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Reliability of traditional retaining wall design

G. A. FENTON*, D. V. GRIFFITHS† and M. B. WILLIAMS‡

Retaining wall design has long been carried out with the
aid of either the Rankine or Coulomb theories of earth
pressure. To obtain a closed-form solution, these tradi-
tional earth pressure theories assume that the soil is
uniform. The fact that soils are actually spatially variable
leads, however, to two potential problems in design: do
sampled soil properties adequately reflect the effective
properties of the entire retained soil mass, and does
spatial variability of soil properties lead to active earth
pressure effects that are significantly different from those
predicted using traditional models? This paper combines
non-linear finite element analysis with random field simu-
lation to investigate these two questions and assess just
how safe current design practice is. The specific case
investigated is a two-dimensional frictionless wall retain-
ing a cohesionless drained backfill. The wall is designed
against sliding using Rankine’s earth pressure theory.
The design friction angle and unit weight values are
obtained by sampling the simulated random soil field at
one location, and these sampled soil properties are then
used as the effective soil properties in the Rankine model.
Failure is defined as occurring when the Rankine pre-
dicted force acting on the retaining wall, modified by an
appropriate factor of safety, is less than that computed
by the random finite element method employing the
actual soil property (random) fields. Using Monte Carlo
simulation, the probability of failure of the traditional
design approach is assessed as a function of the factor of
safety used and the spatial variability of the soil.
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La conception des murs de soutènement se fait depuis
longtemps à l’aide de la théorie de Rankine ou de la
théorie de Coulomb sur la pression terrestre. Pour obte-
nir une solution en forme fermée, ces théories de pression
terrestre traditionnelles présument que le sol est uni-
forme. Cependant, le fait que les sols sont en fait vari-
ables dans l’espace mène à deux problèmes de conception
potentiels : est-ce que les propriétés du sol échantillonné
représentent de manière adéquate les propriétés effectives
de toute la masse de sol retenue et est-ce que la variabi-
lité spatiale des propriétés du sol mène à des effets actifs
de pression terrestre qui sont largement différents de
ceux prédits en utilisant les modèles traditionnels ? Cet
exposé combine des analyses d’éléments finis non liné-
aires à des simulations aléatoires sur le terrain pour
étudier ces deux questions et évaluer le degré de fiabilité
de la pratique de design courante. Le cas spécifique
examiné ici est un mur sans friction en deux dimensions
retenant un remblai drainé sans cohésion. Le mur a été
conçu contre le glissement en utilisant la théorie de
pression terrestre de Rankine. L’angle de friction nominal
et les valeurs de poids unitaire sont obtenues en faisant
des échantillons du champs aléatoire simulé en un end-
roit ; les propriétés échantillonnées sont alors utilisées
comme les propriétés effectives du sol dans le modèle de
Rankine. La défaillance est définie comme se produisant
lorsque la force prévue de Rankine agissant sur le mur
de soutènement et modifiée par un facteur de sécurité
approprié est inférieure à celle calculée par la méthode
d’éléments finis aléatoires employant les champs (aléa-
toires) de propriété du sol réel. En utilisant une simula-
tion de Monte Carlo, la probabilité de défaillance de la
méthode de conception traditionnelle est évaluée comme
fonction du facteur de sécurité utilisé et de la variabilité
spatiale du sol.

INTRODUCTION
Retaining walls are, in most cases, designed to resist active
earth pressures. The forces acting on the wall are typically
determined using the Rankine or Coulomb theories of earth
pressure after the retained soil properties have been esti-
mated. This paper compares the earth pressures predicted by
Rankine’s theory with those obtained via finite element
analysis in which the soil is assumed to be spatially random.
The specific case of a two-dimensional cohesionless drained
soil mass with a horizontal upper surface retained by a
vertical frictionless wall is examined. For a cohesionless soil
the property of interest is the friction angle. The wall is

assumed to be able to move away from the soil a sufficient
distance to mobilise the frictional resistance of the soil.

The traditional theories of lateral active earth pressures
are derived from equations of limit equilibrium along a
planar surface passing through the soil mass. The soil is
assumed to have a spatially constant friction angle. Under
these conditions, and for the retaining problem considered
herein, Rankine proposed the active earth pressure coeffi-
cient to be

Ka ¼ tan 2 45� �9

2

� �
(1)

where �9 is the soil’s drained friction angle. Traditional
theories assume that the unit weight, ª, is spatially constant
also, so that the total lateral active earth force acting on a
wall of height H, at height H/3, is given by

Pa ¼ 1
2
ªH2Ka (2)

The calculation of the lateral design load on a retaining wall
involves estimating the friction angle, �9, and the unit
weight, ª, and then using equations (1) and (2). To allow
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some margin for safety, the value of Pa may be adjusted by
multiplying by a conservative factor of safety, F.
Owing to spatial variability, the failure surface is often

more complicated than a simple plane, and the resulting
behaviour cannot be expected to match that predicted by
theory. Some work on reliability-based design of earth
retaining walls has been carried out recently (e.g. Basheer &
Najjar, 1996; Chalermyanont & Benson, 2004). However,
these studies consider the soil to be spatially uniform: that
is, each soil property is represented by a single random
variable, and every point in the soil is assigned the same
property value. For example, a particular realisation might
have �9 ¼ 328, which would be assumed to apply to all
points in the soil mass. The assumption that the soil is
spatially uniform is convenient, as most geotechnical predic-
tive models are derived assuming spatially uniform proper-
ties (e.g. Rankine’s earth pressure theory). These studies
serve to help develop understanding of the underlying issues
in reliability-based design of retaining walls but fail to
include the effects of spatial variability. As will be seen, the
failure surface can be significantly affected by spatial varia-
bility.
When spatial variability is included in the soil representa-

tion, alternative tractable solutions to the reliability issue
must be found. For geotechnical problems that do not
depend too strongly on extreme micro-scale soil structure
(i.e. which involve some local averaging), it can be argued
that the behaviour of the spatially random soil can be closely
represented by a spatially uniform soil, which is assigned
the ‘effective’ properties of the spatially random soil. The
authors have been successful in the past with this effective
property representation, for a variety of geotechnical pro-
blems, by defining the effective uniform soil as some sort of
average of the random soil; generally the geometric average
has been found to work well (e.g. Fenton & Griffiths, 2003).
If the above argument holds, then it implies that the spatially
random soil can be well modelled by equations such as
equations (1) and (2), even though these equations are based
on uniform soil properties; the problem becomes one of
finding the appropriate effective soil properties.
In practice, the values of �9 and ª used in equations (1)

and (2) are obtained through site investigation. If the inves-
tigation is thorough enough to allow spatial variability to be
characterised, an effective soil property can, in principle, be
determined using random field theory combined with simula-
tion results. However, the level of site investigation required
for such a characterisation is unlikely to be worth carrying
out for most retaining wall designs. In the more common
case, the geotechnical engineer may base the design on a
single estimate of the friction angle and unit weight. In this
case, the accuracy of the prediction arising from equations
(1) and (2) depends very much on how well the single
estimate approximates the effective value.
This paper addresses the above issues. In particular, it

attempts to shed light on the following questions:

(a) Do sampled soil properties adequately reflect the
effective properties of the entire retained soil mass?

(b) Does spatial variability in soil properties lead to active
earth pressure effects that are significantly different
from those predicted using traditional equations, such
as Rankine’s?

Figure 1 shows plots of what a typical retained soil might
look like once the retaining wall has moved enough to
mobilise the active soil behaviour for two different possible
realisations. The soil’s spatially random friction angle is
shown using a greyscale representation, where dark areas
correspond to lower friction angles. Note that although the
unit weight, ª, is also spatially random, its variability is not

shown on the plots; its influence on the stochastic behaviour
of earth pressure was felt to be less important than that of
the �9 field.

The wall is on the left-hand face, and the deformed mesh
plots of Fig. 1 are obtained using the random finite element
method (RFEM) with 8-node square elements and an elastic-
perfectly plastic constitutive model (see next section for
more details). The wall is gradually moved away from the
soil mass until plastic failure of the soil occurs, and the
deformed mesh at failure is then plotted. It is clear from
these plots that the failure pattern is more complex than that
found using traditional theories, such as Rankine’s. Instead
of a well-defined failure plane, the particular realisation
shown in the upper plot of Fig. 1, for example, seems to
have a failure wedge forming some distance from the wall
in a region with higher friction angles. The formation of a
failure surface can be viewed as the mechanism by which
lateral loads stabilise to a constant value with increasing
wall displacement.

Figure 1 also shows that choosing the correct location to
sample the soil may be important to the accuracy of the
prediction of the lateral active load. For example, in the
lower plot of Fig. 1, the soil sample, taken at the midpoint
of the soil regime, results in a friction angle estimate that is
considerably lower than the friction angle typically seen in
the failure region (recall that white elements correspond to
higher friction angles). The resulting predicted lateral active
load, using Rankine’s theory, is about 1.5 times that pre-
dicted by the RFEM, so that a wall designed using this soil
sample would be overdesigned. Quite the opposite is found
for the more complex failure pattern in the upper plot of
Fig. 1, where the lateral active load found via the RFEM is
more than twice that predicted using Rankine’s theory, and
so a Rankine-based design would be unconservative. The
higher RFEM load is attributed to the low friction angle
material found in near proximity to the wall.

THE RANDOM FINITE ELEMENT MODEL
The soil mass is discretised into 32 eight-noded square

elements in the horizontal direction by 32 elements in the
vertical direction. Each element has a side length of H/16,
giving a soil block that is 2H wide by 2H deep. (Note:
length units are not used here as the results can be used
with any consistent set of length and force units.) The
retaining wall extends to a depth H along the left face.

The finite element earth pressure analysis uses an elastic-
perfectly plastic Mohr–Coulomb constitutive model with
stress redistribution achieved iteratively using an elasto-
viscoplastic algorithm essentially similar to that described in
the text by Smith & Griffiths (2004). The active wall consid-
ered in this study is modelled by translating the top 16
elements on the upper left side of the mesh uniformly
horizontally and away from the soil. This translation is
performed incrementally, and models a rigid, smooth wall
with no rotation.

The initial stress conditions in the mesh prior to trans-
lation of the nodes are that the vertical stresses equal the
overburden pressure, and the horizontal stresses are given by
Jaky’s (1944) formula in which K0 ¼ 1 � sin�9. As de-
scribed in the next section, the study will assume that tan�9
is a log-normally distributed random field: hence K0 will
also be a random field (albeit fully determined by �9), so
that the initial stresses vary randomly down the wall face.

The boundary conditions are such that the right side of
the mesh allows vertical but not horizontal movement, and
the base of the mesh is fully restrained. The top and left
sides of the mesh are unrestrained, with the exception of the
nodes adjacent to the ‘wall’, which have fixed horizontal
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components of displacement. The vertical components of
these displaced nodes are free to move down, as active
conditions are mobilised. These boundary conditions have
been shown to work well for simple earth pressure analysis
(e.g. Griffiths, 1980).

Following incremental displacement of the nodes, the
viscoplastic algorithm monitors the stresses in all the ele-
ments (at the Gauss points) and compares them with the
strength of the element based on Mohr–Coulomb’s failure
criterion. If the failure criterion is not violated, the element
is assumed to remain elastic; however, if the criterion is
violated, stress redistribution is initiated by the viscoplastic
algorithm. The process is inherently iterative, and conver-
gence is achieved when all stresses within the mesh satisfy
the failure criterion within quite tight tolerances.

At convergence following each increment of displacement,
the mobilised active reaction force on the wall is computed
by integrating the stresses in the elements attached to the
displaced nodes. The finite element analysis is terminated
when the incremental displacements have resulted in the
active reaction force reaching its minimum limiting value.

The cohesionless soil being studied here has two proper-
ties of primary interest to the active earth pressure problem:
these are the friction angle, �9(ex), and unit weight, ª(ex),where ex is the spatial position. Both are considered to be
spatially random fields. The finite element model used in
this study also includes the soil’s dilation angle, taken to be
zero, Poisson’s ratio, taken to be 0.3, and Young’s modulus,
taken to be 1 3 105. These three properties are assumed to
be spatially constant; this does not introduce significant
error, as these properties play only a minor role in the
development of active earth pressures.

The two properties that are considered to be spatially
random, �9 and ª, are characterised by their means, their
standard deviations, and their correlation lengths (which are
measures of the degree of spatial correlation). The unit
weight is assumed to have a log-normal distribution, primar-
ily because of its simple relationship with the normal
distribution, which is fully specified by the first two mo-
ments, and because it is non-negative. The friction angle,
�9, is generally bounded, which means that its distribution is
a complicated function with at least four parameters (Fenton
& Griffiths, 2003). However, tan�9 varies between 0 and
infinity as �9 varies between 08 and 908. Thus a possible
distribution for tan�9 is also the log-normal. This distribu-
tion will be assumed in this paper: that is, the friction angle
field will be represented by the log-normally distributed
tan�9 field.

The spatial correlation structures of both fields will be
assumed to be the same. This is not only for simplicity, as it
can be argued that the spatial correlation of a soil is
governed largely by the spatial variability in a soil’s source
materials, weathering patterns, stress and formation history
etc. That is, the material source, weathering, stress history
etc. forming a soil at a point will be similar to that at a
closely neighbouring point, so one would expect that all the
soil’s properties will vary similarly between the two points
(aside from deviations arising from differing non-linear
property response to current conditions).

With this argument in mind, the spatial correlation func-
tion for the ln(ª) and ln(tan�9) fields, both normally dis-
tributed, is assumed to be Markovian:

r �ð Þ ¼ exp

�2je�j
Ł

( )
(3)

where Ł is the correlation length beyond which two points
in the field are largely uncorrelated, e� is the vector between
the two points, and je�j is its absolute length.

In this study, the two random fields, ª and tan�9, are first
assumed to be independent. Thus two independent standard
normal random fields, G1(ex) and G2(ex), are simulated by
the local average subdivision (LAS) method (Fenton &
Vanmarcke, 1990), using the correlation structure given by
equation (3). These fields are then transformed to the target
fields through the relationships

ª(ex) ¼ exp f�ln ª þ � ln ªG1(ex)g (4a)

tan�9(ex) ¼ exp f�ln tan �9 þ � ln tan �9G2(ex)g (4b)

where � and � are the mean and standard deviation of the
subscripted variable, obtained using the following transfor-
mations:

� 2
ln ª ¼ ln(1þ V 2

ª) (5a)

�ln ª ¼ ln(�ª)� 1
2
� 2
ln ª (5b)

and Vª ¼ �ª/�ª is the coefficient of variation of ª. A similar
transformation can be applied for the mean and variance of
tan�9 by replacing ª with tan�9 in the subscripts of equa-
tion (5).

As the friction angle, �9, and the unit weight, ª, generally
have a reasonably strong positive correlation, a second case
will be considered in this study where the two fields are
significantly correlated: specifically, a correlation coefficient
of r ¼ 0.8 will be assumed to act between ln(ª) and
ln(tan�9) at each point in the soil. Thus, when the friction
angle is large, the unit weight will also tend to be large,
within their respective distributions. The correlation between
the fields is implemented using the covariance matrix de-
composition method (e.g. Fenton, 1994).

Once realisations of the soil have been produced using
LAS and the above transformations, the properties can be
mapped to the elements and the soil mass analysed by the
finite element method. See Fig. 1 for two examples. Repeat-
ing this analysis over a sequence of realisations (Monte
Carlo simulation) yields a sequence of computed responses,
allowing the distribution of the response to be estimated.

ACTIVE EARTH PRESSURE DESIGN RELIABILITY
As mentioned in the introduction, the design of a retaining

wall involves two steps: (a) estimating the pertinent soil
properties, and (b) predicting the lateral load through, for
example, equation (2). The reliability of the resulting design
depends on the relationship between the predicted and actual
lateral loads. Disregarding variability on the resistance side
and assuming that the design wall resistance, R, satisfies

R ¼ FPa (6)

where F is a factor of safety and Pa is the predicted active
lateral earth load (equation (2)), then the wall will survive if
the true active lateral load, Pt , is less than FPa. The true
active lateral load will inevitably differ from that predicted
because of errors in the estimation of the soil properties and
because of the spatial variability present in a true soil, which
is not accounted for by classical theories, such as equations
(1) and (2). The probability of failure of the retaining system
will be defined as the probability that the true lateral load,
Pt, exceeds the factored resistance:

pf ¼ P[Pt . R] ¼ P[Pt . FPa] (7)

This is the theoretical definition of the failure probability, pf .
In the following section, the estimate of this failure prob-
ability, p̂pf , will be obtained by Monte Carlo simulation. The
‘true’ (random) lateral load, Pt, will be assumed in this study
to be closely approximated by the load computed in the
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finite element analysis of each soil realisation. That is, it is
assumed that the finite element analysis, which accounts for
spatial variability, will produce a realistic assessment of the
actual lateral active soil load for a given realisation of soil
properties.
The predicted lateral load, Pa , depends on an estimate of

the soil properties. In this paper, the soil properties ª and
tan�9 will be estimated using only a single ‘virtual sample’

taken at a distance H in from the base of the retaining wall
and a distance H down from the soil surface. The phrase
‘virtual sample’ means that the properties are sampled from
the random field realisations assigned to the finite element
mesh. Specifically, virtual sampling means that for exs being
the coordinates of the sample point, the sampled soil proper-
ties ª̂ª and �̂�9 are obtained from each random field realisa-
tion as

2H

H

H

2H

H

H

(b)

(a)

Fig. 1. Active earth displacements for two different possible soil friction angle field realisations (both
with Ł/H 1 and �/� 0.3)
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ª̂ª ¼ ª(exs) (8a)

�̂�9 ¼ tan�1f tan [�9(exs)]g (8b)

Armed with these sample properties, the predicted lateral
load becomes

Pa ¼ 1
2
ª̂ªH2 tan 2 45� �̂�9

2

� �
(9)

No attempt is made to incorporate measurement error. The
goal of this study is to assess the design risk arising from
the spatial variability of the soil, and not from other sources
of variability.

Table 1 lists the statistical parameters varied in this study.
The coefficient of variation, V ¼ �/�, is changed for both
the unit weight, ª, and the friction, tan�9, fields identically.
That is, when the coefficient of variation of the unit weight
field is 0.2, the coefficient of variation of the tan�9 field is
also 0.2, and so on. For each parameter set considered in
Table 1, the factor of safety, F, is varied from 1.5 to 3.0.
This range is somewhat wider than the range of 1.5 to 2.0
recommended, for example, by the Canadian Foundation
Engineering Manual (Canadian Geotechnical Society, 1992)
for retaining wall systems.

The correlation length, Ł, which is normalised in Table 1
by expressing it as a fraction of the wall height, Ł/H,
governs the degree of spatial variability. When Ł/H is small,
the random field is typically rough in appearance: points in
the field are more independent. Conversely, when Ł/H is
large, the field is more strongly correlated, so that it appears
smoother with less variability in each realisation. A large
scale of fluctuation has two implications: first, the soil
properties estimated by sampling the field at a single loca-
tion will be more representative of the overall soil mass;
and, second, the reduced spatial variability means that the
soil will behave more like that predicted by traditional
theory. Thus, for larger correlation lengths, fewer ‘failures’
are expected (where the actual lateral limit load exceeds the
factored prediction), and the factor of safety can be reduced.
For intermediate correlation lengths, however, the soil prop-
erties measured at one location may be quite different from
those actually present at other locations. Thus, for intermedi-
ate correlation lengths, more ‘failures’ are expected. When
the correlation length becomes extremely small—much
smaller than the soil property sample size—local averaging
effects begin to take over, and both the sample and overall
soil mass return to being an effectively uniform soil (with
properties approaching the median), accurately predicted by
traditional theory using the sample estimate.

Following this reasoning, the maximum probability of
failure of the design is expected to occur when the correla-
tion length is some intermediate value. Evidence supporting
this argument is found in the next section.

MONTE CARLO RESULTS
Both plots of Fig. 1 indicate that it is the high friction

angle regions that attract the failure surface in the active

case. Although this is not always the case for all realisations,
it tends to be the most common behaviour. Such a counter-
intuitive observation seems to be due largely to the inter-
action between the initial horizontal stress distribution, as
dictated by the K0 ¼ 1 � sin�9 random field, and the
friction angle field.

To explain this behaviour, it is instructive to consider the
Mohr’s circles corresponding to K0 ¼ 1 � sin�9 (at rest,
initial, conditions) and Ka ¼ (1 � sin�9)/(1 + sin�9) (active
failure conditions). As �9 increases from 08, the distance
between the initial and failure circles increases, reaching a
maximum when �9 ¼ tan �1(0:5

ffiffiffi
2

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2

p
� 1

p
) ¼ 24:478. Be-

yond this point, the distance between the initial and failure
circles decreases with increasing �9. As the average drained
friction angle used in this study is 308 (to first order), the
majority of realisations of �9 are in this region of decreasing
distance between circles. This supports the observation that,
under these conditions, the higher friction angle regions tend
to reach active failure first. One point that comes out of this
is that failure is always attracted to the weakest zones, even
if those weakest zones happen to have a higher friction
angle. In this sense the greyscale shown in Fig. 1 is telling
only part of the story; it is really the shear strength
(�9 tan�9) that is important.

The attraction of the failure surface to the high friction
angle regions is due to the fact that the initial conditions
vary with �9 according to Jaky’s formula in this study. In a
side investigation, it was found that, if the value of K0 is
held fixed, then the failure surface does pass through the
lower friction angle regions. Fig. 2 shows the effect that K0

has on the location of the failure surface. In Fig. 2(a) K0 is
held spatially constant at 0.5, and in this case the failure
surface clearly migrates towards the low friction angle
regions. In Fig. 2(b) K0 is set equal to 1 � sin�9, as in the
rest of the paper, and the failure surface clearly prefers the
high friction angle regions. The authors also investigated the
effect of spatially variable as against spatially constant unit
weight and found that this had little effect on the failure
surface location, at least for the levels of variability consid-
ered here. The location of the failure surface seems to be
governed primarily by the nature of K0 (given random �9).

The migration of the failure surface through the weakest
path means that, in general, the lateral wall load will be
different from that predicted by a model based on uniform
soil properties, such as Rankine’s theory. Fig. 3 shows the
estimated probability of failure, p̂pf , that the actual lateral
active load will exceed the factored predicted design load
(see equation (7)) for a moderate correlation length (Ł/H ¼
1) and for various coefficients of variation in the friction
angle and unit weight. The estimates are obtained by count-
ing the number of failures encountered in the simulation and
dividing by the total number of realisations considered (n ¼
1000). In that this is an estimate of a proportion, its standard
error (one standard deviation) is

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
pf 1� pfð Þ=n

p
, which is

about 1% when pf ¼ 20% and about 0.3% when pf ¼ 1%.
The figure shows two cases: (a) where the friction angle and
unit weight fields are independent; and (b) where there is a
strong correlation between the two fields.

As expected, the probability of failure increases as the soil
becomes increasingly variable. Fig. 3 can be used to deter-
mine a required factor of safety corresponding to a target
probability of failure. For example, if the fields are assumed
to be independent (Fig. 3(a)), with V ¼ 0.2, and the soil
properties are sampled as in this study, then a required factor
of safety of about F ¼ 2 is appropriate for a target
probability of failure of 5%. The required factor of safety
increases to 3 or more when V > 0.3. Recalling that only
one sample is used in this study to characterise the soil, and
that the sample is well outside the expected failure zone

Table 1. Parameters varied in the study while holding the
retained soil dimension H, and soil properties �tan �9 tan 308,
�ª 20, E 1 3 105 and � ¼ 0.3 constant. For each parameter
set, 1000 realisations were run.

Parameter Values considered

�/� 0.02, 0.05, 0.1, 0.2, 0.3, 0.5
Ł/H 0.1, 0.2, 0.5, 1.0, 2.0, 5.0
r 0.0, 0.8
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(albeit without any measurement error), the required factor
of safety may be reduced if more samples are taken, or if
the sample is taken closer to the wall, resulting in a more
accurate characterisation of the soil.
Figure 3(b) shows the estimated probability of failure for

the same conditions as in Fig. 3(a), except that now the
friction angle and unit weight fields are strongly correlated

(r ¼ 0.8). The main effects of introducing correlation
between the two fields are: (a) slightly reducing the average
wall reaction; and (b) significantly reducing the wall reaction
variance (correlation between ‘input’ parameters tends to
reduce variance in the ‘output’). These two effects lead to a
reduction in failure probability, which leads in turn to a
reduction in the required factor of safety for the same target

2H

H

H

2H

H

H

(b)

(a)

Fig. 2. Active earth displacements for two different possible soil friction angle field realisations (both
with Ł/H 1 and �/� 0.3): (a) K0 held spatially constant at 0.5; (b) K0 1 2 sin�9 is a spatially
random field derived from �9
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failure probability. For example, the required factor of safety
in the case of strongly correlated fields with V > 0.3 is only
F > 2 for a probability of failure of 5%.

Figure 4 shows the estimated probability of failure, p̂pf , for
a coefficient of variation of 20% against the correlation
length, Ł/H, for the two cases of (a) independence between
the friction angle and unit weight fields, and (b) strong
correlation between the fields. Notice that, for the correlated
fields of Fig. 4(b), the probability of failure is negligible for
all F > 2 when the coefficient of variation is 20%.

Of interest in Fig. 4 is the fact that there is a ‘worst case’
correlation length, where the probability of failure reaches a
maximum. A similar worst case is seen in all of the soil
coefficients of variation considered. This worst-case correla-
tion length is typically of the order of the depth of the wall
(Ł ¼ 0.5H to Ł ¼ H). The importance of this observation is
that this worst-case correlation length can be conservatively
used for reliability analyses in the absence of improved

information. As the correlation length is quite difficult to
estimate in practice, requiring substantial data, a method-
ology that does not require its estimation is preferable.

CONCLUSIONS
On the basis of this simulation study, the following

observations can be made:

(a) The behaviour of a spatially variable soil mass is
considerably more complex than suggested by the
simple models of Rankine and Coulomb. The tradi-
tional approach to compensating for this model error is
to appropriately factor the lateral load predicted by the
model.

(b) The failure mode of the soil in the active case suggests
that the failure surface is controlled by high friction
angle regions when K0 is defined according to Jaky’s
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Fig. 3. Estimated probability that actual load exceeds design load, p̂pf , for Ł/H 1: (a) �9 and ª fields are independent
(rr 0); (b) the two fields are strongly correlated (rr 0.8)
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formula (and is thus spatially variable). When K0 is
held spatially constant, the failure surface tends to pass
preferentially through the low friction angle regions.

(c) Taking the friction angle and unit weight fields to be
independent is conservative, in that it leads to higher
estimated probabilities of failure.

(d) In the case when the friction angle and unit weight
fields are taken to be independent, and when the soil is
sampled at a single point at a moderate distance from
the wall, the probabilities of failure are quite high, and
a factor of safety of about 2.0–3.0 is required to
maintain a reasonable reliability (95%), unless it is
known that the coefficient of variation for the soil is
less than about 20%. Since, for larger coefficients of
variation, the required factors of safety are above those
recommended by, say, the Canadian Foundation En-
gineering Manual (CFEM), the importance of a more
than minimal site investigation is highlighted.

(e) Assuming a strong correlation between the friction
angle and unit weight fields leads to factors of safety
that are more in line with those recommended by
CFEM. However, further research is required to
determine whether (and under what conditions) this
strong correlation should be depended upon in a design.

( f ) As has been found for a number of different classical
geotechnical problems (e.g. differential settlement and
bearing capacity), a worst-case scale of fluctuation
exists for the active earth pressure problem, which is of
the order of the retaining wall height. The important
implication of this observation is that the scale of
fluctuation need not be estimated; the worst-case scale
can be used to yield a conservative design at a target
reliability. This is a practical advantage, because the
scale of fluctuation is generally difficult and expensive
to estimate accurately, requiring a large number of
samples.

In summary, there is much that still needs to be investigated
to fully understand the probabilistic active behaviour of
retained soils. In particular, the effect of sampling intensity
on design reliability, and the type of sample average best
suited to represent the effective soil property, are two areas
that must be investigated further, using this study as a
basis, before a formal reliability-based design code can be
developed.
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NOTATION
E Young’s modulus
F factor of safety

G(ex) standard normal (Gaussian) random field
H depth of retaining wall

Ka active earth pressure coefficient
K0 coefficient of earth pressure at rest

n number of realisations
pf probability of failure, i.e. P[Pt . FPa]
Pa active lateral load on retaining wall predicted by Rankine
Pt true lateral load on retaining wall (approximated by

RFEM)
R retaining wall design resistance, FPa

V coefficient of variation, �/�

ex spatial coordinate or position
ª unit weight
ª̂ª estimated unit weight
Ł correlation length
� random field mean
�ª mean unit weight

�tan�9 mean of tangent of drained friction angle
�ln ª mean of logarithm of unit weight

�ln tan �9 mean of logarithm of tangent of drained friction angle
� Poisson’s ratio
r point-wise correlation between ln ª and ln(tan�9) random

fields
� random field standard deviation

�ln ª standard deviation of logarithm of unit weight
�ln tan �9 standard deviation of the logarithm of the tangent of the

drained friction angle
�9 effective stress

e� vector between two points in a random field
�9 drained internal friction angle
�̂�9 estimated drained internal friction angle
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