Three-Dimensional Probabilistic Foundation Settlement
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Abstract: By modeling soil as a three-dimensional spatially random medium, the reliability of shallow foundations against serviceability
limit state failure, in the form of excessive settlement and/or differential settlement, can be estimated. The soil's elastic Eogulus,
represented as a lognormally distributed random field with an isotropic correlation structure. The settlements of individual and pairs of
square footings placed on the surface of the soil are computed using the finite element method. A probabilistic model for total and
differential settlement is presented and compared to results obtained using Monte Carlo simulation. The distributions of total and
differential settlement are found to be closely predicted using the distributions of geometric averages of the underlying soil elastic
modulus field.
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Introduction length and breadth. The study is an extension of previous work by
the writers (Fenton and Griffiths 2002 which used a two-

Since the design of shallow foundations is most often governed dimensional random soil to investigate the behavior of a strip
by settlement requirements, a reliability-based approach to theirfooting of infinite length. The resulting two-dimensional probabi-
design necessitates knowledge about the distribution of settlementiStic model is found to also apply in concept to the three-
under a given footing. Traditional approaches to the design prob_dlmensmnal case here._lmproved results are given for differential
lem involve estimating the elastic modulus and designing the settlement'by u5|ng.ab.|var|ate Iogngrmal Q|str|butlop, rather than
footing to avoid excessive settlements. Aside from very large total thg a_lpprOX|mate univariate normal distribution used in Fenton and
settlements, it is usually differential settlement which leads to Griffiths (ZOOZ’: . . -
serviceability problems. Existing code requirements limiting dif- T_he paper first cc_)n5|der_s the case OT a slngle square rigid pad
ferential settlements to satisfy serviceability limit stateee footing, a cross section which is shown in Figa)l and estimates

building codes ACI 318-89ACI 1989 or CAN3-A23.3-M84 the probability density function governing the total settlement of
(CSA g1984)] specify maximum deflections rangiﬁg from the footing as a function of footing area for various statistics of

D/180 to D/480, depending on the type of supported elements, the ynderlymg soil. Only 'th('a soll .e'lastlcr[y is considered to be
whereD is the center-to-center span of the sunported structural spatially random. Uncertainties arising from model and test pro-
element. In oractice. differential sgttlements betppeen footinas arecedures and in the loads are not considered. In addition, the soil is

”' pt "' d, Itb ! dering the diff W ial t'll 9 tassumed to be isotropic—that is, the correlation structure is as-
generally controfied, not by considering the differential Settiement o, 0 4 15 pe the same in both the horizontal and vertical direc-
itself, but by controlling the total settlement predicted by analysis

) timate of th il elasticit. Thi his | | tions. Although soils generally exhibit a stronger correlation in
using an estimate of the sof elas icity. This approac IS 1ar9€ly the horizontal directions, due to their layered nature, the degree of
based on correlations between total settlements and differential

. anisotropy is site specific. Considering that, this study is attempt-
settlements  observed experimentallysee, for —example, g g establish the basic probabilistic behavior of settlement, an-
D'Appolonia et al. 1968 and leads to a limitation of 4 t0 8 cm  jsqiropy is left as a refinement for site-specific investigations. The
in total settlement under a footing as stipulated by @@madian \riters expect that the averaging model suggested in this paper
Foundation Engineering Manuabart 2(CGS 1973. will drift from a geometric average to a harmonic average as the

This paper presents a study of the probability distributions of \4iiq of horizontal to vertical correlation lengths increagsse
settlement and differential settlement where the soil is modeled asy|5g the section entitled, “Single-Footing CaseXlthough it is
a fully three-dimensional random field and footings have both fg|t that the results of this paper can still be used conservatively
by using an effective isotropic correlation length equal to the
'Professor, Dept. of Engineering Mathematics, Dalhousie Univ.,, minimum correlation length, this contention needs testing.

Halifax, NS, B3J 2X4 Canada. E-malil: gordon.fenton@dal.ca = The footings are assumed to be founded on a soil layer under-
Professor, Division of Engineering, Colorado School of Mines, |ain by bedrock. The assumption of an underlying bedrock can be
Golden, CO 80401-1887. E-mail: vgriffit@mines.edu relaxed if a suitable averaging region is used—recommendations
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about such an area are given by Fenton and Griff2@92.
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a) }(_ W _,! Table 1. Input Parameters Varied in the Study while Holdirt=1,
! D=1, P=1, pe=1, andv=0.25 Constant.

HH BAmEEEEEEEREREE Parameter Values considered
1
1

5 S SLIEEciiiitinanna oe 0.1* 0.5, 1.0%, 2.0, 4.0

o T A ”E- One 0.01, 0.1*, 0.5%, 1.0*, 5.0*, 10.0*

1} T ] - S W, 0.2, 0.4, 0.8, 1.gsingle footing

: anmuE T 0.2%, 0.4*, 0.8* (two footing9

Note: Starred parameters were run with 1,000 realizations in the two-

footing case. The single-footing case and nonstarred parameters were run
!‘*— D=1 with 100 realizations.

» A o
- ssa ane" RuEEREEs with any consistent set of length and force uniisg. 2 shows the
T REmamEssiEmgo sty 5e finite element mesh in three dimensions for the case of two foot-
ings.

The finite element analysis uses a preconditioned conjugate
gradient iterative solvdisee, e.g., Smith and Griffit{d998)] that
avoids the need to assemble the global stiffness matrix. Numerical
experimentation indicates that the finite element model gives ex-
" |‘ cellent agreement with analytical results for a flexible footing. In

& L=3 | the case of a rigid footing, doubling the number of elements in
each direction resulted in a settlement which increased by about
Fig. 1. Slices through a random field/finite element method mesh of: 39, indicating that the rigid footing model may be slightly too
(@) a single footing andb) two footings founded on a soil layer stiff at the current resolution. However, the stochastic behavior
will be unaffected by such slight shifts in total settlemérd., by
the same fraction for each realizatjoihe 60 by 60 by 20 dis-
ments are estimated as functions of footing size for various input cretization was considered adequate to characterize the behavior
statistics of the underlying elastic modulus field. The probability of the settlement and differential settlement probability distribu-
distribution governing differential settlement is found to be rea- tjgns.
sonably approximated using a joint lognormal distribution with  The vertical side faces of the finite element model are con-
correlation predicted using local geometric averages of the elasticstrained against horizontal displacement but are free to slide ver-
modulus field under the two footings. tically while the nodes on the bottom boundary are spatially fixed.
The footings) are assumed to be rigid, to not undergo any rota-
tions, and to have a rough interface with the underlying Gwk
Random Field Finite Element Model slip boundary. A fixed load P=1 is applied to each footing—
since settlement varies linearly with load, the results are easily
The soil mass is discretized into 60 eight-noded brick elements in scaled to different values d3.
each of the horizontal directions by 20 elements in the vertical To investigate the effect of the square footing area, the soll
direction. Each element is cubic with side Iength 0.05 glVIng a |ayer thicknessH, was held constant at 1.0, while the footing
soil mass which has plan dimension o3 and depth of 1. plan dimensionW;, was varied according to Table 1. Because the
(Note: Length units are not used here since the results can be usedettiement problem is linear in some of its parameters, the follow-
ing results can be scaled to arbitrary square footing areas as long
as the ratioNV;/H is held fixed[note that the latter restriction also
holds in the two-dimensional case which was inadvertently not
mentioned in Fenton and Griffith€2002]. For example, the
settlement of a square footing of dimensidf=0.2 m on anH
=1 m thick soil layer with loadP’=1 kN and elastic modulus
E=1 kN/n? corresponds to 1.2 times the settlement of a footing
of width W;=4.0 m on anH’=20.0 m thick soil layer withP’
=1,000 kN and elastic modull&s =60 kN/n?. The scaling factor
is (P/P")(E'/E)(W{/W;), as long adN;/H’ =W;/H.

In the two-footing case, the distance between footing centers
was held constant at 1.0, while the footing widtfessumed
equa) were varied. Footings of widths greater than 0.8 were not
considered since this situation becomes basically that of a strip
footing (the footings are joined whew;=1.0). The soil has two
properties of interest to the settlement problem: These are the
(effective) elastic moduluskE(x), and Poisson’s ratia;(x), where
x is spatial position. Only the elastic modulus is considered to be
a spatially random soil property. Poisson’s ratio was believed to
have a smaller relative spatial variability and only a second-order
importance to settlement statistics. It is held fixed at 0.25 over the
entire soil mass for all simulations.

T

=

Fig. 2. Finite element mesh modeling soil supporting two footings
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Fig. 1 shows a gray-scale representation of a possible realiza- To investigate the effect of the scale of fluctuatiéf g, on the
tion of the elastic modulus field along a vertical plane through the settlement statistics), g is varied from 0.01(i.e., very much
soil mass cutting through the footing. Lighter areas denote smaller than the footing and/or footing spacing 10.0(i.e., sub-
smaller values oE(x) so that the elastic modulus field shown in stantially larger than the footing and/or footing spaging the
Fig. 1(b) corresponds to a higher elastic modulus under the left limit as 6,, g— 0, the elastic modulus field becomes a white noise
footing than under the right—this leads to the substantial differ- field, with independent values at any two distinct points. In
ential settlement indicated by the deformed mesh. This is just oneterms of the finite elements themselves, valued$,pf smaller
possible realization of the elastic modulus field; the next realiza- than the elements result in a set of elements which are largely
tion could just as easily show the opposite trend. independentincreasingly independent &g, ¢ decreasesBut be-

The elastic modulus field is assumed to follow a lognormal cause the footing effectively averages the elastic modulus field on
distribution so that IfE) is a Gaussiamnormal) random field with which it is founded, and since averages have decreased variance,
mean, g, and variancer? .. The choice of a lognormal distri-  the settlement in the limiting cas®, — 0 is expected to ap-
bution is motivated in part by the fact that the elastic modulus is proach that obtained in the deterministic case, \ltbqual to its
strictly non-negative, a property of the lognormal distributibat median everywhergassuming geometric averagingvith vanish-
not the normal while still having a simple relationship with the ing variance for finitenﬁ1 £
normal distribution. In addition, soil properties are generally mea- At the other extreme, a8, g— ¢, the elastic modulus field
sured as averages over some volume, and these averages are oftbecomes the same everywhere. In this case, the settlement statis-
low-strength dominatedas may be expected. The writers have tics are expected to approach those obtained by using a single
found in this and other studies that the geometric average welllognormally distributed random variabl&, to model the sall,
represents such low-strength-dominated soil properties. Since theE(x)=E. That is, since the settlemeidt, under a footing founded
distribution of a geometric average of positive quantities tends to on a soil layer with uniformbut random elastic modulusE is
the lognormal distribution by the central limit theorem, the log- given by
normal distribution may very well be a natural distribution for
many spatially varying soil properties. The parameters of the S:Bde_'“E 3
transformed IfE) Gaussian random field may be obtained from E '

the relations whered4.=computed settlement whdb=p.g everywhere, then,

ash,, g— =, the settlement assumes a lognormal distribution with

2 _ 27 .2
Oing = IN(L +og/ug) (1a) parameters
1 = = 12
Wi £ = ln(“‘E) _ —O'ﬁ.] . (1b) Mins = ln(adeo + ln(ME) “Mine= In(adet) + Eo-ln E (4a)
2
from which it can be seen that the log-elastic modulus variance, Olns=OhnE (4b)

ot ¢, varies from 0.01 to 2.83 in this study. _
A Markovian spatial correlation function, which gives the cor- Wwhere Eq.(1b) was used in Eqéa).
relation coefficient between log-elastic modulus values at points By similar reasoning, the differential settlement between two

separated by the distanegis used footings[see Fig. 1b)] ash,, g— 0 is expected to go to zero since
the average elastic modulus seen by both footings approach the
2] same value, namely the mediéassuming geometric averaging
pine(T) = exp) = o - (2) At the other extreme, a8, g— o, the differential settlement is
nE also expected to approach zero, since the elastic modulus field
where 1=x-x’ =vector between spatial pointsand x’; and |1| becomes the same everywhere. Thus, the differential settlement

=absolute length of this vectdthe lag distance In this paper, approaches zero at both very small and at very large scales of
the word “correlation” refers to the correlation coefficient. The fluctuation—the largest differential settlements will occur at
results presented here are not particularly sensitive to the choicescales somewhere in between these two extremes. This “worst
in functional form of the correlation—the Markov model is popu- case” scale has been observed by other researchers—see, for ex-
lar because of its simplicity. The correlation function decay rate is ample, the work on a flexible foundation by Baecher and Ingra

governed by the so-called scale of fluctuatidhy, g, which, (1981).
loosely speaking, is the distance over which log-elastic moduli  The Monte Carlo approach adopted here involves the simula-
are significantly correlategwhen the separation distan¢g is tion of a realization of the elastic modulus field and subsequent

greater thard,, g, the correlation between EB(x) and InE(x’) is finite element analysige.g., Smith and Griffiths 1998of that

less than 14% The correlation structure is assumed to be isotro- realization to yield a realization of the footing settlementRe-

pic in this study which is appropriate for establishing the basic peating the process over an ensemble of realizations generates a
stochastic behavior of settlement. Anisotropic studies are moreset of possible settlements which can be plotted in the form of a

appropriate for site-specific analyses. histogram and from which distribution parameters can be esti-
As was found in the two-dimensional case for the two footing mated.
case(e.g., Fenton and Griffiths 20Q2using a scale of fluctuation, If it can be assumed that log-settlement is approximately nor-

0, equal to the footing spacind, is conservative in that it  mally distributed(which is seen later to be a reasonable assump-
yields the largest probabilities of differential settlement. For total tion and is consistent with the distribution selected Er and
settlement of a single footing, taking, ¢ large is conservative — my,; ands? ; are the estimators of the mean and variance of log

since this leads to the largest variability of settlem@edast vari- settlement, respectively, then the standard deviation of these esti-
ance reduction due to averaging of the soil properties under themators obtained from thea=100 realizations performed for the
footing). single footing case are given by

234 | JOURNAL OF GEOTECHNICAL AND GEOENVIRONMENTAL ENGINEERING © ASCE / FEBRUARY 2005



15

Frequency Density
my,5=0.497, 5,5 = 0.298

mean predicted by Eq. (8)

o ¥ 0000O0O0O0O0O0O0O0O0O0O0O@Oo"oge . e— upper confidence bound
0 "‘ s | m——— lower confidence bound
(=
I |
0 1 ) 2 3
Fig. 3. Typical frequency density plot and fitted lognormal OmE

distribution of settlement under a single footing

Fig. 4. Estimated mean of log settlement

Omy, = Sna/\N=0.1505 (5a) | .
1 1/InX—-
f5(x) = ———ex ——<¢) , 0sx<o (7)
. V270, 5X 2\ ons
=\— =0.1 5b
%55~ \n- 1Szn ® %ns (5b) has two parameters,, ; ando, 5. Fig. 4 shows how the estima-

tor of w5 Mps varies withoy, g for W;=0.4 based on 100
realizations. All scales of fluctuation are drawn in the plot, but are
not individually labeled since they lie so close together. Also

These estimator errors are not particularly small but, since the
three-dimensional analysis is very time consuming, the number of
realizations selected was deemed sufficient to verify that the geo-

metric averaging model suggested in the two-dimensional case i

ered in Table 1(see starred quantitiesvas rerun using 1,000
realizations to verify the probability distributions further out in
the tails for the differential settlement problem.

shown in the plot are the 95% confidence interval bounds on the

Strue parameteliy;, 5. As can be seen, all the estimators lie within
also applicable in three dimensions. A subset of the cases considi P Hin ;

hese bounds indicating that the three-dimensional results are
much the same as found using a two-dimensional model, namely
that w, 5 is well predicted by the equatidisee Eq(4a)],

Realizations of the log-elastic modulus field are produced
using the three-dimensional Local Average SubdivisibAS)
technique(Fenton and Vanmarcke 1990; Fenton 1p%he elas-
tic modulus value assigned to tith element is

®

1
Pin s = IN(Bged + EU% E

whered ., is the “deterministic” settlement obtained from a single
finite element analysi@r appropriate approximate calculatjaof

the problem usindge= g everywhere. This equation is also shown
in Fig. 4, and it can be seen that the agreement with estimated
values ofp,, 5 is very good. The other footing sizes considered
showed similar results.

Estimates of the standard deviation of log settlemsgpi, are
plotted in Fig. 5(as symbolsfor two footing sizes based on 100
realizations. The other footing sizes gave similar results. In all
A typical histogram of the settlement under a single footing is C8S€S:Sns increases tar, g as 6y, ¢ increases, which is as ex--
shown in Fig. 3 forW;=0.4, o/ pe=0.5, andé,, ¢=1.0 (1,000 pected since Iarge. scales give less variance reductlon. Assuming
realizations were performed for this case to increase the resolu-ihat local geometric averaging of the volume directly under the
tion of the histogram With the requirement that settlement be footing accounts .for all of the variance rgductloln seen in Fig. 5,
non-negative, the shape of the histogram suggests a lognormalf€ standard deviation of log settlement is predicted by
distribution, which was adopted in this stufee, also, Eq4a)].

The histogram is normalized to produce a frequency density plot,
where a straight line is drawn between the interval midpoints. A
Chi-square goodness-of-fit test on the data of Fig. 3 yielded a where v(W;,W;,H)=so-called variance functionVanmarcke
value of 0.54 indicating very good support for the lognormal hy- 1984), giving the amount that the variance is reduced due to av-
pothesis. The fitted lognormal distribution, with parameters given eraging. It depends on the averaging volulVex W; X H as well

by my, s ands, ;s shown in the line key, is superimposed on the as on the scale of fluctuatiof,, g. The agreement between Eg.
plot. (9) and the estimated standard deviations is remarkable, as shown

Accepting the lognormal distribution as a reasonable fit to the in Fig. 5, indicating that a geometric average of the elastic modu-
simulation results, the next task is to estimate the parameters oflus field under the footing is a good model of the effective modu-
the fitted lognormal distributions as functions of the input param- lus seen by the footing. The geometric averagg,has the fol-
eters(W;, og, and6y, g). The lognormal distribution lowing mathematical definitiogfor a square footing

E(X) = explin g + 010 eG(X)} (6)

whereG(x;)=local average, over the element centered;abf a
zero mean unit variance Gaussian random field.

Single-Footing Case

O s = VYW, Wi, H) oy 9
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= Inx-
7 Ogfpg = 4.0 P[d <x]= ¢<¢) (14
% _| O We=04 Ons
el m We=16
- Galg = 0.1 where® =cumulative standard normal function.
(=
; 'S’.n—_ Two-Footing Case
s Consider now the case of two square footings each of plan di-
7] mensionW; X W; and separated by center-to-center distabce
L ] g =1, as shown in Fig. (b). If the settlementsp, and d,, under
" each footing are lognormally distributed, as found in the previous
B section, then the joint distribution between the two-footing settle-
s s 5T 51T 3 ments follows a bivariate lognormal distributioiffenton and
10° 10 10! 10° 10! iy Griffiths (2002, corrected to include the omitted factor of 2 on
Ok the correlation term

Fig. 5. Comparison of simulated sample standard deviation
of log-settlement shown with symbols, with theoretical estimate via

1
fs s (XY) = Xpy — —[W2 - 2p;, s W, W, + W2 7,
Eq. (9) shown with lines 5152( y) p{ 2r2[ 1~ 4Pnstit2 2]}

— > €
2maE, SIXy

x=0,y=0 (15

H W W

Eg:exP(ﬁj j f InE(x,y,2)dx dy dZ) (10 whereW;=(In X=win5)/ o1 5; Wo=(INY=puin 5)/ i 5; r’=1-ph s

tHJo Jo Jo andp,, s=correlation coefficient between the log settlement of the
two footings. It is assumed in the above tlatand s, have the
same mean and variance, which, for the symmetric conditions

Sdetbe shown in Fig. 1b), is a reasonable assumption.

= "E. 11 Defining the differential settlement between footings tofbe
9 =3,-9,, then the mean ok is zero if the elastic modulus field is
Taking the logarithm of Eq(11), and expectations, leads to Egs. statistically stationary, as assumed héfeot, then the differen-
(8) and(9). The practical implication of this result is that settle- tjal settlement due to any trend in the mean must be handled
ments are better predicted using an effective elastic modulus com-separately. If Eq. (15) holds, then the exact distribution govern-
puted as a geometric average of the experimentally obtaineding the differential settlement is given by
moduli under the footing. For example, rif observations of the
elastic modulus under a footing are takén,E,, ... ,E,, then the o
footing settlement is best computed using the elastic modgjus fA(X) :f fs,5,(IX +y,y)dy (16)
computed as 0

from which the settlement of the footing can be expressed as

)

n 1/n n
1 and differential settlement probabilities can be computed as
Ey= (H Ei) =ex —E In Ei) (12 P P
i=1 n i=1 .
To lend support to the geometric average idea, consider the settle- PlA| > x]=PIA<-xUA>X]= Zf fA(§)dg (17

ment of a horizontally layered soil, where the elastic modulus x

varies only from layer to layer but is constant within each layer. It . ) . )
is relatively simple to show that the effective elastic modulus seen Fig. 6 shows typical frequency—density plots of differential settle-

by a footing in this case is the harmonic average, if edge effects ment, for three different values 6f, e, between two equal sized
are ignored footings withW;=0.4 andog/weg=1.0. For small scales of fluc-

tuation, the density plot looks reasonably normal, but for larger
1 (" dz | scales of fluctuation, the density has a sharper mode with longer
En= ﬁfo @ (13 tails. Notice that the widest distribution occurs whgpg/D is

equal to about 1.0, indicating that this is a worst case when it
whereH=soil depth. Alternatively, if the layers are oriented ver- comes to differential settlement.
tically, the effective elastic modulus seen by a rigid footing be- The distributionf818 , and thus alsd,, has three parameters,
comes the arithmetic average of the layer moduli. The true situa- wp 5, o;ns: and pin s T2he mean and standard deviation can be
tion will lie somewhere between these two extremes. Since the estimated using Eq$8) and(9) from the previous section. Since
geometric average of a random field lies between the arithmeticlocal averaging of the log-elastic modulus field under the footing
and harmonic averages, its use in the more general case appearsas found to be an accurate predictor of the variance of log
reasonable. Note, however, that this argument suggests that a haisettlement, it is reasonable to suggest that the covariance between
monic average would be more reasonable for a strongly layeredlog settlements under a pair of footings will be well predicted by

soil, a situation which is not considered in this study. the covariance between local averages of the log-elastic modulus

Once the parameters of the settlement distributjpps and field under each footing. For equal sized footings, the covariance
o;n s, have been calculated using E@8) and (9), probabilities between local averages of the log-elastic modulus field under two
associated with settlement are easily found footings separated by distanEeis given by
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Fig. 6. Frequency density and fitted distribution for differential
settlement under two equal-sized footings Wiihe/D=0.1 in (a);
6, e/D=1.0 in(b); and 6, g/D=10.0 in(c)

2
OhE

= 18
ViV, (18)

f f Pin (X1~ X2) dX0%,
Vy YV,

whereV;=W; X W; X H volume under Footing 1V,=equivalent
volume under Footing 2; ang=spatial position. From this, the
correlation coefficient can be computed as

(19

The predicted correlation can be compared to the simulation re-
sults by first transforming back from log space

_ exp{cln 6} -1

~explod -1 20

Ps

whereoy, 5 is given by Eq.(9). The agreement between the cor-
relation coefficient predicted by E¢R0) and the correlation co-
efficient estimated from the simulatior{¢,000 realizationsis
shown in Fig. 7. The agreement is reasonable, particularly for the
smaller sized footings. For larger footings, the correlation is un-
derpredicted, particularly at smal|, g. This is believed to be due

%0
S o WgD=080
o WyD=040
24 © WyD=020
e 34
&
(=}
WD (pred) = 0.80
S N - S — - W¢D (pred) = 040
«! WD (pred) = 0.20
<
! ) LI I| ) LI II ) LU ) LI
2 468 68! 2 1268 2 45638
10? 10" 10° 10! 10°
0,, gD

Fig. 7. Predicted and sample correlation coefficients between footing
settlements for various relative separation distances between the
footings and forog/pg=1

smaller scales of fluctuation, E@L6) yields a distribution which

is somewhat too wide—this is due to the underprediction of the
correlation between footing settlemerjtsq. (19)] since as the
actual correlation between settlements increases, the differential
settlement decreases and the distribution becomes narrower.
However, an underprediction of correlation is at least conserva-
tive in that predicted differential settlement probabilities will tend
to be too large.

To test the ability of the bivariate lognormal distribution to
accurately estimate probabilities, the probability that the absolute
value ofA exceeds some threshold is compared to empirical prob-
abilities derived from simulation. For generality, thresholds of
apy Will be used, wherguy is the mean absolute differential
settlement, which can be approximated (asich holds for A

normally distributed
2
Mja) = oA

Where(rAZZO'g(l—pa). Fig. 8 shows a plot of the predictg¢&q.
(17)] versus empirical probabilitieB[|A| > ] for « varying

in 20 steps from 0.2 to 4.0. If the prediction is accurate, then the
plotted points should lie on the diagonal line.

When the footings are well separat@d/;/D=0.2, see Fig.
8(a)] so that mechanical correlation is negligible, then the agree-
ment between predicted and empirical probabilities is excellent.
The two solid curved lines shown in the plot form a 95% confi-
dence interval on the empirical probabilities, and it can be seen
that most lie within these bounds. The few that lie outside are on
the conservative sidgpredicted probability exceeds empirical
probability).

As the footing size increasésee Figs. & and 9] so that their
relative spacing decreases, the effect of mechanical correlation

(21)

to mechanical interaction between the larger footings, where thebegins to be increasingly important and the resulting predicted
settlement of one footing induces some settlement in the adjacenfprobabilities increasingly conservative. A strictly empirical cor-

footing due to their relatively close proximity.
Armed with the relationship), (9), and(19), the differential
settlement distributionf,, can be computed using E@L6). The

rection can be made to the correlation to account for the missing
mechanical influences. I, is replaced by(1-W;/2D)p, s
+W;/2D for all W;/D greater than about 0.3, the differential

resulting predicted distributions have been superimposed on thesettlements are reduced and, as shown in Fig. 9, the predicted

frequency—density plots of Fig. 6 faW;=0.4. The agreement is
very good for intermediate to large scales of fluctuation. At the

probabilities become reasonably close to the empirical probabili-
ties while still remaining slightly conservative. Until the complex
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interaction between two relatively closely spaced footings is fully
characterized probabilistically, this simple empirical correction
seems reasonable.

Conclusions
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footing founded on a three-dimensional spatially random elastic
modulus field of finite depth overlying bedrock is well repre-
sented by a lognormal distribution with parameteys; andcrﬁ1 &

if E is also lognormally distributed. The first parameteg, 5, is
dependent on the mean and variance of the underlying log-elastic
modulus field and may be closely approximated by considering
limiting values of6,, . The second parameter?, 5, is very well
represented by the variance of a local average of the log-elastic
modulus field in the region directly under the footing. Once the
parameters of the settlemepi, ; ando?, 5, have been computed,
using Eqgs«(8) and(9), the estimation of probabilities associated
with settlement involves little more than referring to a standard
normal distribution tablg¢see Eq(14)].

One of the implications of the findings for a single footing is
that footing settlement is accurately predicted using a geometric
average of the elastic modulus field in the volume under the foot-
ing. From a practical point of view, this finding implies that a
geometric average of soil elastic modulus estimates made in the
vicinity of the footing (e.g. by cone penetration test soundings
should be used to represent the effective elastic modulus rather
than an arithmetic average. The geometric average will generally
be less than the arithmetic average, reflecting the stronger influ-
ence of weak soil zones on the total settlement.

Under the model of a lognormal distribution for the settlement

On the basis of this simulation study, the following observations of an individual footing, the bivariate lognormal distribution was

can be made.

found to closely represent the joint settlement of two footings

As found in the two-dimensional case, the settlement under awhen the footings are spaced sufficiently feglative to their plan
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dimension apart to avoid significant mechanical interaction. Sns = estimated standard deviation of log settlement via

Using the bivariate lognormal model, probabilities associated simulation;

with differential settlement are obtained that are in very good W; = footing width;

agreement with empirical probabilities obtained via simulation. X = spatial coordinate or position;

The bivariate lognormal model is considerably superior to the v = variance function(variance reduction due to local

approximate normal model developed in the two-dimensional averaging;

case by Fenton and Griffith002 at the expense of a more A = differential settlement between footings;

complicated numerical integratiofthe normal approximation d = footing settlement, positive downward;

d4et = footing settlement whek=p.g everywhere;

= isotropic scale of fluctuation of the log-elastic
modulus field;

simply involved a table lookup

When the footings become close enough that mechanical in-
teraction becomes significant, the bivariate lognormal model de-
veloped here begins to overestimate the probabilities associated g = mean elastic modulus;
with differential settlement—that is, the differential settlements  y = mean absolute differential footing settlement;
will be less than predicted. Although this is at least conservative, w,,g = mean of log-elastic modulus;
the reason is believed to be due to the fact that the stress field w,,5 = mean of log-settlement;
from one footing is affecting the elastic modulus field under the v = Poisson’s ratio;
other footing. This results in an increased correlation coefficient ps = correlation coefficient between footing settlements;
between the two-footing settlements that is not fully accounted p,, s = correlation coefficient between log-footing
for by the correlation between two local geometric averages settlements;
alone. An empirical correction factor has been suggested in this = correlation coefficient between(lB) at two points;
paper which yields more accurate probabilities and which should  og = standard deviation of elastic modulus;
be employed if the conservatism without it is unacceptable. one = Standard deviation of log-elastic modulus;

os = standard deviation of footing settlement;
ons = Standard deviation of log-settlement;
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