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Three-Dimensional Probabilistic Foundation Settlement
Gordon A. Fenton, M.ASCE,1 and D. V. Griffiths, F.ASCE2

Abstract: By modeling soil as a three-dimensional spatially random medium, the reliability of shallow foundations against servi
limit state failure, in the form of excessive settlement and/or differential settlement, can be estimated. The soil’s elastic modE, is
represented as a lognormally distributed random field with an isotropic correlation structure. The settlements of individual an
square footings placed on the surface of the soil are computed using the finite element method. A probabilistic model for
differential settlement is presented and compared to results obtained using Monte Carlo simulation. The distributions of
differential settlement are found to be closely predicted using the distributions of geometric averages of the underlying s
modulus field.
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Introduction

Since the design of shallow foundations is most often gove
by settlement requirements, a reliability-based approach to
design necessitates knowledge about the distribution of settle
under a given footing. Traditional approaches to the design
lem involve estimating the elastic modulus and designing
footing to avoid excessive settlements. Aside from very large
settlements, it is usually differential settlement which lead
serviceability problems. Existing code requirements limiting
ferential settlements to satisfy serviceability limit states[see
building codes ACI 318-89(ACI 1989) or CAN3-A23.3-M84
(CSA 1984)] specify maximum deflections ranging fro
D /180 to D /480, depending on the type of supported eleme
whereD is the center-to-center span of the supported struc
element. In practice, differential settlements between footing
generally controlled, not by considering the differential settlem
itself, but by controlling the total settlement predicted by ana
using an estimate of the soil elasticity. This approach is lar
based on correlations between total settlements and differ
settlements observed experimentally(see, for example
D’Appolonia et al. 1968) and leads to a limitation of 4 to 8 c
in total settlement under a footing as stipulated by theCanadian
Foundation Engineering Manual, Part 2(CGS 1978).

This paper presents a study of the probability distribution
settlement and differential settlement where the soil is model
a fully three-dimensional random field and footings have
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length and breadth. The study is an extension of previous wo
the writers (Fenton and Griffiths 2002), which used a two
dimensional random soil to investigate the behavior of a
footing of infinite length. The resulting two-dimensional proba
listic model is found to also apply in concept to the th
dimensional case here. Improved results are given for differe
settlement by using a bivariate lognormal distribution, rather
the approximate univariate normal distribution used in Fenton
Griffiths (2002).

The paper first considers the case of a single square rigi
footing, a cross section which is shown in Fig. 1(a), and estimate
the probability density function governing the total settlemen
the footing as a function of footing area for various statistic
the underlying soil. Only the soil elasticity is considered to
spatially random. Uncertainties arising from model and test
cedures and in the loads are not considered. In addition, the
assumed to be isotropic—that is, the correlation structure i
sumed to be the same in both the horizontal and vertical d
tions. Although soils generally exhibit a stronger correlatio
the horizontal directions, due to their layered nature, the degr
anisotropy is site specific. Considering that, this study is atte
ing to establish the basic probabilistic behavior of settlemen
isotropy is left as a refinement for site-specific investigations.
writers expect that the averaging model suggested in this
will drift from a geometric average to a harmonic average a
ratio of horizontal to vertical correlation lengths increases(see
also the section entitled, “Single-Footing Case”). Although it is
felt that the results of this paper can still be used conserva
by using an effective isotropic correlation length equal to
minimum correlation length, this contention needs testing.

The footings are assumed to be founded on a soil layer u
lain by bedrock. The assumption of an underlying bedrock ca
relaxed if a suitable averaging region is used—recommenda
about such an area are given by Fenton and Griffiths(2002).

The second part of the paper addresses the issue of diffe
settlements under a pair of footings, as shown in Fig. 1(b), again
for the particular case of footings founded on a soil layer un
lain by bedrock. The footing spacing is held constant atD=1
while varying the footing size. Both footings are square and

same size. The mean and standard deviation of differential settle-
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ments are estimated as functions of footing size for various
statistics of the underlying elastic modulus field. The probab
distribution governing differential settlement is found to be
sonably approximated using a joint lognormal distribution w
correlation predicted using local geometric averages of the e
modulus field under the two footings.

Random Field Finite Element Model

The soil mass is discretized into 60 eight-noded brick elemen
each of the horizontal directions by 20 elements in the ver
direction. Each element is cubic with side length 0.05 givin
soil mass which has plan dimension of 333 and depth of 1
(Note: Length units are not used here since the results can be

Fig. 2. Finite element mesh modeling soil supporting two footin

Fig. 1. Slices through a random field/finite element method mes
(a) a single footing and(b) two footings founded on a soil layer
JOURNAL OF GEOTECHNICAL AND GEO
with any consistent set of length and force units.) Fig. 2 shows th
finite element mesh in three dimensions for the case of two
ings.

The finite element analysis uses a preconditioned conj
gradient iterative solver[see, e.g., Smith and Griffiths(1998)] that
avoids the need to assemble the global stiffness matrix. Num
experimentation indicates that the finite element model give
cellent agreement with analytical results for a flexible footing
the case of a rigid footing, doubling the number of elemen
each direction resulted in a settlement which increased by
3%, indicating that the rigid footing model may be slightly
stiff at the current resolution. However, the stochastic beh
will be unaffected by such slight shifts in total settlement(i.e., by
the same fraction for each realization). The 60 by 60 by 20 dis
cretization was considered adequate to characterize the be
of the settlement and differential settlement probability distr
tions.

The vertical side faces of the finite element model are
strained against horizontal displacement but are free to slide
tically while the nodes on the bottom boundary are spatially fi
The footing(s) are assumed to be rigid, to not undergo any r
tions, and to have a rough interface with the underlying soil(no-
slip boundary). A fixed load P=1 is applied to each footing—
since settlement varies linearly with load, the results are e
scaled to different values ofP.

To investigate the effect of the square footing area, the
layer thickness,H, was held constant at 1.0, while the foot
plan dimension,Wf, was varied according to Table 1. Because
settlement problem is linear in some of its parameters, the fo
ing results can be scaled to arbitrary square footing areas a
as the ratioWf /H is held fixed[note that the latter restriction al
holds in the two-dimensional case which was inadvertently
mentioned in Fenton and Griffiths(2002)]. For example, th
settlement of a square footing of dimensionWf =0.2 m on anH
=1 m thick soil layer with loadP8=1 kN and elastic modulu
E=1 kN/m2 corresponds to 1.2 times the settlement of a foo
of width Wf8=4.0 m on anH8=20.0 m thick soil layer withP8
=1,000 kN and elastic modulusE8=60 kN/m2. The scaling facto
is sP/P8dsE8 /EdsWf8 /Wfd, as long asWf8 /H8=Wf /H.

In the two-footing case, the distance between footing ce
was held constant at 1.0, while the footing widths(assume
equal) were varied. Footings of widths greater than 0.8 were
considered since this situation becomes basically that of a
footing (the footings are joined whenWf =1.0). The soil has tw
properties of interest to the settlement problem: These ar
(effective) elastic modulus,Esx>d, and Poisson’s ratio,nsx>d, where
x> is spatial position. Only the elastic modulus is considered
a spatially random soil property. Poisson’s ratio was believe
have a smaller relative spatial variability and only a second-o
importance to settlement statistics. It is held fixed at 0.25 ove

Table 1. Input Parameters Varied in the Study while HoldingH=1,
D=1, P=1, mE=1, andn=0.25 Constant.

Parameter Values considered

sE 0.1*, 0.5, 1.0*, 2.0, 4.0

uln E 0.01, 0.1*, 0.5*, 1.0*, 5.0*, 10.0*

Wf 0.2, 0.4, 0.8, 1.6(single footing)
0.2*, 0.4*, 0.8* (two footings)

Note: Starred parameters were run with 1,000 realizations in the
footing case. The single-footing case and nonstarred parameters w
with 100 realizations.
entire soil mass for all simulations.
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Fig. 1 shows a gray-scale representation of a possible re
tion of the elastic modulus field along a vertical plane through
soil mass cutting through the footing. Lighter areas de
smaller values ofEsx>d so that the elastic modulus field shown
Fig. 1(b) corresponds to a higher elastic modulus under the
footing than under the right—this leads to the substantial d
ential settlement indicated by the deformed mesh. This is jus
possible realization of the elastic modulus field; the next rea
tion could just as easily show the opposite trend.

The elastic modulus field is assumed to follow a lognor
distribution so that lnsEd is a Gaussian(normal) random field with
meanmln E, and variancesln E

2 . The choice of a lognormal distr
bution is motivated in part by the fact that the elastic modulu
strictly non-negative, a property of the lognormal distribution(but
not the normal), while still having a simple relationship with th
normal distribution. In addition, soil properties are generally m
sured as averages over some volume, and these averages a
low-strength dominated, as may be expected. The writers h
found in this and other studies that the geometric average
represents such low-strength-dominated soil properties. Sinc
distribution of a geometric average of positive quantities tend
the lognormal distribution by the central limit theorem, the l
normal distribution may very well be a natural distribution
many spatially varying soil properties. The parameters of
transformed lnsEd Gaussian random field may be obtained fr
the relations

sln E
2 = lns1 + sE

2/mE
2d s1ad

mln E = lnsmEd −
1

2
sln E

2 s1bd

from which it can be seen that the log-elastic modulus varia
sln E

2 , varies from 0.01 to 2.83 in this study.
A Markovian spatial correlation function, which gives the c

relation coefficient between log-elastic modulus values at p
separated by the distancet, is used

rln Est>d = expH−
2ut> u
uln E

J s2d

where t>=x>−x>8=vector between spatial pointsx> and x>8; and ut> u
=absolute length of this vector(the lag distance). In this paper
the word “correlation” refers to the correlation coefficient. T
results presented here are not particularly sensitive to the c
in functional form of the correlation—the Markov model is po
lar because of its simplicity. The correlation function decay ra
governed by the so-called scale of fluctuation,uln E, which,
loosely speaking, is the distance over which log-elastic mo
are significantly correlated(when the separation distanceut> u is
greater thanuln E, the correlation between lnEsx>d and lnEsx>8d is
less than 14%). The correlation structure is assumed to be iso
pic in this study which is appropriate for establishing the b
stochastic behavior of settlement. Anisotropic studies are
appropriate for site-specific analyses.

As was found in the two-dimensional case for the two foo
case(e.g., Fenton and Griffiths 2002), using a scale of fluctuatio
uln E, equal to the footing spacing,D, is conservative in that
yields the largest probabilities of differential settlement. For t
settlement of a single footing, takinguln E large is conservativ
since this leads to the largest variability of settlement(least vari-
ance reduction due to averaging of the soil properties unde

footing).
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n

To investigate the effect of the scale of fluctuation,uln E, on the
settlement statistics,uln E is varied from 0.01(i.e., very much
smaller than the footing and/or footing spacing) to 10.0(i.e., sub
stantially larger than the footing and/or footing spacing). In the
limit as uln E→0, the elastic modulus field becomes a white n
field, with independentE values at any two distinct points.
terms of the finite elements themselves, values ofuln E smaller
than the elements result in a set of elements which are la
independent(increasingly independent asuln E decreases). But be-
cause the footing effectively averages the elastic modulus fie
which it is founded, and since averages have decreased va
the settlement in the limiting caseuln E→0 is expected to ap
proach that obtained in the deterministic case, withE equal to its
median everywhere(assuming geometric averaging), with vanish-
ing variance for finitesln E

2 .
At the other extreme, asuln E→`, the elastic modulus fie

becomes the same everywhere. In this case, the settlement
tics are expected to approach those obtained by using a
lognormally distributed random variable,E, to model the soi
Esx>d=E. That is, since the settlement,d, under a footing founde
on a soil layer with uniform(but random) elastic modulusE is
given by

d =
ddetmE

E
, s3d

whereddet=computed settlement whenE=mE everywhere, then
asuln E→`, the settlement assumes a lognormal distribution
parameters

mln d = lnsddetd + lnsmEd − mln E = lnsddetd +
1

2
sln E

2 s4ad

sln d = sln E s4bd

where Eq.(1b) was used in Eq.(4a).
By similar reasoning, the differential settlement between

footings[see Fig. 1(b)] asuln E→0 is expected to go to zero sin
the average elastic modulus seen by both footings approac
same value, namely the median(assuming geometric averagin).
At the other extreme, asuln E→`, the differential settlement
also expected to approach zero, since the elastic modulus
becomes the same everywhere. Thus, the differential settle
approaches zero at both very small and at very large sca
fluctuation—the largest differential settlements will occur
scales somewhere in between these two extremes. This “
case” scale has been observed by other researchers—see,
ample, the work on a flexible foundation by Baecher and I
(1981).

The Monte Carlo approach adopted here involves the sim
tion of a realization of the elastic modulus field and subseq
finite element analysis(e.g., Smith and Griffiths 1998) of that
realization to yield a realization of the footing settlement(s). Re-
peating the process over an ensemble of realizations gener
set of possible settlements which can be plotted in the form
histogram and from which distribution parameters can be
mated.

If it can be assumed that log-settlement is approximately
mally distributed(which is seen later to be a reasonable assu
tion and is consistent with the distribution selected forE), and
mln d andsln d

2 are the estimators of the mean and variance o
settlement, respectively, then the standard deviation of these
mators obtained from then=100 realizations performed for t

single footing case are given by
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. sln d/În = 0.1sln d s5ad

ssln d
2 .Î 2

n − 1
sln d

2 = 0.14sln d
2 s5bd

These estimator errors are not particularly small but, since
three-dimensional analysis is very time consuming, the numb
realizations selected was deemed sufficient to verify that the
metric averaging model suggested in the two-dimensional ca
also applicable in three dimensions. A subset of the cases co
ered in Table 1(see starred quantities) was rerun using 1,00
realizations to verify the probability distributions further out
the tails for the differential settlement problem.

Realizations of the log-elastic modulus field are produ
using the three-dimensional Local Average Subdivision(LAS)
technique(Fenton and Vanmarcke 1990; Fenton 1994). The elas
tic modulus value assigned to theith element is

Esx> id = exphmln E + sln EGsx> idj s6d

whereGsx> id=local average, over the element centered atx> i, of a
zero mean unit variance Gaussian random field.

Single-Footing Case

A typical histogram of the settlement under a single footin
shown in Fig. 3 forWf =0.4, sE/mE=0.5, anduln E=1.0 (1,000
realizations were performed for this case to increase the re
tion of the histogram). With the requirement that settlement
non-negative, the shape of the histogram suggests a logn
distribution, which was adopted in this study[see, also, Eq.(4a)].
The histogram is normalized to produce a frequency density
where a straight line is drawn between the interval midpoint
Chi-square goodness-of-fit test on the data of Fig. 3 yieldedp
value of 0.54 indicating very good support for the lognormal
pothesis. The fitted lognormal distribution, with parameters g
by mln d and sln d shown in the line key, is superimposed on
plot.

Accepting the lognormal distribution as a reasonable fit to
simulation results, the next task is to estimate the paramete
the fitted lognormal distributions as functions of the input par

Fig. 3. Typical frequency density plot and fitted lognorm
distribution of settlement under a single footing
eters(Wf, sE, anduln E). The lognormal distribution

JOURNAL OF GEOTECHNICAL AND GEO
l

fdsxd =
1

Î2psln dx
expH−

1

2
S ln x − mln d

sln d
D2J, 0 ø x , ` s7d

has two parameters,mln d andsln d. Fig. 4 shows how the estim
tor of mln d, mln d, varies with sln E for Wf =0.4 based on 10
realizations. All scales of fluctuation are drawn in the plot, bu
not individually labeled since they lie so close together. A
shown in the plot are the 95% confidence interval bounds o
true parameter,mln d. As can be seen, all the estimators lie wit
these bounds indicating that the three-dimensional result
much the same as found using a two-dimensional model, na
that mln d is well predicted by the equation[see Eq.(4a)],

mln d = lnsddetd +
1

2
sln E

2 s8d

whereddet is the “deterministic” settlement obtained from a sin
finite element analysis(or appropriate approximate calculation) of
the problem usingE=mE everywhere. This equation is also sho
in Fig. 4, and it can be seen that the agreement with estim
values ofmln d is very good. The other footing sizes conside
showed similar results.

Estimates of the standard deviation of log settlement,sln d, are
plotted in Fig. 5(as symbols) for two footing sizes based on 1
realizations. The other footing sizes gave similar results. I
cases,sln d increases tosln E as uln E increases, which is as e
pected since large scales give less variance reduction. Ass
that local geometric averaging of the volume directly under
footing accounts for all of the variance reduction seen in Fi
the standard deviation of log settlement is predicted by

sln d = ÎgsWf,Wf,Hdsln E s9d

where gsWf ,Wf ,Hd=so-called variance function(Vanmarcke
1984), giving the amount that the variance is reduced due to
eraging. It depends on the averaging volume,Wf 3Wf 3H as well
as on the scale of fluctuation,uln E. The agreement between E
(9) and the estimated standard deviations is remarkable, as s
in Fig. 5, indicating that a geometric average of the elastic m
lus field under the footing is a good model of the effective mo
lus seen by the footing. The geometric average,Eg, has the fol

Fig. 4. Estimated mean of log settlement
lowing mathematical definition(for a square footing)
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Eg = expS 1

Wf
2H
E

0

H E
0

Wf E
0

Wf

ln Esx,y,zddx dy dzD s10d

from which the settlement of the footing can be expressed a

d =
ddetmE

Eg
s11d

Taking the logarithm of Eq.(11), and expectations, leads to E
(8) and (9). The practical implication of this result is that set
ments are better predicted using an effective elastic modulus
puted as a geometric average of the experimentally obt
moduli under the footing. For example, ifn observations of th
elastic modulus under a footing are taken,E1,E2, . . . ,En, then the
footing settlement is best computed using the elastic moduluEg

computed as

Eg = Sp
i=1

n

EiD1/n

= expS1

no
i=1

n

ln EiD s12d

To lend support to the geometric average idea, consider the s
ment of a horizontally layered soil, where the elastic mod
varies only from layer to layer but is constant within each laye
is relatively simple to show that the effective elastic modulus
by a footing in this case is the harmonic average, if edge ef
are ignored

Eh = F 1

H
E

0

H dz

EszdG−1

s13d

whereH=soil depth. Alternatively, if the layers are oriented v
tically, the effective elastic modulus seen by a rigid footing
comes the arithmetic average of the layer moduli. The true s
tion will lie somewhere between these two extremes. Since
geometric average of a random field lies between the arithm
and harmonic averages, its use in the more general case a
reasonable. Note, however, that this argument suggests that
monic average would be more reasonable for a strongly lay
soil, a situation which is not considered in this study.

Once the parameters of the settlement distribution,mln d and
sln d, have been calculated using Eqs.(8) and (9), probabilities

Fig. 5. Comparison of simulated sample standard devia
of log-settlement shown with symbols, with theoretical estimate
Eq. (9) shown with lines
associated with settlement are easily found

236 / JOURNAL OF GEOTECHNICAL AND GEOENVIRONMENTAL ENGINE
s
-

Pfd ø xg = FS ln x − mln d

sln d
D s14d

whereF=cumulative standard normal function.

Two-Footing Case

Consider now the case of two square footings each of pla
mensionWf 3Wf and separated by center-to-center distancD
=1, as shown in Fig. 1(b). If the settlements,d1 and d2, under
each footing are lognormally distributed, as found in the prev
section, then the joint distribution between the two-footing se
ments follows a bivariate lognormal distribution[Fenton an
Griffiths (2002), corrected to include the omitted factor of 2
the correlation term]

fd1d2
sx,yd =

1

2psln d
2 rxy

expH−
1

2r2fC1
2 − 2rln dC1C2 + C2

2gJ,

x ù 0, y ù 0 s15d

whereC1=sln x−mln dd /sln d; C2=sln y−mln dd /sln d; r2=1−rln d
2 ;

andrln d=correlation coefficient between the log settlement o
two footings. It is assumed in the above thatd1 andd2 have the
same mean and variance, which, for the symmetric cond
shown in Fig. 1(b), is a reasonable assumption.

Defining the differential settlement between footings to bD
=d1−d2, then the mean ofD is zero if the elastic modulus field
statistically stationary, as assumed here(if not, then the differen
tial settlement due to any trend in the mean must be ha
separately). If Eq. (15) holds, then the exact distribution gove
ing the differential settlement is given by

fDsxd =E
0

`

fd1d2
suxu + y,yddy s16d

and differential settlement probabilities can be computed as

PfuDu . xg = PfD , − x ø D . xg = 2E
x

`

fDsjddj s17d

Fig. 6 shows typical frequency–density plots of differential se
ment, for three different values ofuln E, between two equal size
footings with Wf =0.4 andsE/mE=1.0. For small scales of flu
tuation, the density plot looks reasonably normal, but for la
scales of fluctuation, the density has a sharper mode with lo
tails. Notice that the widest distribution occurs whenuln E/D is
equal to about 1.0, indicating that this is a worst case wh
comes to differential settlement.

The distributionfd1d2
, and thus alsofD, has three paramete

mln d, sln d, and rln d. The mean and standard deviation can
estimated using Eqs.(8) and(9) from the previous section. Sin
local averaging of the log-elastic modulus field under the foo
was found to be an accurate predictor of the variance o
settlement, it is reasonable to suggest that the covariance be
log settlements under a pair of footings will be well predicted
the covariance between local averages of the log-elastic mo
field under each footing. For equal sized footings, the covar
between local averages of the log-elastic modulus field unde

footings separated by distanceD is given by

ERING © ASCE / FEBRUARY 2005
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Cln d =
sln E

2

V1V2
E

V1

E
V2

rln Esx>1 − x>2ddx>2dx>1 s18d

whereV1=Wf 3Wf 3H volume under Footing 1;V2=equivalen
volume under Footing 2; andx>=spatial position. From this, th
correlation coefficient can be computed as

rln d =
Cln d

sln d
2 s19d

The predicted correlation can be compared to the simulatio
sults by first transforming back from log space

rd =
exphCln dj − 1

exphsln d
2 j − 1

s20d

wheresln d is given by Eq.(9). The agreement between the c
relation coefficient predicted by Eq.(20) and the correlation co
efficient estimated from the simulations(1,000 realizations) is
shown in Fig. 7. The agreement is reasonable, particularly fo
smaller sized footings. For larger footings, the correlation is
derpredicted, particularly at smalluln E. This is believed to be du
to mechanical interaction between the larger footings, wher
settlement of one footing induces some settlement in the adj
footing due to their relatively close proximity.

Armed with the relationships(8), (9), and(19), the differentia
settlement distribution,fD, can be computed using Eq.(16). The
resulting predicted distributions have been superimposed o
frequency–density plots of Fig. 6 forWf =0.4. The agreement

Fig. 6. Frequency density and fitted distribution for differen
settlement under two equal-sized footings withuln E/D=0.1 in (a);
uln E/D=1.0 in (b); anduln E/D=10.0 in (c)
very good for intermediate to large scales of fluctuation. At the

JOURNAL OF GEOTECHNICAL AND GEO
smaller scales of fluctuation, Eq.(16) yields a distribution whic
is somewhat too wide—this is due to the underprediction o
correlation between footing settlements[Eq. (19)] since as th
actual correlation between settlements increases, the differ
settlement decreases and the distribution becomes nar
However, an underprediction of correlation is at least cons
tive in that predicted differential settlement probabilities will t
to be too large.

To test the ability of the bivariate lognormal distribution
accurately estimate probabilities, the probability that the abs
value ofD exceeds some threshold is compared to empirical p
abilities derived from simulation. For generality, thresholds
amuDu will be used, wheremuDu is the mean absolute different
settlement, which can be approximated as(which holds for D
normally distributed)

muDu .Î 2

p
sD s21d

wheresD
2 =2sd

2s1−rdd. Fig. 8 shows a plot of the predicted[Eq.
(17)] versus empirical probabilitiesPfuDu.amuDug for a varying
in 20 steps from 0.2 to 4.0. If the prediction is accurate, then
plotted points should lie on the diagonal line.

When the footings are well separated[Wf /D=0.2, see Fig
8(a)] so that mechanical correlation is negligible, then the ag
ment between predicted and empirical probabilities is exce
The two solid curved lines shown in the plot form a 95% co
dence interval on the empirical probabilities, and it can be
that most lie within these bounds. The few that lie outside ar
the conservative side(predicted probability exceeds empiri
probability).

As the footing size increases[see Figs. 8(b and c)] so that thei
relative spacing decreases, the effect of mechanical corre
begins to be increasingly important and the resulting pred
probabilities increasingly conservative. A strictly empirical c
rection can be made to the correlation to account for the mi
mechanical influences. Ifrln d is replaced bys1−Wf /2Ddrln d

+Wf /2D for all Wf /D greater than about 0.3, the differen
settlements are reduced and, as shown in Fig. 9, the pre
probabilities become reasonably close to the empirical prob

Fig. 7. Predicted and sample correlation coefficients between fo
settlements for various relative separation distances betwee
footings and forsE/mE=1
ties while still remaining slightly conservative. Until the complex
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interaction between two relatively closely spaced footings is
characterized probabilistically, this simple empirical correc
seems reasonable.

Conclusions

On the basis of this simulation study, the following observat
can be made.

Fig. 8. Predicted versus empirical probabilities PfuDu.amuDug, for
sE/mE=0.1 and 1.0,uln E varying from 0.1 to 10.0, and forWf /D
=0.2 in (a); Wf /D=0.4 in (b); andWf /D=0.8 in (c). Curved lines ar
95% confidence intervals.
As found in the two-dimensional case, the settlement under a
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footing founded on a three-dimensional spatially random el
modulus field of finite depth overlying bedrock is well rep
sented by a lognormal distribution with parametersmln d andsln d

2 ,
if E is also lognormally distributed. The first parameter,mln d, is
dependent on the mean and variance of the underlying log-e
modulus field and may be closely approximated by consid
limiting values ofuln E. The second parameter,sln d

2 , is very well
represented by the variance of a local average of the log-e
modulus field in the region directly under the footing. Once
parameters of the settlement,mln d andsln d

2 , have been compute
using Eqs.(8) and (9), the estimation of probabilities associa
with settlement involves little more than referring to a stan
normal distribution table[see Eq.(14)].

One of the implications of the findings for a single footing
that footing settlement is accurately predicted using a geom
average of the elastic modulus field in the volume under the
ing. From a practical point of view, this finding implies tha
geometric average of soil elastic modulus estimates made
vicinity of the footing (e.g. by cone penetration test soundin)
should be used to represent the effective elastic modulus
than an arithmetic average. The geometric average will gen
be less than the arithmetic average, reflecting the stronger
ence of weak soil zones on the total settlement.

Under the model of a lognormal distribution for the settlem
of an individual footing, the bivariate lognormal distribution w
found to closely represent the joint settlement of two foot

Fig. 9. Predicted versus empirical probabilities PfuDu.amuDug,
corrected by empirically increasingrln d for Wf /D=0.4 in (a) and
Wf /D=0.8 in (b)
when the footings are spaced sufficiently far(relative to their plan
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dimension) apart to avoid significant mechanical interacti
Using the bivariate lognormal model, probabilities associ
with differential settlement are obtained that are in very g
agreement with empirical probabilities obtained via simulat
The bivariate lognormal model is considerably superior to
approximate normal model developed in the two-dimensi
case by Fenton and Griffiths(2002) at the expense of a mo
complicated numerical integration(the normal approximatio
simply involved a table lookup).

When the footings become close enough that mechanic
teraction becomes significant, the bivariate lognormal mode
veloped here begins to overestimate the probabilities asso
with differential settlement—that is, the differential settleme
will be less than predicted. Although this is at least conserva
the reason is believed to be due to the fact that the stress
from one footing is affecting the elastic modulus field under
other footing. This results in an increased correlation coeffic
between the two-footing settlements that is not fully accou
for by the correlation between two local geometric avera
alone. An empirical correction factor has been suggested in
paper which yields more accurate probabilities and which sh
be employed if the conservatism without it is unacceptable.

Acknowledgments

The writers would like to thank the National Sciences and E
neering Research Council of Canada, under Discovery Gran
RGPIN0105445, and the National Science Foundation of
United States of America, under Grant No. CMS-9877189
their essential support of this research. Any opinions, find
conclusions or recommendations are those of the writers an
not necessarily reflect the views of the aforementioned orga
tions.

Notation

The following symbols are used in this paper:
Cln d 5 covariance between log settlements under the two

footings;
D 5 center-to-center distance between footings;
E 5 elastic modulus;

Eg 5 elastic modulus geometric mean;
fd 5 settlement probability density function;

fd1d2
5 joint settlement probability density function;

fD 5 differential settlement probability density function;
Gsx>d 5 standard normal(Gaussian) random field;

H 5 overall depth of soil layer;
L 5 overall width of soil model;

md 5 estimated mean of footing settlement via simulatio
mln d 5 estimated mean of log settlement via simulation;

P 5 applied footing load;
JOURNAL OF GEOTECHNICAL AND GEO
sln d 5 estimated standard deviation of log settlement via
simulation;

Wf 5 footing width;
x> 5 spatial coordinate or position;
g 5 variance function(variance reduction due to local

averaging);
D 5 differential settlement between footings;
d 5 footing settlement, positive downward;

ddet 5 footing settlement whenE=mE everywhere;
uln E 5 isotropic scale of fluctuation of the log-elastic

modulus field;
mE 5 mean elastic modulus;

muDu 5 mean absolute differential footing settlement;
mln E 5 mean of log-elastic modulus;
mln d 5 mean of log-settlement;

n 5 Poisson’s ratio;
rd 5 correlation coefficient between footing settlements

rln d 5 correlation coefficient between log-footing
settlements;

rln E 5 correlation coefficient between lnsEd at two points;
sE 5 standard deviation of elastic modulus;

sln E 5 standard deviation of log-elastic modulus;
sd 5 standard deviation of footing settlement;

sln d 5 standard deviation of log-settlement;
sD 5 standard deviation of differential settlement;

t 5 lag distance, equal tout> u;
t> 5 spatial lag vector; and

F 5 standard normal cumulative distribution function.

References

American Concrete Institute(ACI). (1989). “Building code requiremen
for reinforced concrete.”ACI 318-89, ACI, Detroit.

Baecher, G. B., and Ingra, T. S.(1981). “Stochastic FEM in settleme
predictions,”J. Geotech. Eng. Div., Am. Soc. Civ. Eng., 107(4), 449–
463.

Canadian Geotechnical Society(CGS). (1978). Canadian foundation en
gineering manual, CGS, Montreal, Quebec.

Canadian Standards Association(CSA). (1984). “Design of concret
structures for buildings.”CAN3-A23.3-M84, CSA, Toronto, Ontario

D’Appolonia, D. J., D’Appolonia, E., and Brissette, R. F.(1968). “Settle-
ment of spread footings on sand.”J. Soil Mech. Found. Div,
94(SM3), 735–760.

Fenton, G. A., and Vanmarcke, E. H.(1990). “Simulation of random
fields via local average subdivision.”J. Eng. Mech., 116(8), 1733–
1749.

Fenton, G. A., and Griffiths, D. V.(2002). “Probabilistic foundatio
settlement on spatially random soil.”J. Geotech. Geoenviron. En,
128(5), 381–390.

Fenton, G. A.(1994). “Error evaluation of three random field generato
J. Eng. Mech., 120(12), 2478–2497.

Smith, I. M., and Griffiths, D. V.(1998). Programming the finite eleme
method, 3rd Ed., Wiley, New York.

Vanmarcke, E. H.(1984). Random fields: Analysis and synthesis, The

MIT Press, Cambridge, Mass.

ENVIRONMENTAL ENGINEERING © ASCE / FEBRUARY 2005 / 239


