
lation function of the following form is used:

r5e2~2t/u ln C! (14)

where r5familiar correlation coefficient; andt5absolute dis
tance between two points in a random field. A plot of this func
is given in Fig. 7 and it indicates, for example, that the streng
two points separated byu ln C (t/uln C51) will have an expecte
correlation ofr50.135. This correlation function is merely a w
of representing the field observation that soil samples taken
together are more likely to have similar properties than sam
taken far apart. There is also the issue of anisotropic spatia
relation, in that soil is likely to have longer spatial correla
lengths in the horizontal direction than in the vertical, due
depositional history. While the tools described in this paper
take anisotropy into account, this refinement is left for fu
studies.

Random Finite-Element Method

A powerful general method of accounting for spatially rand
shear strength parameters and spatial correlation is the ra
finite-element method which combines elastoplastic fi
element analysis with random field theory generated using
local average subdivision method~Fenton and Vanmarcke 199!.
The methodology has been described in detail in other pub
tions ~e.g., Griffiths and Fenton 2001!, so only a brief descriptio

will be given here.
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A typical finite-element mesh for the test problem consid
in this paper is shown in Fig. 8. The majority of the elements
square, however the elements adjacent to the slope have de
ated into triangles.

The code developed by the writers enables a random fie
shear strength values to be generated and mapped onto the
element mesh taking into full account the element size in the
averaging process. In a random field, the value assigned to
cell ~or finite element in this case! is itself a random variable, thu
the mesh in Fig. 8, which has 910 finite elements, contains
random variables. The random variables can be correlated t
another by controlling the spatial correlation lengthu ln C de-
scribed earlier, hence the single random variable approach
cussed in ‘‘Spatial Correlation’’ where the spatial correla
length is implicitly set to infinity can now be viewed as a spe
case of a much more powerful analytical tool. Figs. 9~a and b!
show typical meshes that correspond to different spatial co
tion lengths. Fig. 9~a! shows a relatively low spatial correlati
length of QC50.2 and Fig. 9~b! shows a relatively high spati
correlation length ofQC52. Dark and light regions depi
‘‘weak’’ and ‘‘strong’’ soil, respectively. It should be emphasiz
that both these shear strength distributions come from the
log–normal distribution, and it is only the spatial correlat
length that is different.

Fig. 7. Markov correlation function

Fig. 8. Mesh used for random fin
JOURNAL OF GEOTECHNICAL AN
r-

-

In brief, the analyses involve the application of gravity load
and the monitoring of stress at all Gauss points. The slope s
ity analyses use an elastic-perfectly plastic stress–strain law
a Tresca failure criterion which is appropriate for ‘‘undrai
clays.’’ If the Tresca criterion is violated, the program attemp
redistribute excess stress to neighboring elements that still
reserves of strength. This is an iterative process which cont
until the Tresca criterion and global equilibrium are satisfied a
points within the mesh under quite strict tolerances.

Plastic stress redistribution is accomplished using a visco
tic algorithm with 8-node quadrilateral elements and reduce
tegration in both the stiffness and stress redistribution parts o
algorithm. The theoretical basis of the method is described
fully in Chap. 6 of the text by Smith and Griffiths~1998!, and for
a detailed discussion of the method applied to slope sta
analysis, the reader is referred to work by Griffiths and L
~1999!.

For a given set of input shear strength parameters~mean, stan
dard deviation, and spatial correlation length!, Monte Carlo simu
lations are performed. This means that the slope stability an
is repeated many times until the statistics of the output quan
of interest become stable. Each ‘‘realization’’ of the Monte C
process differs in the locations at which the strong and w
zones are situated. For example, in one realization, weak soi
be situated in locations where a critical failure mechanism d
ops causing the slope to fail, whereas in another, strong s
those locations means that the slope remains stable.

ement method slope stability analyses

Fig. 9. Influence of scale of fluctuation in random finite-elem
method analysis
ite-el
D GEOENVIRONMENTAL ENGINEERING © ASCE / MAY 2004 / 511
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In this study, it was determined that 1,000 realizations of
Monte Carlo process for each parametric group was sufficie
give reliable reproducible estimates of the probability of fail
which was simply defined as the proportion of 1,000 Monte C
slope stability analyses that failed.

In this study, ‘‘failure’’ is said to have occurred if, for a
given realization, the algorithm was unable to converge w
500 iterations. While the choice of 500 as the iteration ceilin
subjective, Fig. 10 confirms, for the case ofmC50.25 andQC

51, that the probability of failure defined this way is stable
iteration ceilings greater than about 200.

Local Averaging

The input parameters that relate to the mean, standard dev
and spatial correlation length of the undrained strength ar
sumed to be defined at the point level. While statistics at
resolution are obviously impossible to measure in practice,
represent a fundamental baseline of the inherent soil varia
which can be corrected through local averaging to take in to
count the sample size.

Within the context of the RFEM approach, each elemen
assigned a constant property at each realization of the M
Carlo process. The ‘‘sample’’ is represented by the size of
finite element used to discretize the slope. If the point distribu
is normal, local averaging results in reduced variance bu
mean is unaffected. In a log–normal distribution, however,
the mean and the standard deviation are reduced by local a
ing. This is because, from Eqs.~5! and ~6!, the mean of a log
normal relationship depends on both the mean and the varian
the underlying normal relationship. Thus the cruder the disc
zation of the slope stability problem and larger the elements
greater the influence of local averaging in the form of redu
mean and standard deviation. These adjustments to the poi
tistics are fully accounted for in the RFEM, and are impleme
before the elastoplastic finite-element slope stability ana

Fig. 10. Influence of plastic iteration ceiling on computed proba
ity of failure
takes place.
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Variance Reduction over a Square Finite Element

Here, an algorithm used to compute the locally averaged sta
applied to the mesh is described.

A log–normal distribution of random variableC, with point
statistics given by meanmC , standard deviationsC , and spatia
correlation lengthu ln C is mapped onto a mesh of square fi
elements. Each element is assigned a single value of the
rained strength parameter.

The locally averaged statistics over the elements will be
ferred to here as the ‘‘area’’ statistics by subscriptA. Thus, with
reference to the underlying normal distribution of lnC, the mean
which is unaffected by local averaging, is given bym ln CA

, and the
standard deviation, which is affected by local averaging, is g
by s ln CA

.
The variance reduction factor due to local averagingg, is de-

fined as

g5S s ln CA

s ln C
D 2

(15)

and is a function of the element size and the correlation fun
from Eq. ~14!, repeated here in the form,

r5expS 2
2

u ln C
Atx

21ty
2D (16)

wheretx5difference between thex coordinates of any two poin
in the random field; andty5difference between they coordinates

For a square finite element of side lengthau ln C , shown in Fig
11, it can be shown~Vanmarcke 1984! that, for an isotropic spa
tial correlation field, the variance reduction factor is given by

g5
4

~au ln C!4 E0

au ln CE
0

au ln C

expS 2
2

u ln C
Ax21y2D ~au ln C2x!

3~au ln C2y!dxdy (17)

Numerical integration of this function leads to the variance re
tion values given in Table 2 and plotted in Fig. 11.

Fig. 11 indicates that elements that are small relative to

Fig. 11. Variance reduction function over a square element of
lengthau ln C with a Markov correlation function
correlation length~a→0! lead to very little reduction in variance
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size
~g→1!, whereas elements that are large relative to the correl
length can lead to very significant variance reduction~g→0!.

The statistics of the underlying log field, including local av
aging, are therefore given by

s ln CA
5s ln CAg (18)

and

m ln CA
5m ln C (19)

which leads to the following statistics of the log–normal fie
including local averaging, that is actually mapped on the fin
element mesh from Eqs.~5! and ~6!, thus

mCA
5exp~m ln CA

1 1
2s ln CA

2 ! (20)

sCA
5mCA

Aexp~s ln CA

2 !21 (21)

It is instructive to consider the range of locally averaged statis
since this helps to explain the influence of the spatial correl
length QC(5u ln C /H) on the probability of failure in the RFEM
slope analyses that is described in ‘‘Locally Averaged Single
dom Variable Approach.’’

Expressing the mean and the coefficient of variation of
locally averaged variable as a proportion of the point value
these quantities leads to Figs. 12~a and b!, respectively. In bot
cases, there is virtually no reduction due to local averaging
elements that are small relative to the spatial correlation le
~a→0!. This is to be expected, since the elements are ab
model the point field quite accurately. For larger elements rel
to the spatial correlation length, however, Fig. 12~a! indicates tha
the mean of the locally averaged field tends to the median
Fig. 12~b! indicates that the coefficient of variation of the loca
averaged field tends toward zero.

From Eqs.~18!–~21!, the expression plotted in Fig. 12~a! for
the mean can be written as

mCA

mC
5

1

~11VC
2 !~12g!/2

(22)

which gives the following: When g→0, mCA
/mC→1/(1

1VC
2 )1/2, thusmCA

→em ln C5medianC . The expression plotted
Fig. 12~b! for the coefficient of variation of the locally averag
variable can be written as

VCA

VC
5

A~11VC
2 !g21

VC
(23)

which gives the following: wheng→0, VCA
/VC→0, thus VCA

→0.
Further examination of Eqs.~22! and ~23! shows that for a

values ofg,

medianCA
5medianC (24)

Table 2. Reduction in Variance over a Square Element

a g

0.01 0.9896
0.1 0.9021
1 0.3965

10 0.0138
hence it can be concluded that

JOURNAL OF GEOTECHNICAL AN
1. Local averaging reduces both the mean and the varianc
log–normal point distribution;

2. Local averaging preserves the median of the point dist
tion; and

3. With significant levels of local averaging, the variance te
to zero and the mean tends to the median.

Locally Averaged Single Random Variable Approach

Here the probability of failure is reworked with the single rand
variable approach using properties derived from local avera
over an individual finite element, termed ‘‘finite element loc
averaged properties’’ throughout the rest of this paper. With
erence to the mesh shown in Fig. 8, the square elements h
side length of 0.1H, thusQC50.1/a. Fig. 13 shows the probab
ity of failure pf as a function ofQC for a range of input poin
coefficients of variation, with the point mean fixed atmC50.25.
The probability of failure is defined, as before, byp(C,0.17),
but this time the calculation is based on the finite-element lo
averaged properties,mCA

andsCA
from Eqs.~20! and ~21!. Fig.

13 clearly shows two tails to the results, withpf→1 asQC→0
for all VC.1.0783, andpf→0 asQC→0 for all VC,1.0783. The
horizontal line atpf50.5 is given byVC51.0783, which is th
special value of the coefficient of variation that causes
medianC to equal 0.17. If we recall that, in Table 1, this is
critical value ofC that would give FS51 in the test slope. High

Fig. 12. Influence of element size expressed in the form of a
parametera on local averaging: influence on the~a! mean and~b!
coefficient of variation
values ofVC lead to medianC,0.17 and a tendency forpf→1 as
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QC→0. Conversely, lower values ofVC lead to medianC.0.17
and a tendency forpf→0. Fig. 14 shows the same data plotted
other way round withVC along the abscissa. Fig. 14 clea
shows the full influence of spatial correlation in the range o
<QC,`. All the curves cross over at the critical value ofVC

51.0783, and it is of interest to note the step function that c
sponds toQC50 whenpf changes suddenly from zero to uni

It should be emphasized that the results presented in this
tion involved no actual finite-element analysis, and were b
solely on a SRV approach using locally averaged propertie
rived from a typical finite element in a mesh such as that show
Fig. 8.

Fig. 13. Probability of failure versus spatial correlation length ba
on finite-element locally averaged properties; the mean is fixe
mC50.25

Fig. 14. Probability of failure versus coefficient of variation ba
on finite-element locally averaged properties; the mean is fixe
mC50.25
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Results of Random Finite-Element Method Analyses

Now, the results of full nonlinear RFEM analyses with Mo
Carlo simulations are described based on a range of para
variations ofmC , VC , andQC .

In the elastoplastic RFEM approach, the failure mechanis
free to ‘‘seek out’’ the weakest path through the soil. Fig.
shows two typical random field realizations and the assoc
failure mechanisms for slopes withQC50.5 and 2. The convo
luted nature of the failure mechanisms, especially whenQC

50.5, would defy analysis by conventional slope stability an
sis tools. While the mechanism is attracted to the weaker z
within the slope, it will inevitably pass through elements assig
many different strength values. This weakest path determin
and the strength averaging that goes with it, occurs quite nat
in the finite-element slope stability method, and represents a
significant improvement over traditional limit equilibrium a
proaches to probabilistic slope stability analysis. In these t
tional methods, if local averaging is included at all, it has to
computed over a failure mechanism that is preset by the part
analysis method~e.g., a circular failure mechanism when us
Bishop’s method!.

In fixing the point mean strength atmC50.25, Figs. 16 and 1
show the effect of spatial correlation lengthQC and coefficient o
variationVC on the probability of failure for the test problem. F
16 clearly indicates two branches, with the probability of fai
tending toward unity or zero for higher and lower values ofVC ,
respectively. This behavior is qualitatively similar to that
served in Fig. 13, in which a single random variable approach
used to predict the probability of failure based solely on fin
element locally averaged properties. Fig. 17 shows the sam
sults as Fig. 16, but plotted the other way round with the co
cient of variation along the abscissa. Fig. 17 also shows
theoretically obtained result corresponding toQC5`, indicating
that a single random variable approach with no local avera
will overestimate the probability of failure~conservative! when
the coefficient of variation is relatively small and underestim
the probability of failure~unconservative! when the coefficient o
variation is relatively high. Fig. 17 also confirms that the sin

Fig. 15. Typical random field realizations and deformed mes
slope failure for two different spatial correlation lengths
random variable approach described earlier in the paper, which
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gavepf50.28 corresponding tomC50.25 andVC50.5 with no
local averaging, is indeed pessimistic. The RFEM results s
that the inclusion of spatial correlation and local averaging in
case will always lead to a smaller probability of failure.

Comparison of Figs. 13 and 14 with Figs. 16 and 17 highli
the influence of the finite-element approach to slope stab
where the failure mechanism is free to locate itself optim
within the mesh. From Figs. 14 and 17, it is clear that the ‘‘we
est path’’ concept made possible by the RFEM approach ha
sulted in the crossover point falling to lower values of bothVC

and pf . With only finite-element local averaging, the crosso

Fig. 16. Probability of failure versus spatial correlation length fr
random finite-element method; the mean is fixed atmC50.25

Fig. 17. Probability of failure versus coefficient of variation fro
random finite-element method; the mean is fixed atmC50.25
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occurred atVC51.0783, whereas by the RFEM it occurred
VC'0.65. In terms of the probability of failure with only finit
element local averaging, the crossover occurred atpf50.5
whereas by the RFEM it occurred atpf'0.38. The RFEM solu
tions show that the single random variable approach bec
unconservative over a wider range ofVC values than would b
indicated by finite-element local averaging alone.

Fig. 18 gives a direct comparison between Figs. 13 and
indicates clearly that, for higher values ofVC , RFEM always
gives a higher probability of failure than using finite-elem
local averaging alone. This is caused by the weaker eleme
the distribution that dominate the strength of the slope and
failure mechanism that seeks out the weakest path throug
soil.

At lower values ofVC , the locally averaged results tend
overestimate the probability of failure and give conservative
sults compared to RFEM. In this case the stronger elements
slope dominate the solution and the higher median combined
bunching up of the locally averaged solution at low values ofQC

means that potential failure mechanisms cannot readily fi
weak path through the soil.

In all cases, asQC increases, the RFEM and the locally av
aged solutions converge on the single random variable so
that corresponds toQC5` with no local averaging. Thepf

50.28 value, corresponding toVC50.5, discussed earlier in t
paper is also indicated in Fig. 18.

All of the above results and discussion in ‘‘Results of Ran
Finite-Element Method Analyses’’ so far were applied to the
slope in Fig. 1 with the mean strength fixed atmC50.25, corre
sponding to a factor of safety~based on the mean! of 1.47. In the
next set of resultsmC is varied whileVC is held constant at 0.
Fig. 19 shows the relationship between FS~based on the mea!
andpf assuming finite-element local averaging only, and Fig
shows the same relationship computed using RFEM.

Fig. 19, based on finite-element local averaging only, sh

Fig. 18. Comparison of the probability of failure predicted by r
dom finite-element method and by finite-element local avera
only; the curve with points comes from random finite-elem
method analyses; the mean is fixed atmC50.25
the full range of behavior for 0<QC,`. Fig. 19 shows thatQC
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only starts to have a significant influence on the FS versupf

relationship when the correlation length becomes significa
smaller than the slope height (QC!1). The step function i
which pf jumps from zero to unity occurs whenQC50, and it
corresponds to a local average with zero variance. In this lim
case, the local average of the soil is deterministic and yields
stant strength everywhere in the slope. WithVC50.5, the critica
value of mean shear strength that would givemCA

5medianC
50.17 is easily shown by Eq.~22! to bemC50.19, which corre

Fig. 19. Probability of failure versus factor of safety~based on th
mean! using finite-element local averaging only for the test slope
coefficient of variation is fixed atVC50.5

Fig. 20. Probability of failure versus factor of safety~based on th
mean! using random finite-element method for the test slope;
coefficient of variation is fixed atVC50.5
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sponds to a FS51.12. For higher values ofQC , the relationshi
between FS andpf is quite ‘‘bunched up,’’ and generally insen
tive to QC . For example, there is little difference between
curves corresponding toQC5` and 0.5. It should also be o
served in Fig. 19 that, for FS.1.12, failure to account for loc
averaging by assumingQC5` is conservative, in that the pr
dicted pf is higher than it should be. When FS,1.12, howeve
failure to account for local averaging is unconservative.

Fig. 20 gives the same relationships as those computed
RFEM. By comparison with Fig. 19, the RFEM results are m
spread out, implying that the probability of failure is more se
tive to spatial correlation lengthQC . Of greater significance
that the crossover point has again shifted by RFEM as it seek
the weakest path through the slope. In Fig. 20, the cros
occurs at FS'1.37, which is significantly higher and of grea
practical significance than the crossover point of FS'1.12 by
finite-element local averaging alone. The theoretical line c
sponding toQC5` is also shown in this plot. From a practi
viewpoint, the RFEM analysis indicates that failure to prop
account for local averaging is unconservative over a wider r
of factors of safety than would be the case by finite-element
averaging alone. To further highlight this difference, the resu
Figs. 19 and 20 that correspond toQC50.5 ~the spatial correla
tion length equal to half the embankment height! are replotted in
Fig. 21.

Concluding Remarks

In this paper we have investigated the probability of failure
cohesive slope using both simple and more advanced probab
analysis tools. The simple approach treated the strength o
entire slope as a single random variable, and ignored spatia
relation and local averaging. In the simple studies, the proba
of failure was estimated as the probability that the shear str

Fig. 21. Probability of failure versus factor of safety~based on th
mean! using finite-element local averaging alone and random fi
element method for the test slope;VC50.5 andQC50.5
would fall below a critical value based on a log–normal probabil-
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ity density function. These results led to a discussion on the
propriate choice of design shear strength value suitable for d
ministic analysis. Two factorization methods were proposed
were able to bring the probability of failure and the factor
safety more into line with practical experience.

The second half of the paper implemented the random
element method on the same test problem. The nonlinear e
plastic analyses with Monte Carlo simulation were able to
into full account spatial correlation and local averaging, and
serve their impact on the probability of failure using a param
approach. The elastoplastic finite-element slope stability me
makes no a priori assumptions about the shape or location
critical failure mechanism, and therefore offers very signific
benefits over traditional limit equilibrium methods in the anal
of highly variable soils. In the elastoplastic RFEM, the fail
mechanism is free to seek out the weakest path through th
and it has been shown that this phenomenon can lead to h
probabilities of failure than could be explained by local avera
alone.

In summary, simplified probabilistic analysis, in which spa
variability is ignored by assuming perfect correlation, can lea
unconservative estimates of the probability of failure. This e
is most pronounced at relatively low factors of safety~Fig. 20! or
when the coefficient of variation of the soil strength is relativ
high ~Fig. 18!.
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Notation

The following symbols were used in this paper:
C 5 dimensionless shear strength;

Cdes 5 design value ofC;
cu 5 undrained shear strength;
D 5 foundation depth ratio;
f 1 5 linear strength reduction factor;
f 2 5 strength reduction factor based on standard

deviation;
H 5 height of slope;
pf 5 probability of failure;

VC 5 coefficient of variation ofC;
x 5 Cartesianx coordinate;
y 5 Cartesiany coordinate;
a 5 dimensionless element size parameter;
b 5 slope angle;
g 5 variance reduction factor;

gsat 5 saturated unit weight;
QC 5 dimensionless spatial correlation length of lnC;
uC 5 spatial correlation length ofC;

u ln C 5 spatial correlation length of lnC;
mC 5 mean ofC;

mCA 5 locally averaged mean ofC over a square finite
element;

m ln C 5 mean of lnC;
m ln CA5 locally averaged mean of lnC over a square finite

element;

r 5 correlation coefficient;

JOURNAL OF GEOTECHNICAL AN
sC 5 standard deviation ofC;
sCA 5 locally averaged standard deviation ofC over a

square finite element;
s ln C 5 standard deviation of lnC
s ln CA 5 locally averaged standard deviation of lnC over a

square finite element;
t 5 absolute distance between two points;

tx 5 x-component of distance between two points;
ty 5 y-component of distance between two points; and
fu 5 undrained friction angle.
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