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Resistance factors for settlement design

Gordon A. Fenton, D.V. Griffiths, and W. Cavers

Abstract: To control serviceability problems arising from excessive settlement of shallow footings, geotechnical design
codes generally include specifications regarding maximum settlement, which often govern the footing design. Once the
footing has been designed and constructed, the actual settlement it experiences on a real three-dimensional soil mass can
be quite different than expected, due to the soil’s spatial variability. Because of this generally large variability (compared
to other engineering materials, such as concrete and steel) and because this particular serviceability limit state often
governs the design, it makes sense to consider a reliability-based approach to settlement design. This paper looks in some
detail at a load and resistance factor design (LRFD) approach to limiting footing settlement. In particular, the resistance
factors required to achieve a certain level of settlement reliability as a function of soil variability and site investigation
intensity are determined analytically using random field theory. Simplified approximate relationships are proposed and
tested using simulation via the random finite element method. It is found that the simplified relationships are validated
both by theory and simulation and so can be used to augment the calibration of geotechnical LRFD code provisions with
respect to shallow foundation settlement.
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Résumé : Afin de contrôler les problèmes de durée de service résultant du tassement excessif des semelles superficielles,
les codes de conception géotechnique incluent généralement des spécifications concernant le tassement maximal qui
souvent régissent la conception de semelles. Une fois que la semelle a été conçue et construite, le tassement réel qu’elle
subit sur un massif de sol tri-dimensionnel en nature peut être bien différent de celui attendu, à cause de la variabilité
spatiale du sol. Parce que cette variabilité est généralement grande (comparée aux autres matériaux d’ingénieur tels
que le béton et l’acier), et parce que cette durée particulière de service basée sur l’état limite régit la conception, il est
raisonnable de considérer une approche basée sur la fiabilité pour le calcul du tassement. Cet article regarde en détail une
approche de coefficients de charge et de résistance pour la conception (LRFD) pour le tassement limite de semelle. En
particulier, on a déterminé de façon analytique au moyen de la théorie de champ aléatoire les facteurs de résistance requis
pour atteindre un certain niveau de fiabilité de tassement en fonction de la variabilité du sol et de l’intensité de l’étude du
terrain. On propose des relations approximatives simplifiées et on les a testées au moyen de simulations par la méthode
d’éléments finis aléatoires. On trouve que les relations simplifiées sont validées tant par la théorie que par la simulation, et
peuvent être utilisées pour accroître le calibrage des dispositions des codes de LRFD géotechnique concernant le tassement
de fondation superficielle.

Mots clés : conception basée sur la fiabilité, tassement, géotechnique, fondation superficielle, champ aléatoire, probabilité.

[Traduit par la Rédaction]

Introduction

Reliability-based geotechnical design issues

In an effort to harmonize with structural codes, geotechni-
cal design codes around the world are beginning to migrate to-
wards some form of reliability-based design (RBD). Significant
steps in this direction can be found in, for example, Eurocode
7 (2004), Australian Standard AS 4678 (2002), NCHRP Report
507 (2004), and the Canadian Foundation Engineering Manual
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(1992). These RBD provisions are most often presented in the
form of a limit states design (LSD) to define critical failure states
combined with load and resistance factors calibrated to achieve
the target reliabilities associated with the various limit states.
The use of load and resistance factors is generally referred to
as load and resistance factor design (LRFD).

By and large, the random characteristics of loads or “actions”
in civil engineering projects are fairly well known and therefore
load factors are reasonably well established. On the resistance
side, for most common structural materials, representative tests
can easily be performed, and have been, to establish material
property distributions that apply with reasonable accuracy any-
where that the material is used. Thus, resistance factors for
materials such as concrete, steel, and wood have been known
for decades.

Unfortunately, the development of resistance factors for use
in geotechnical engineering is much more difficult than for
quality-controlled engineering materials such as concrete, steel,
or wood. For example, while the mean strength of a batch of
30 MPa concrete delivered to a site in one city might differ by
5–10% from a batch delivered to a site in a second city, the
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soil strengths at the two sites may easily differ by orders of
magnitude. A significant advantage of designing using quality-
controlled materials is that the general form and, in particular,
the variance of the material property distribution is well enough
accepted by the engineering profession that only a few samples
of the material are deemed necessary to ensure design require-
ments are met. That is, engineers rely on an a priori estimate of
the material variance, which means that testing can be aimed at
ensuring only that the mean material resistance is sufficiently
high (the number of samples taken is usually far too few to ac-
curately estimate the variance). This is essentially a hypothesis
test on the mean with variance known. Using this test to ensure
that design requirements are met, combined with the known
distributions and resulting codified load and resistance factors,
is sufficient to provide a reasonably accurate reliability-based
design.

Contrast the knowledge regarding the distribution of, say,
concrete with that of soils. In analogy to the above discussion, it
would be nice to have a reasonably accurate a priori estimate of
soil property variance, so that only the mean soil property would
have to be determined via a site investigation. Such an a priori
estimate of variance would involve sampling many sites across
the world – some in gravel, some in swamps, some in rock,
some in clay, sand, and so on – and then estimating the vari-
ance across these samples. This a priori variance would be very
large, and this has two implications: first, more samples would
be required to accurately estimate the mean at a site, and second,
and probably more importantly, the resulting reliability-based
designs would often be overly conservative and expensive. That
is, this “worst case” a priori variance for soils would generally
be much larger than the actual variance at a single site, which
would typically lead to overdesign to achieve a certain reliabil-
ity. Nevertheless, an a priori variance for soils would be of some
value, particularly in situations where the site investigation is
insufficient to estimate the variance, or for preliminary designs.
In addition, it is better to start out on the safe side and refine the
design as sufficient information is gathered.

The above argument suggests that to achieve efficient
reliability-based geotechnical designs, the site investigation
must be intensive enough to allow for the estimation of both
the soil mean and variance – this level of site investigation in-
tensity is typically what is aimed for in modern geotechnical
codes, with varying degrees of success (for example, Australian
Standard AS 4678 (2002) specifies three different investigation
levels associated with three different reliability levels). To date,
however, little guidance is provided on how to determine “char-
acteristic” design values for the soil on the basis of the gathered
data, nor on how to use the estimated variance to adjust the
design.

Another complicating factor, which is more of a concern
in soils than in other quality-controlled materials, is that of
spatial variability and its effect on design reliability. Soil
properties often vary markedly from point to point and this vari-
ability can have quite different importance for different geotech-
nical issues. For example, footing settlement, which depends
on an average property under the footing, is only moderately
affected by spatial variability, while slope stability, which in-
volves the path of least resistance, is more strongly affected by
spatial variability. In this paper, spatial variability will be simply
characterized by a parameter referred to here as the correlation

length – small correlation lengths imply more rapidly varying
properties, and so on. To adequately characterize the proba-
bilistic nature of a soil and arrive at reasonable reliability-based
designs three parameters need to be estimated at each site: the
mean, the variance, and the correlation length.

Fortunately, evidence compiled by the authors in the past
indicates that a “worst case” correlation length typically exists.
This means that, in the absence of sufficient data, this worst case
can be used in reliability calculations. It will generally be true
that insufficient data are collected at a site to reasonably estimate
the correlation length, so the worst case value is appropriate to
use (despite the fact that this is somewhat analogous to using
the worst case a priori variance discussed above).

Once the random soil at a site has been characterized in some
way, the question becomes how should this information be used
in a reliability-based design? In this paper, a limit state design
approach will be considered, where a square footing is placed
on a three-dimensional soil mass and the task is to design the
footing to have a sufficiently high reliability against excessive
settlement. Thus, the limit state in question is a serviceability
limit state. In structural design, serviceability limit states are
investigated using unfactored loads and resistances. In keeping
with this, both the Eurocode 7 (2004) and the Australian Stan-
dard AS 2159 (1995) specify unit resistance factors for service-
ability limit states. The Australian Standard AS 5100.3 (2004)
states on page 21 that “a geotechnical reduction factor need not
be applied” for serviceability limit states.

As a result of the inherently large variability of soils and be-
cause settlement often governs a design, it is the opinion of the
authors that properly selected resistance factors should be used
for both ultimate and serviceability limit states. The Australian
Standard AS 4678 (2002), for example, agrees with this opin-
ion and, in fact, distinguishes between resistance factors for
ultimate limit states and serviceability limit states. The factors
for the latter are closer to 1.0, reflecting the reduced reliabil-
ity required for serviceability issues. Although the Canadian
Foundation Engineering Manual (1992) suggests the use of a
“performance factor” (foundation capacity reduction factor) of
unity for settlement, it goes on to say on page 147 “However,
in view of the uncertainty and great variability in in situ soil-
structure stiffnesses, Meyerhof (1982) has suggested that a per-
formance factor of 0.7 should be used for an adequate reliability
of serviceability estimates.”

If resistance factors are to be used, how should they be se-
lected so as to achieve a certain reliability? Statistical methods
suggest that the resistance factors should be adjusted until a suf-
ficiently small fraction of possible realizations of the soil enter
the limit state being designed against. Unfortunately, there is
only one realization of each site and, since all sites are different,
it is difficult to apply statistical methods to this problem. For
this reason, geotechnical reliability-based code development
has largely been accomplished by calibration with past expe-
rience as captured in previous codes. This is quite acceptable,
since design methodologies have evolved over many years to
produce a socially acceptable reliability, and this encapsulated
information is very valuable – see, for example, Vick’s (2002)
discussion of the value of judgement in engineering.

On the other hand, a reliability-based design code derived
purely from deterministic codes cannot be expected to provide
the additional economies that a true reliability-based design
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code could provide, e.g., by allowing the specification of the
target reliability (lower reliability for less important structures,
etc.), or by improving the design as uncertainty is reduced, and
so on. To attain this level of control in a reliability-based de-
sign code, probabilistic modeling and (or) simulation of many
possible soil regimes should also be employed to allow the in-
vestigation of the effect that certain design parameters have on
system reliability. This is an important issue – it means that
probabilistic modeling is necessary if reliability-based design
codes are to evolve beyond being mirror images of the deter-
ministic codes they derive from. The randomness of soils must
be acknowledged and propertly accounted for.

This paper presents the results of a study in which a reliability-
based settlement design approach is proposed and investigated
via simulation using the random finite element method (RFEM).
In particular, the effect of a soil’s spatial variability and site in-
vestigation intensity on the resistance factors is quantified. The
results of the paper can and should be used to improve and
generalize “calibrated” code provisions based purely on past
experience.

Random finite element method

A specific settlement design problem will be considered here
to investigate the settlement probability distribution of footings
designed against excessive settlement. The problem considered
is that of a rigid rough square pad footing founded on the surface
of a three-dimensional linearly elastic soil mass underlain by
bedrock at depth H . Although only elastic settlement is specif-
ically considered, the results can include consolidation settle-
ment as long as the combined settlement can be adequately
represented using an effective elastic modulus field. To the ex-
tent that the elastic modulus itself is a simplified representation
of a soil’s inverse compressibility, which is strain level depen-
dent, the extension of the approximation to include consolida-
tion settlement is certainly reasonable and is as recommended
in the Canadian Highway Bridge Design Code Commentary
(2000).

The settlement of a rigid footing on a three-dimensional soil
mass is estimated using a linear finite element analysis. The
mesh selected is 64 elements by 64 elements in plan by 32
elements in depth. Eight-node hexahedral elements, each cubic
with side length 0.15 m are used yielding a soil domain of size
9.6 × 9.6 m in plan by 4.8 m in depth. Note that metric units
are used in this paper, rather than making it nondimensional,
since footing design will be based on a maximum tolerable
settlement, which is specified in m. Because the stiffness matrix
corresponding to a mesh of size 64 × 64 × 32 occupies about
4 GB of memory, a preconditioned conjugate gradient iterative
solver, which avoids the need to assemble the global stiffness
matrix, is employed in the finite element code. A max-norm
relative error tolerance of 0.005 is used to determine when the
iterative solver has converged to a solution.

The finite element model was tested (see also Griffiths and
Fenton (2005)) in the deterministic case (uniform elastic soil
properties) to validate its accuracy and was found to be about
20% stiffer (smaller settlements) than that derived analytically
(see, e.g., Milovic (1992)). Using other techniques, such as
selectively reduced integration, nonconforming elements, and
20-node elements did not significantly affect the discrepancy

between these results and Milovic’s. The “problem” is that the
finite elements truncate the singular stresses that occur along
the edge of a rigid footing, leading to smaller settlements than
predicted by theory. In this respect, Seyček (1991) compared
real settlements to those predicted by theory and concluded
that predicted settlements are usually considerably higher than
real settlements. This is because the true stresses measured in
the soil near the footing edge are finite and significantly less
than the singular stresses predicted by theory. Seyček improves
the settlement calculations by reducing the stresses below the
footing. Thus, the finite element results included here are ap-
parently closer to actual settlements than those derived analyt-
ically, although a detailed comparison to Seyček’s has yet to
be performed by the authors. However, it is not believed that
these possible discrepancies will make a significant difference
to the probabilistic results of this paper since the probability of
failure (excessive settlement) involves a comparison between
deterministic and random predictions arising from the same fi-
nite element model, thus cancelling out possible bias.

The rigid footing is assumed to have a rough interface with
the underlying soil – no relative slip is permitted – and rotation
of the footing is not permitted. Only square footings, of dimen-
sion B × B are considered, where the required footing width
B is determined during the design phase (to be discussed in the
next section). Once the required footing width has been found,
the design footing width must be increased to the next larger
element boundary because the finite element mesh is fixed and
footings must span an integer number of elements. For exam-
ple, if the required footing width is 2.34 m, and elements have
dimension �x = �y = 0.15 m square, then the design foot-
ing width must be increased to 2.4 m (since this corresponds to
16 elements, rather than the 15.6 elements that 2.34 m would
entail). This corresponds roughly to common design practice,
where element dimensions are increased to an easily measured
quantity.

Once the design footing width has been found, it must be
checked to ensure that it is physically reasonable, both econom-
ically and within the finite element model. First of all, there will
be some minimum footing size. In this study the footings cannot
be less than 4 × 4 elements in size – for one thing loaded areas
smaller than this tend to have significant finite element errors;
for another, they tend to be too small to construct. For example,
if an element size of 0.15 m is used, then the minimum footing
size is 0.6 × 0.6 m, which is not very big. French (1999) rec-
ommends a lower bound on footing size of 0.6 m and an upper
economical bound of 3.7 m. If the design footing width is less
than the minimum footing width, it is set equal to the minimum
footing width. Secondly, there will be some maximum foot-
ing size. A spread footing bigger than about 4 m square would
likely be replaced by some other foundation system (piles, mat,
or raft). In this program, the maximum footing size is taken
to be equal to 2/3 of the finite element mesh width. This limit
has been found to result in less than a 1% error relative to
the same footing founded on a mesh twice as wide, so bound-
ary conditions are not significantly influencing the results. If
the design footing width exceeds the maximum footing width,
then the probabilistic interpretation becomes somewhat com-
plicated, since a different design solution would presumably be
implemented. From the point of view of assessing the reliability
of the “designed” spread footing, it is necessary to decide if this
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excessively large footing design would correspond to a success
or to a failure. It is assumed in this study that the subsequent
design of the alternative foundation would be a success, since
it would have its own (high) reliability.

In all of the simulations performed in this study, the lower
limit on the footing size was never encountered; implying that
for the choices of parameters selected in this study, the proba-
bility of a design footing being less than 0.6×0.6 in dimension
was very remote. Similarly, the maximum footing size was not
exceeded in any but the most severe parameter case considered
(minimum sampling, lowest resistance factor, highest coeffi-
cient of variation), where it was only exceeded in 2% of the
possible realizations. Thus, the authors were satisfied that the
finite element analysis would give reasonably accurate settle-
ment predictions over the entire study.

The soil property of primary interest to settlement is elastic
modulus, E, which is taken to be spatially random and may rep-
resent both the initial elastic and consolidation behaviour. Its
distribution is assumed to be lognormal for two reasons: the first
is that a geometric average tends to a lognormal distribution by
the central limit theorem and the effective elastic modulus, as
“seen” by a footing, was found to be closely represented by a ge-
ometric average in Fenton and Griffiths (2002), and the second
reason is that the lognormal distribution is strictly non-negative,
which is physically reasonable for elastic modulus. The lognor-
mal distribution has two parameters, µln E and σln E that can be
estimated by the sample mean and sample standard deviation
of observations of ln(E). They can also be obtained from the
mean and standard deviation of E using the transformations

σ 2
ln E

= ln (1 + VE
2)[1a]

µln E = ln (µE) − 1
2σ 2

ln E
[1b]

where VE = σE/µE is the coefficient of variation of the elastic
modulus field. A Markovian spatial correlation function, which
gives the correlation coefficient between log-elastic modulus
values at points separated by the lag vector, τ∼, is used in this

study

[2] ρln E(τ∼) = exp

(
−

2|τ∼|
θln E

)

in which τ∼ = x∼ − x∼
′ is the vector between spatial points

x∼ and x∼
′, and |τ∼| is the absolute length of this vector (the

lag distance). In this paper, the word “correlation” refers to
the correlation coefficient. The results presented here are not
particularly sensitive to the choice in functional form of the
correlation – the Markov model is popular because of its sim-
plicity. The correlation function decay rate is governed by the
so-called correlation length, θln E , which, loosely speaking, is
the distance over which log-elastic moduli are significantly cor-
related (when the separation distance |τ∼| is greater than θln E ,

the correlation between ln E(x∼) and ln E(x∼
′) is less than 14%).

The correlation structure is assumed to be isotropic in this study,
which is appropriate for investigating the fundamental stochas-
tic behaviour of settlement. Anisotropic studies are more ap-
propriate for site-specific analyses and for refinements to this
study. In any case, anisotropy is not expected to have a large

influence on the results of this paper owing to the averaging
effect of the rigid footing on the properties it “sees” beneath it.

Poisson’s ratio, having only a relatively minor influence on
settlement, is assumed to be deterministic and is set at 0.3 in
this study.

Realizations of the random elastic modulus field are produced
using the local average subdivision (LAS) method (Fenton and
Vanmarcke 1990). Specifically, LAS produces a discrete grid
of local averages, G(xi∼

), of a standard Gaussian random field

having correlation structure given by eq. [2], where xi∼
are the

coordinates of the centroid of the ith grid cell. These local av-
erages are then mapped to finite element properties according
to

[3] E(xi∼
) = exp

[
µln E + σln EG(xi∼

)

]

(which assumes that the centroids of the random field cells and
the finite elements coincide, as they do in this study).

Much discussion of the relative merits of various methods of
representing random fields in finite element analysis has been
carried out in recent years (see, for example, Li and Der Ki-
ureghian 1993). While the spatial averaging discretization of
the random field used in this study is just one approach to the
problem, it is appealing in the sense that it reflects the simplest
idea of the finite element representation of a continuum, as well
as the way that soil samples are typically taken and tested in
practice, i.e., as local averages. With respect to the discretiza-
tion of random fields for use in finite element analysis, Matthies
et al. (1997) makes the comment on page 294 that “One way of
making sure that the stochastic field has the required structure
is to assume that it is a local averaging process.”, refering to the
conversion of a nondifferentiable to a differentiable (smooth)
stochastic process. Matthies further goes on to say on page 305
that the advantage of the local average representation of a ran-
dom field is that it yields accurate results even for rather coarse
meshes.

Figure 1 illustrates the finite element mesh used in the study
and Fig. 2 shows a cross-section through the soil mass under
the footing for a typical realization of the soil’s elastic modulus
field. Figure 2 also illustrates the boundary conditions.

Reliability-based settlement design

The goal of this paper is to propose and investigate a
reliability-based design methodology for the serviceability limit
state of footing settlement. Footing settlement is predicted here
using a modified Janbu (1956) relationship, and this is the basis
of the design used in this paper:

[4] δp = u1
q̂B

Ê

where δp is the predicted footing settlement, q̂ = P̂ /B2 is the
estimated stress applied to the soil by the estimated load, P̂ ,
acting over footing area B × B, Ê is the (possibly drained)
estimate of elastic modulus underlying the footing, and u1 is
an influence factor which includes the effect of Poisson’s ratio
(ν = 0.3 in this study). The estimated load, P̂ , is often a nominal
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Fig. 1. Finite element mesh with one square footing.

load computed from the supported live and dead loads, while the
estimated elastic modulus, Ê, is usually a cautious estimate of
the mean elastic modulus under the footing obtained by taking
laboratory samples or by in-situ tests, such as CPT. In terms of
the footing load, P̂ , the settlement predictor thus becomes

[5] δp = u1
P̂

BÊ

The above relationship is somewhat modified from that given
by Janbu (1956) and Christian and Carrier (1978) in that the in-
fluence factor, u1, is calibrated specifically for a square rough
rigid footing founded on the surface of an elastic soil using the
same finite element model that is later used in the Monte Carlo
simulations. This is done to remove bias (model) errors and
concentrate specifically on the effect of spatial soil variability
on required resistance factors. In practice, this means that the
resistance factors proposed in this paper are upper bounds, ap-
propriate for use when bias and measurement errors are known
to be minimal.

The calibration of u1 is done by computing the deterministic
(nonrandom) settlement of an elastic soil with elastic modu-
lus Ê and Poisson’s ratio ν under a square rigid rough footing
supporting load P̂ using the finite element program. Once the
settlement is obtained, eq. [5] can be solved for u1. Repeat-
ing this over a range of H/B ratios leads to the curve shown
in Fig. 3. (Note that this deterministic calibration was carried
out over a larger range of mesh dimensions than indicated by
Fig. 1.) A very close approximation to the finite element results
is given by the fitted relationship (obtained by consideration of
the correct limiting form and by trial-and-error for the coeffi-
cients)

[6] u1 = 0.61
(

1 − e−1.18H/B
)

which is also shown on Fig. 3.

Using eq. [6] in eq. [5] gives the following settlement pre-
diction:

[7] δp = 0.61
(

1 − e−1.18H/B
)( P̂

BÊ

)

The reliability-based design goal is to determine the footing
width, B, such that the probability of exceeding a specified
tolerable settlement, δmax, is acceptably small. That is, to find
B such that

[8] P [δ > δmax] = pf = pmax

where δ is the actual settlement of the footing as placed (which
will be considered here to be the same as designed). Design
failure is assumed to have occurred if the actual footing settle-
ment, δ, exceeds the maximum tolerable settlement, δmax. The
probability of design failure is pf , and pmax is the maximum
acceptable risk of design failure.

A realization of the footing settlement, δ, is determined here
using a finite element analysis of a realization of the random
soil. For u1 calibrated to the finite element results, δ can also
be computed from

[9] δ = u1
P

BEeff

where P is the actual footing load and Eeff is the effective elastic
modulus as seen by the footing (i.e., the uniform value of elastic
modulus that would produce a settlement identical to the actual
footing settlement). Both P and Eeff are random variables.

One way of achieving the desired design reliability is to in-
troduce a load factor, α ≥ 1, and a resistance factor, φ ≤ 1,
and then finding B, α, and φ that satisfy both eq. [8] and eq. [5]
with δ = δmax. In other words, find B and α/φ such that

[10] δmax = u1

(
αP̂

BφÊ

)

and

[11] P

[
u1

P

BEeff
> u1

(
αP̂

BφÊ

)]
= pmax

At most, two unknowns can be found uniquely from these
two equations. For serviceability limit states a load factor of 1.0
is commonly used, and α = 1 will be used here. (Note: only
the ratio α/φ need actually be determined for the settlement
problem.)

Given α/φ, P̂ , Ê, and H , eq. [10] is efficiently solved for B
using 1-pt iteration:

[12] Bi+1 = 0.61
(

1 − e−1.18H/Bi

)( αP̂

δmaxφÊ

)

for i = 1, 2, . . . until successive estimates of B are sufficiently
similar.A reasonable starting guess isB1 = 0.4(αP̂ )/(δmaxφÊ).

In eq. [11], the random variables u1 and B are common to
both sides of the inequality and so can be canceled. It will also
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Fig. 2. Cross-section through a realization of the random soil underlying the footing. Lighter soils are softer.

Fig. 3. Calibration of u1 using finite element model.
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be assumed that the footing load is lognormally distributed and
that the estimated load, P̂ , equals the (nonrandom) median load,
that is

[13] P̂ = exp (µln P )

Setting the value of P̂ to the median load considerably sim-
plifies the theory in the sequel, but it should be noted that the
definition of P̂ will directly affect the magnitude of the esti-
mated resistance factors. The lognormal distribution was se-
lected because it results in loads that are strictly non-negative
(uplift problems should be dealt with separately and not han-
dled via the tail end of a normal distribution assumption). The
results to follow should be similar for any reasonable load dis-
tribution (e.g. Gamma, Chi-Square, etc.) having the same mean
and variance.

Collecting all remaining random quantities leads to the sim-
plified design probability

[14] P

[
P

Ê

Eeff
>

α

φ
eµln P

]
= pmax

The estimated modulus, Ê, and the effective elastic modulus,
Eeff , will also be assumed to be lognormally distributed. Under
these assumptions, if W is defined as

[15] W = P
Ê

Eeff

then W is also lognormally distributed, so that

[16] ln W = ln P + ln Ê − ln Eeff

is normally distributed with mean

[17] µln W = µln P + µln Ê − µln Eeff

It is assumed that the load distribution is known, so that µln P

and σ 2
ln P

are known. The nature of the other two terms on the
right hand side will now be investigated.

Assume that Ê is estimated from a series of m soil samples
that yield the observations Eo

1 , Eo
2 , . . . , Eo

m. To investigate
the nature of this estimate, it is constructive to consider first the
effective elastic modulus, Eeff , as seen by the footing. Anal-
ogous to the estimate for Ê, it can be imagined that the soil
volume under the footing is partitioned into a large number of
soil “samples” (although most of them, if not all, will remain
unsampled), E1, E2, . . . , En. Investigations by Fenton and
Griffiths ( (2002)) suggest that the effective elastic modulus,
as seen by the footing, Eeff , is a geometric average of the soil
properties in the block under the footing, that is

[18] Eeff =
(

n∏
i=1

Ei

)1/n

= exp

(
1

n

n∑
i=1

ln Ei

)

If Ê is to be a good estimate of Eeff , which is desirable, then
it should be similarly determined as a geometric average of the
observed samples Eo

1 , Eo
2 , . . . , Eo

m,

[19] Ê =
⎛
⎝ m∏

j=1

Eo
j

⎞
⎠

1/m

= exp

⎛
⎝ 1

m

m∑
j=1

ln Eo
j

⎞
⎠

since this estimate of Eeff is unbiased in the median, i.e., the
median of Ê is equal to the median of Eeff . This is a fairly
simple estimator, and no attempt is made here to account for the
location of samples relative to the footing. Note that if the soil
is layered horizontally and it is desired to specifically capture
the layer information, then eqs. [18] and [19] can be applied
to each layer individually; the final Ê and Eeff values are then
computed as harmonic averages of the layer values. Although
the distribution of a harmonic average is not simply defined, a
lognormal approximation is often reasonable.

Under these definitions, the means of µln Ê and µln Eeff are
identical

[20] µln Eeff = E [ln Eeff ] = µln E

[21] µln Ê = E
[
ln Ê

]
= µln E

where µln E is the mean of the logarithm of elastic moduli of
any sample. Thus, as long as eqs. [18] and [19] hold, the mean
of ln W simplifies to

[22] µln W = µln P

Now, attention can be turned to the variance of ln W . If the
variability in the load P is independent of the soil’s elastic
modulus field, then the variance of ln W is

[23] σ 2
ln W

= σ 2
ln P

+ σ 2
ln Ê

+ σ 2
ln Eeff

− 2 Cov
(

ln Ê, ln Eeff

)

The variances of ln Ê and ln Eeff can be expressed in terms
of the variance of ln E using two variance reduction functions,
γ o and γ , defined as follows:

γ o(m) = 1

m2

m∑
i=1

m∑
j=1

ρo
ij[24a]

γ (n) = 1

n2

n∑
i=1

n∑
j=1

ρij[24b]

where ρo
ij is the correlation coefficient between ln Eo

i and ln Eo
j ,

and ρij is the correlation coefficient between ln Ei and ln Ej .
These functions can be computed numerically once the loca-
tions of all soil “samples” are known. Both γ o(1) and γ (1)

have a value of 1.0 when only one sample is used to specify Ê
or Eeff , respectively (when samples are “point” samples, then
one sample corresponds to zero volume; however, in this paper,
it is assumed that there is some representative sample volume
from which the mean and variance of the elastic modulus field
are estimated and this corresponds to the “point” measure). As
the number of samples increases, the variance reduction func-
tion decreases towards zero at a rate inversely proportional to
the total sample volume (see Vanmarcke 1984). If the volume
of the soil under the footing is B×B×H , then a reasonable ap-
proximation to γ (n) is obtained by assuming a separable form:

[25] γ (n) � γ1(2B/θln E)γ1(2B/θln E)γ1(2H/θln E)
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where γ1(a) is the 1-D variance function corresponding to a
Markov correlation:

[26] γ1(a) = 1

a2

(
a + e−a − 1

)
As an aside, Fenton and Griffiths (2002) suggest that the

depth to the bedrock, H , be limited to no more than about 10B
in the calculation of the soil volume under the footing. However,
the effective strain zone is generally quite a bit shallower, so a
maximum depth of 2B to 4B might be more appropriate as a
limitation on H .

An approximation to γ o(m) is somewhat complicated by the
fact that samples for Ê are likely to be collected at separate
locations. If the observations are sufficiently separated so that
they can be considered independent (e.g., separated by more
than θln E), then γ o(m) = 1/m. If they are collected from within
a contiguous volume, V o, then

[27] γ o(m) � γ1(2R/θln E)γ1(2R/θln E)γ1(2H/θln E)

where the total plan area of soil sampled is R×R (for example,
a CPT sounding can probably be assumed to be sampling an
effective area equal to about 0.2 × 0.2 m2, so that R = 0.2 m).
The true variance reduction function will be somewhere in be-
tween. In this paper, the soil is sampled by examining one or
more columns of the finite element model, and so for an in-
dividual column, R × R is replaced by �x × �y, which are
the plan dimensions of the finite elements. Now eq. [27] can
be used to obtain the variance reduction function for a single
column. If more than one column is sampled, then

[28] γ o(m) � γ1(2�x/θln E)γ1(2�y/θln E)γ1(2H/θln E)

neff

where neff is the effective number of independent columns sam-
pled. If the sampled columns are well separated (i.e., by more
than the correlation length), then they could be considered in-
dependent and neff would be equal to the number of columns
sampled. If the columns are closely clustered (relative to the
correlation length), then neff would decrease towards 1. The
actual number is somewhere in between and can be estimated
by judgement.

With these results

σ 2
ln Ê

= γ o(m)σ 2
ln E

[29a]

σ 2
ln Eeff

= γ (n)σ 2
ln E

[29b]

The covariance term in eq. [23] is computed from

Cov
(

ln Ê, ln Eeff

)
= 1

mn

m∑
j=1

n∑
i=1

Cov
(

ln Eo
j , ln Ei

)
[30]

= σ 2
ln E

⎛
⎝ 1

mn

m∑
j=1

n∑
i=1

ρ′
ij

⎞
⎠

= σ 2
ln E

ρ′
ave

where ρ′
ij is the correlation coefficient between ln Eo

j and ln Ei ,
andρ′

ave is the average of all of these correlations. If the estimate,
ln Ê, is to be at all useful in a design, the value of ρ′

ave should
be reasonably high. However, its magnitude depends on the
degree of spatial correlation (measured by θln E) and the distance
between the observations Eo

i and the soil volume under the
footing. The correlation function of eq. [2] captures both of
these effects. That is, there will exist an “average” distance τ ′

ave
such that

[31] ρ′
ave = exp

(−2τ ′
ave

θln E

)

and the problem is to then find a reasonable approximation to
τ ′

ave if the numerical calculation of eq. [30] is to be avoided.
The approximation considered in this study is that τ ′

ave is de-
fined as the average absolute distance between the Eo

i samples
and a vertical line below the center of the footing, with a sam-
ple taken anywhere under the footing to be considered to be
taken at the footing corner (e.g., at a distance B/

√
2 from the

centerline). This latter restriction is taken to avoid a perfect cor-
relation when a sample is taken directly at the footing centerline,
which would be incorrect. In addition, a side study performed
by the authors, which is not reported here, indicated that for all
moderate correlation lengths (θln E of the order of the footing
width) the true τ ′

ave differed by less than about 10% from the
approximation B/

√
2 for any sample taken under the footing.

Using these definitions, the variance of ln W can be written
as

[32] σ 2
ln W

= σ 2
ln P

+ σ 2
ln E

[
γ o(m) + γ (n) − 2ρ′

ave

] ≥ σ 2
ln P

The limitation σ 2
ln W

≥ σ 2
ln P

is introduced because it is possi-
ble, using the approximations suggested above, for the quantity
inside the square brackets to become negative, which is physi-
cally inadmissable. It is assumed that if this happens, the sam-
pling has reduced the uncertainty in the elastic modulus field
essentially to zero.

With these results in mind the design probability becomes

[33] P

[
P

Ê

Eeff
>

α

φ
eµln P

]
= P

[
W >

α

φ
eµln P

]
= P [ln W > ln α − ln φ + µln P ] = 1 − �

(− ln φ

σln W

)
= pmax
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assuming α = 1, from which the required resistance factor, φ,
can be found as

[34] φ = exp
(−zpmaxσln W

)
where zpmax is the point on the standard normal distribution
having exceedance probability pmax. For pmax = 0.05, which
will be assumed in this paper, zpmax = 1.645.

It is instructive at this point to consider a limiting case,
namely where Ê is a perfect estimate of Eeff . In this case,
Ê = Eeff , which implies that m = n and the observations
Eo

1 , . . . coincide identically with the “samples” E1, . . .. In this
case, γ o = γ and ρ = 1, so that

[35] σ 2
ln W

= σ 2
ln P

from which the required resistance factor can be calculated as

[36] φ = exp
(−zpmaxσln P

)
For example, if pmax = 0.05 and the coefficient of variation

of the load is VP = 0.1, then φ = 0.85. Alternatively, for the
same maximum acceptable failure probability, if VP = 0.3,
then φ decreases to 0.62.

One difficulty with the computation of σ 2
ln Eeff

, which is ap-
parent in the approximation of eq. [25], is that it depends on
the footing dimension B. From the point of view of the design
probability, eq. [14], this means that B does not entirely disap-
pear, and the equation is still interpreted as the probability that a
footing of a certain size will fail to stay within the serviceability
limit state. The major implication of this interpretation is that
if eq. [14] is used conditionally to determine φ, then the design
resistance factor, φ, will have some dependence on the footing
size; this is not convenient for a design code (imagine designing
a concrete beam if φc varied with the beam dimension). Thus,
as is, eq. [14] should be used conditionally to determine the re-
liability of a footing against settlement failure once it has been
designed. The determination of φ must then proceed by using
the total probability theorem; that is, find φ such that

[37] pmax =
∫ ∞

0
P

[
W >

α

φ
P̂ | B

]
fB(b) db

where fB is the probability distribution of the footing width B.
The distribution of B is not easily obtained. It is a function of
H , P̂ , δmax, the parameters of Ê, and the load and resistance
factors, α and φ, see eq. [12], hence the value of φ is not easily
determined using eq. [37]. One possible solution is to assume
that changes in B do not have a great influence on the computed
value of φ and to take B = Bmed, where Bmed is the (nonran-
dom) footing width required by the median elastic modulus
using a moderate resistance factor of φ = 0.5 in eq. [12]. This
approach will be adopted in this paper and will be validated by
the simulation to be discussed in the next section.

Design simulations

As mentioned above, the resistance factor φ cannot be di-
rectly obtained by solving eq. [14], for a given B, simultane-
ously with eq. [10] since this would result in a resistance factor

dependent on the footing dimension. To find the value of φ to
be used for any footing size involves solving eq. [37]. Unfortu-
nately, this is not feasible since the distribution of B is unknown
(or at least, very difficult to compute). A simple solution is to
use Monte Carlo simulation to estimate the probability on the
right hand side of eq. [37] and then use the simulation results
to assess the validity of the simplifying assumption that Bmed
can be used to find φ using eq. [14]. In this paper, the RFEM
will be employed within a design context to perform the desired
simulation. The approach is described as follows:

(1) Decide on a maximum tolerable settlement, δmax. In this
paper, δmax = 0.025 m.

(2) Estimate the nominal footing load, P̂ , to be the median
load applied to the footing by the supported structure (it is
assumed that the load distribution is known well enough to
know its median, P̂ = eµln P = µP /

√
1 + V 2

P .

(3) Simulate an elastic modulus field, E(x∼), for the soil from

a lognormal distribution with specified mean, µE , vari-
ance, σ 2

E
, and correlation structure (eq. [2]) with correlation

length θln E . The field is simulated using the local average
subdivision (LAS) method (Fenton 1990), whose local av-
erage values are assigned to corresponding finite elements.

(4) “Virtually” sample the soil to obtain an estimate, Ê, of its
elastic modulus. In a real site investigation, the geotechni-
cal engineer may estimate the soil’s elastic modulus and
depth to firm stratum by performing one or more CPT or
SPT soundings. In this simulation, one or more vertical
columns of the soil model are selected to yield the elastic
modulus samples. That is, Ê is estimated using a geometric
average, eq. [19], where Eo

1 is the elastic modulus of the
top element of a column, Eo

2 is the elastic modulus of the
2nd to top element of the same column, and so on to the
base of the column. One or more columns may be included
in the estimate, as will be discussed shortly, and measure-
ment and model errors are not included in the estimate –
the measurements are assumed to be precise.

(5) Letting δp = δmax, and for given factors α and φ, solve
eq. [12] for B. This constitutes the footing design. Note
that design widths are normally rounded up to the next
most easily measured dimension (e.g., 1684 mm would
probably be rounded up to 1700 mm). In the same way, the
design value of B is rounded up to the next larger element
boundary, since the finite element model assumes footings
are a whole number of elements wide. (The finite element
model uses elements that are 0.15 m wide, so B is rounded
up to the next larger multiple of 0.15 m.)

(6) Simulate a lognormally distributed footing load, P , having
median P̂ and variance σ 2

P
.

(7) Compute the “actual” settlement, δ, of a footing of width
B under load P on a random elastic modulus field using
the finite element model. In this step, the virtually sam-
pled random field generated in step (3) above is mapped to
the finite element mesh, the footing of width B (suitably
rounded up to a whole number of elements wide) is placed
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Fig. 4. Sampling schemes considered in this study.

on the surface, and the settlement computed by finite ele-
ment analysis.

(8) If δ > δmax, then the footing design is assumed to have
failed.

(9) Repeat from step (3) a large number of times (n = 1000,
in this paper), counting the number of footings, nf , that
experienced a design failure. The failure probability is then
estimated as p̂f = nf /n.

By repeating the entire process over a range of possible val-
ues of φ, the resistance factor that leads to an acceptable prob-
ability of failure, pf = pmax, can be selected. This “optimal”
resistance factor will also depend on the following:

(1) the number and locations of sampled columns (analogous
to the number and locations of CPT/SPT soundings),

(2) the coefficient of variation of the soil’s elastic modulus,
VE ,

(3) the correlation length, θln E ,

and the simulation will be repeated over a range of values of
these parameters to see how they affect φ.

Five different sampling schemes will be considered in this
study, as illustrated in Fig. 4. The outer solid line denotes the
edge of the soil model, and the interior dashed line the location
of the footing. The small black squares show the plan locations
where the site is virtually sampled. It is expected that the quality
of the estimate of Eeff will improve for higher numbered sam-
pling schemes. That is, the probability of design failure will
decrease for higher numbered sampling schemes; everything
else being held constant.

Table 1 lists the other parameters, aside from sampling
schemes, varied in this study. In total 300 RFEM runs, each
involving 1000 realizations were performed. Based on 1000
independent realizations, the estimated failure probability, p̂f ,
has standard error

√
p̂f (1 − p̂f )/1000, which for a probability

level of 5% is 0.7%.

Simulation results

Figure 5 shows the effect of the correlation length on the
probability of failure for sampling scheme #1 (a single sampled
column at the corner of the site) and for VE = 0.5. The other
sampling schemes and values of VE displayed similarly shaped
curves. Of particular note in Fig. 5 is the fact that the probability
of failure reaches a maximum for an intermediate correlation
length, in this case when θln E � 10 m. This is as expected,
since for stationary random fields the values of Ê and Eeff will

Table 1. Input parameters varied in
the study while holding H = 4.8 m,
D = 9.6 m, µP = 1200 kN,
VP = 0.25, µE = 20 MPa, and
ν = 0.3 constant.

Parameter Values considered

VE 0.1, 0.2, 0.5
θln E (m) 0.1, 1.0 10.0, 100.0
φ 0.4, 0.5, 0.6, 0.7, 0.8

coincide for both vanishingly small correlation lengths (where
local averaging results in both becoming equal to the median)
and for very large correlation lengths (where Ê and Eeff become
perfectly correlated), and so the largest differences between
Ê and Eeff will occur at intermediate correlation lengths. The
true maximum could lie somewhere between θln E = 1 m and
θln E = 100 m in this particular study.

Where the maximum lies for arbitrary sampling patterns is
still unknown, but the authors expect that it is probably safe to
say that taking θln E approximately equal to the average distance
between sample locations and the footing center (but not less
than approximately the footing size) would yield suitably con-
servative failure probabilities. In this paper, the θln E = 10 m
results will be concentrated on since these yielded the most
conservative designs in this study.

Figure 6 shows how the estimated probability of failure varies
with resistance factor for the five sampling schemes considered
with VE = 0.2 and θln E = 10 m. This figure can be used for
design by drawing a horizontal line across at the target proba-
bility, pmax – to illustrate this, a light line has been drawn across
at pmax = 0.05 – and then reading off the required resistance
factor for a given sampling scheme. For pmax = 0.05, it can
be seen that φ � 0.62 for the “worst case” sampling scheme
#1. For all the other sampling schemes considered, the required
resistance factor is between about 0.67 and 0.69. Because the
standard error of the estimated pf values is 0.7% at this level,
the relative positions of the lines tend to be somewhat erratic.
What Fig. 6 is saying, essentially, is that at low levels of vari-
ability, increasing the number of samples does not greatly affect
the probability of failure.

When the coefficient of variation, VE , increases, the distinc-
tion between sampling schemes becomes more pronounced.
Figure 7 shows the failure probability for the various sampling
schemes at VE = 0.5 and θln E = 10 m. Improved sampling
now makes a significant difference to the required value of
φ, which ranges from φ � 0.46 for sampling scheme #1 to
φ � 0.65 for sampling scheme #5, assuming a target probabil-
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Fig. 5. Effect of correlation length, θln E , on probability of failure, pf = P [δ > δmax].

Fig. 6. Effect of resistance factor, φ, on probability of failure, pf = P [δ > δmax] for VE = 0.2 and θln E = 10 m.

ity of pmax = 0.05. The implications of Fig. 7 are that when soil
variability is significant, considerable design/construction sav-
ings can be achieved when the sampling scheme is improved.

The approximation to the analytical expression for the failure
probability can now be evaluated. For the case considered in
Fig. 7, VE = 0.5 and VP = 0.25, so that

σ 2
ln E

= ln (1 + VE
2) = 0.2231

σ 2
ln P

= ln (1 + VP
2) = 0.0606

To compute the variance reduction function, γ (n), the footing
width corresponding to the median elastic modulus is needed.
For this calculation an initial value of φ is also needed, and
the moderate value of φ = 0.5 is recommended. For µE =
20 000 kPa, the median elastic modulus, Ẽ, is

Ẽ = µE√
1 + VE

2
= 20 000√

1 + 0.52
= 17 889 kPa
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Fig. 7. Effect of resistance factor, φ, on probability of failure, pf = P [δ > δmax], for VE = 0.5 and θln E = 10 m.

and for µP = 1200 kN, the median footing load is

P̂ = µP√
1 + VP

2
= 1200√

1 + 0.252
= 1164.2 kN

Solving eq. [12] iteratively gives Bmed = 2.766 m. The corre-
sponding variance reduction factors are

γ1

[
2(4.8)

10

]
= 1

0.962

(
0.96 + e−0.96 − 1

)
= 0.744 13

γ1

[
2(2.766)

10

]
= 1

0.55322

(
0.5532 + e−0.5532 − 1

)
= 0.838 52

which gives

γ (n) � (0.838 52)2(0.744 13) = 0.5232

Now consider sampling scheme #1, which involves a single
vertical sample with R = �x = 0.15 m and corresponding
variance reduction factor,

γ1

[
2(0.15)

10

]
= 1

0.032

(
0.03 + e−0.03 − 1

)
= 0.990 07

γ o(m) � (0.990 07)2(0.744 13) = 0.7294

For sampling scheme #1, τ ′
ave � √

2(9.6/2) = 6.79 m is the
(approximate) distance from the sample point to the center of
the footing. In this case,

ρ′
ave = exp

[
−2(6.79)

10

]
= 0.2572

which using eq. [32], gives us

σ 2
ln W

= 0.0606 + 0.2231[0.7294 + 0.5232

− 2(0.2572)] = 0.2253

so that σln W = 0.4746. For z0.05 = 1.645, the required resis-
tance factor is determined by eq. [34] to be

φ = exp [−1.645(0.4746)] = 0.46

The corresponding value in Fig. 7 is also 0.46. Although this
agreement is excellent, it must be remembered that this is an ap-
proximation, and the precise agreement may be due somewhat
to mutually cancelling errors and to chance, since the simulation
estimates are themselves somewhat random. For example, if the
more precise formulas of eqs. [24a], [24b], and [30] are used,
then γ o(m) = 0.7432, γ (n) = 0.6392, and ρ′

ave = 0.2498,
which gives

σ 2
ln W

= 0.0606 + 0.2231[0.7432 + 0.6392

− 2(0.2498)] = 0.2576

so that the “more precise” required resistance factor actually
has poorer agreement with simulation;

φ = exp (−1.645
√

0.2576) = 0.43

It is also to be remembered that the “more precise” result above
is still conditioned on B = Bmed and φ = 0.5, whereas the
simulation results are unconditional. Nevertheless, these results
suggest that the approximations are insensitive to variations in
B and φ and are thus reasonably general.

Sampling scheme #2 involves two sampled columns sepa-
rated by more than θln E = 10 m so that neff can be taken as
2. This means that γ o(m) � 0.7294/2 = 0.3647. The average
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distance from the footing centerline to the sampled columns is
still about 6.79 m, so that ρ′

ave = 0.2572. Now

σ 2
ln W

= 0.0606 + 0.2231[0.3647 + 0.5232

− 2(0.2572)] = 0.1439

and the required resistance factor is

φ = exp (−1.645
√

0.1439) = 0.54

The corresponding value in Fig. 7 is about 0.53.
Sampling scheme #3 involves four sampled columns, sep-

arated by somewhat less than θln E = 10 m. Due to the re-
sulting correlation between columns, neff � 3 is selected (i.e.,
somewhat less than the “independent” value of 4). This gives
γ o(m) � 0.7294/3 = 0.2431. Since the average distance
from the footing centerline to the sample columns is still about
6.79 m,

σ 2
ln W

= 0.0606 + 0.2231[0.2431 + 0.5232

− 2(0.2572)] = 0.1268

The required resistance factor is

φ = exp (−1.645
√

0.1268) = 0.57

The corresponding value in Fig. 7 is about 0.56.
Sampling scheme #4 involves five sampled columns, also

separated by somewhat less than θln E = 10 m, and neff � 4
is selected to give γ o(m) � 0.7294/4 = 0.1824. One of the
sampled columns lies below the footing, and so its “distance” to
the footing centerline is taken to be Bmed/

√
2 = 2.766/

√
2 =

1.96 m to avoid complete correlation. The average distance to
sampling points is thus

τ ′
ave = 4

5
(6.79) + 1

5
(1.96) = 5.82

so that ρ′
ave = 0.3120. This gives

σ 2
ln W

= 0.0606 + 0.2231[0.1824 + 0.5232

− 2(0.3120)] = 0.0788

The required resistance factor is

φ = exp(−1.645
√

0.0788) = 0.63

The corresponding value in Fig. 7 is about 0.62.
For sampling scheme #5, the distance from the sample point

to the center of the footing is zero, so τ ′
ave is taken to equal the

distance to the footing corner, τ ′
ave = (2.766)/

√
2 = 1.96 m,

as recommended earlier. This gives ρ′
ave = 0.676 and

σ 2
ln W

= 0.0606+0.2231[0.7294+0.5232−2(0.676)]
= 0.0606 + 0.2231(−0.0994) → 0.0606

where approximation errors led to a negative variance contribu-

tion from the elastic modulus field, which was ignored (i.e., set
to zero). In this case, the sampled information is deemed suffi-
cient to render uncertainties in the elastic modulus negligible,
so that Ê � Eeff and

φ = exp (−1.645
√

0.0606) = 0.67

The value of φ read from Fig. 7 is about 0.65. If the more precise
formulas for the variance reduction functions and covariance
terms are used, then γ o(m) = 0.7432, γ (n) = 0.6392, and
ρ′

ave = 0.6748, which gives

σ 2
ln W

= 0.0606 + 0.2231[0.7432 + 0.6392

− 2(0.6748)] = 0.0679

Notice that this is very similar to the approximate result obtained
above, which suggests that the assumption that samples taken
below the footing largely eliminate uncertainty in the effective
elastic modulus is reasonable. For this more accurate result,

φ = exp (−1.645
√

0.0679) = 0.65

which is the same as the simulation results.
Perhaps surprisingly, sampling scheme #5 outperforms sam-

pling scheme #4, in terms of failure probability and resistance
factor, even though sampling scheme #4 involves considerably
more information. The reason for this is that the good informa-
tion taken below the footing is diluted by the poorer informa-
tion taken from farther away. This implies that when a sample is
taken below the footing, other samples taken from farther away
should be downweighted.

The computations illustrated above for all five sampling
schemes can be summarized as follows:

(1) Decide on an acceptable maximum settlement, δmax. Since
serviceability problems in a structure usually arise as a re-
sult of differential settlement, rather than settlement itself,
the choice of an acceptable maximum settlement is usu-
ally made assuming that differential settlement will be less
than the total settlement of any single footing (see, e.g.,
D’Appolonia et al. 1968).

(2) Choose statistical parameters of the elastic modulus field,
µE , σE , and θln E . The last can be the “worst case” corre-
lation length, suggested here to approximately equal the
average distance between sample locations and the footing
center, but not to be taken less than the median footing di-
mension. The values of µE and σE can be estimated from
site samples (although the effect of using estimated values
of µE and σE in these computations has not been investi-
gated) or from the literature.

(3) Use eqs. [1a] and [1b] to compute the statistical parameters
of ln E and then compute the median Ẽ = exp (µln E) =
µE/

√
1 + V 2

E .

(4) Choose statistical parameters for the load, µP and σP , and
use these to compute the mean and variance of ln P . Set
P̂ = exp (µln P ) = µP /

√
1 + V 2

P .
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(5) Using a moderate resistance factor, φ = 0.5, and the me-
dian elastic modulus, Ẽ, compute the “median” value of B
using the 1-pt iteration of eq. [12]. Call this Bmed.

(6) Compute γ (n) using eq. [25] (or eq. [24b]) with B = Bmed.

(7) Compute γ o(m) using eq. [28] (or eq. [24a]).

(8) Compute ρ′
ave using eq. [31] (or eq. [30]) after selecting

a suitable value for τ ′
ave as the average absolute distance

between the sample columns and the footing center (where
distances are taken to be no less than the distance to the
footing corner, Bmed/

√
2).

(9) Compute σln W using eq. [32].

(10) Compute the required resistance factor, φ, using eq. [34].

Conclusions

This paper presented approximate relationships based on
random field theory, which can be used to estimate resistance
factors approriate for the LRFD settlement design of shallow
foundations. Some specific comments arising from this research
are as follows:

(1) Two assumptions deemed to have the most influence on
the resistance factors estimated in this study are: (1) the
nominal load used for design, P̂ , is the median load, and
(2) the load factor, α, is equal to 1.0. Changes in α result
in a linear change in the resistance factor, e.g., φ′ = αφ,
where φ is the resistance factor found in this study and φ′
is the resistance factor corresponding to an α that is not
equal to 1.0. Changes in P̂ (for example, if P̂ were taken
as some other load exceedance percentile) would result in
first order linear changes to φ, but further study would be
required to specify the actual effect on the resistance factor.

(2) The resistance factors obtained in this study should be
considered to be upper bounds since the additional uncer-
tainties arising from measurement and model errors have
not been considered. To some extent, these additional er-
ror sources can be accommodated here simply by using a
value of VE greater than would actually be true at a site.
For example, if VE = 0.35 at a site, the effects of measure-
ment and model error might be accommodated by using
VE = 0.5 in the relationships presented here. This issue
needs additional study, but Meyerhof’s (1982) comment
that a “performance factor of 0.7 should be used for ade-
quate reliability of serviceability estimates” suggests that
the results presented here are reasonable (possibly a little
conservative at the VE = 0.5 level) for all sources of error.

(3) The use of a “median” footing width, Bmed, derived using a
median elastic modulus and moderate φ = 0.5 value, rather
than by using the full B distribution in the computation of
γ (n) appears to be quite reasonable. This is validated by the
agreement between the simulation results (where B varies
with each realization) and the results obtained using the
approximate relationships (see previous section).

(4) The computation of a required resistance factor assumes
that the uncertainty (e.g., VE) is known. In fact, at a given
site, all three parameters µE , VE , and θln E will be unknown
and only estimated to various levels of precision by sam-
pled data. To establish a LRFD code, at least VE and θln E

need to be known a priori. One of the significant results
of this research is that a worst-case correlation length ex-
ists, which can be used in the development of a design
code. While, the value of σ 2

E
remains an outstanding is-

sue, calibration with existing codes may very well allow
its “practical” estimation.

(5) At low uncertainty levels, that is, when VE ≤ 0.2 or so,
there is not much advantage to be gained by taking more
than two sampled columns (e.g., SPT or CPT borings) in
the vicinity of the footing, as seen in Fig. 6. This statement
assumes that the soil is stationary. The assumption of sta-
tionarity implies that samples taken in one location are as
good an estimator of the mean, variance, etc., as samples
taken elsewhere. Since this is rarely true of soils, the qual-
ifier “in the vicinity” was added to the above statement.

(6) Although sampling scheme #4 involved five sampled
columns and sampling scheme #5 involved only one sam-
pled column, sampling scheme #5 outperformed #4. This
is because the distance to the samples was not considered
in the calculation of Ê. Thus, in sampling scheme #4 the
good estimate taken under the footing was diluted by four
poorer estimates taken some distance away. Whenever a
soil is sampled directly under a footing, the sample results
should be given much higher precedence than soil samples
taken elsewhere. That is, the concept of the best linear un-
biased estimation (BLUE), which takes into account the
correlation between estimate and observation, should be
used. In this paper a straightforward geometric average
was used (arithmetic average of logarithms in log-space)
for simplicity. Further work on the effect of the form of the
estimator on the required resistance factor is needed.
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List of symbols

B footing width, as designed
Bmed footing width required on median elastic modulus using

moderate resistance factor
D plan width of soil model (= 9.6 m in this study)
E elastic modulus

E(xi∼
) elastic modulus at the spatial location xi∼

Ê estimate of effective elastic modulus, derived from soil
samples

Eeff effective uniform elastic modulus that, if underlying the
footing, would yield the same settlement as actually ob-
served

Ei one of n elastic modulus “samples” forming a partition in
the region under the footing

Eo
j one of m elastic modulus soil samples actually observed

fB footing width probability density function
G(x∼) local average of a standard normal (Gaussian) random field

H overall depth of soil layer
n number of simulations

nf number of simulations resulting in failure (δ > δmax)
neff effective number of independent sampled soil columns
P actual applied footing load
P̂ median applied footing load

pf probability of failure (δ > δmax)
p̂f estimated probability of failure

pmax maximum acceptable probability of failure
q̂ estimated soil stress applied by footing
R plan dimension of sample
u1 settlement influence factor
VE elastic modulus coefficient of variation (µE/σE)
VP load coefficient of variation (µP /σP )
W PÊ/Eeff

x∼ spatial coordinate or position

y horizontal component of spatial position
z vertical component of spatial position

zpmax point on standard normal distribution with exceedance
probability pmax

α load factor
γ variance reduction function (due to local averaging)

γ o variance reduction function for observed samples
γ1 one-dimensional variance reduction function for Markov

correlation
δ footing settlement, positive downwards

δp predicted footing settlement
δmax maximum acceptable footing settlement
θln E isotropic correlation length of the log-elastic modulus field
µE mean elastic modulus

µln E mean of log-elastic modulus
µln Ê mean of the logarithm of the estimated effective elastic

modulus
µln Eeff mean of the logarithm of the effective elastic modulus un-

derlying the footing
µP mean footing load

µln P mean of the log-footing load
µln W mean of ln W

� standard normal cumulative distribution function
φ resistance factor
ν Poisson’s ratio
ρ correlation coefficient

ρij correlation coefficient between ln Ei and ln Ej

ρo
ij correlation coefficient between ln Eo

i and ln Eo
j

ρ ′
ij correlation coefficient between ln Ei and ln Eo

j

ρ ′
ave average correlation coefficient between ln Ei and ln Eo

j

σE standard deviation of elastic modulus
σln E standard deviation of log-elastic modulus
σln Ê standard deviation of the logarithm of the estimated effec-

tive elastic modulus
σln Eeff standard deviation of the logarithm of the effective elastic

modulus underlying the footing
σln P standard deviation of the log-footing load

τ∼ spatial lag vector

τ lag distance, equal to |τ∼|
τ ′

ave average distance between the footing center and the sam-
pled soil columns
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