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ABSTRACT

A parametric study on the reliability of a cohesslepe is carried out to investigate the influentepatial variability
of undrained shear strength))( The random finite element method (RFEM), whigdes random field theory and
elasto-plastic finite element analysis, is adoprethis study. This study concentrates on thecefté soil variability,
which is commonly measured by the coefficient ofiatton (COV) and scale of fluctuationd|, on the reliability of
slopes with different geometries. Various slopesirga combinations of slope angleg) (and depth factorsD) are
considered.The numerical analyses are carried out using MGato simulations to enable the probabilities dlufa
(P;) to be estimated. The deterministic factors éétya(FOS), based on the mean valuescgfare also computed using
the finite element method. The results of compassbetween the; and theFOS valuesshow thatd has a significant
effect onP; for marginally stable slopes &FOS < 1.5), even those slopes havilogy to intermediate values @OV
(e.g. 0.1 — 0.3). Slopes having higher value€®Y (e.g. 0.5 — 1), which have higtDS values (e.g. 1.5 — 5), aatso
vulnerable to failures depending on the value8. of

1 INTRODUCTION

The stability of a cohesive slope has traditionddlgen analysed by treating the soil material agotmi and
homogenous. The factor of safety(QS) is estimated using Taylor's (1937) charts or categ using a limit
equilibrium method. These traditional (determiiglsstability analyses are normally based on theratteristic values
of soil properties. However, it is well known thatil properties are spatially variable and henmmdgeneity cannot
be assumed (Vanmarcke 1977a). As a result, thdistaf a slope cannot be defined by a factosafety value, as the
basis upon which such a value is determined assho@®geneity. A more realistic approach to sthbainalysis
considers the uncertainty and the variability ia tharacteristics of a soil and incorporates tloBseacteristics into a
probabilistic analysis Probabilistic analyses utilise the full range oil properties, which are randomly generated on
the basis of their statistical characteristics.ingeo leads to a more realistic measure of safstgd the probability of
failure (Py) or reliability (1 —P%).

Probabilisticanalyses have received considerable attentiondnlitérature for the past three decades (e.g. Alons
1976; Tanget al., 1976; Vanmarcke, 1977b; D'Andrea and Sangre®21Ri and Lumb, 1987; Mostyn and Li, 1993;
Duncan, 2000; EI-Ramlgt al., 2002). More recently, Griffiths and Fenton (202004) introduced an approach called
the random finite element method (RFEM)analysis. This method combines random fieldti€Vanmarcke 1977a;
1983) with non-linear elasto-plastic finite elemantlysis to explicitly account for the effect bétspatial variability of
soil propertien the strength at a point within the soil masssPaper uses the latter method to carry out anpetréc
study on the reliability of spatially random cohesislopes. Doing so extends the studies of Gr#ffiand Fenton
(2000), Fentoret al. (2003) and Griffiths and Fenton (2004) to invgate the effect of soil variability on the reliatyil

of cohesive slopes having various slope ang®sid depth factord)). The general geometry of the slopes is shown
in Figure 1 The slopes are assumed to be resting on a laysuf@itient thickness so that the base of the layer
undergoes no strain. In this study, slope angleiid (4:1), 18.4° (3:1), 26.6° (2:1) and 45° (1ak considered and
depth factors of 1, 2 and 3.

Figure 1: Geometry of cohesive slope problem.
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2 RANDOM FINITE ELEMENT METHOD

The slope is assumed to consistinfirained clay having shear strength defined in terms of a frictiomafficient (@)
of zero (i.e.q, = 0) and a cohesive strengtl)( Variability in the latter parameter is assuntedbe defined according
to a lognormal distribution, which is characterisgda mean ) and a standard deviatiom)( The latter parameters
can be expressed in terms of the dimensionlesgicieet of variation, COV), defined as:

cov=2 @)
U

The spatial variability of soil properties is moeel by a dimensionless parameter referred to asdhle of fluctuation
(6 (Vanmarcke 1977a; 1983), which expresses thesladion of properties with distancé\ large value o implies a
more smoothly varying field, while a small value &fndicatesa field that varies more randomlyhe correlation
structure of soil properties is defined by an exgrarally decaying (i.eMarkovian) correlation functiodefined as:

p(){%] @

whereris the distance between two points in the field.

The random field of shear strength values is sitedlaising the local average subdivision (LAS) métfeenton and
Vanmarcke, 1990). The LAS algorithm generates@andariables correlated according to Equation Z2sEhvariables
are mapped onto the finite element mesh. Therefemeh finite element is assigned with a randomatéei and
neighboring elements are correlated to each offigure 2 shows a typical mesh used in the studige Jize of the
finite elements is fixed at 1 m by 1 m for all gestnies.
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Figure 2: Meshes used for RFEM slope stabilitylys®s with slope S arld = (a) 1; (b) 2; (c) 3.

The finite element analysis is based on an elalsistip stress-strain law with a Tresca failureeritin. It uses 8-noded
guadrilateral elements and reduced integrationoih the stiffness and stress distribution partthefalgorithm. The
plastic stress distribution is accomplished by gsirvisco-plastic algorithm. The theoretical badithe finite element
methodis described bysmith and Griffiths (1998; 2004) and the applicatiof the finite element method to slope
stability analysis is described by Griffiths andnea(1999). In summaryhe analyses involve the application of gravity
loading and the monitoring of stresses at all Gpagsts. If the stresses at a point exceed the strengtheofriaterial at
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that point, as defined by the Tresca criteritie, program attempts to redistribute excess stoessighboring elements
that still have reserve strength. This iterativecess continues until the Tresca failure critedod global equilibrium

are satisfied at all points within the mesh undectstolerances. Slope failure is assumed to laaurred if the finite

element algorithm has non-converged after 500titera (Griffiths and Fenton, 2004).

Based on a given set of statistics for a soil priyp@e. &, o, 6), multiple possible random fields can be generateor
each generated random field, a single finite eldraaalysis igperformed. The process is repeatgd times as part of
the Monte Carlo simulation process. The probahbdftfailure () is then estimated by:

N¢

Pr = ©)

Nsim
whereng,, is the total number of realisations in the simolatprocess, and; is the number of realisations reaching
failure. It was generally found that 2,000 itevaswere adequate to give a reproducible estimateeoptbbability of
failure.

In addition to the probabilistic analysis descrilzdmbve, a deterministic factor of safeBQ9) is also computed, using
the finite element method, based on the mean vafiug. In the finite element method, tOS of a soil slope is
defined as the factor by which the original sheergth parameters must be divided in order togbtire slope to the
point of failure (Griffiths and Lane, 1999). Thector of safety is therefore defined as:

FOs = &
Cuf

wherec, is the mean value of undrained shear strengtlcgigla factored value af, that brings the slope to failure.

4

The advantage of the random finite element slogkildy analysis method over alternative limit diprium methods,
is that with the former method it is not necesdargefine an initial slip surface. Failure withirslbbpe is initiated by
the development of a series of aligned elementsh e which has an undrained shear strength thkgsis than the
shear stress being applied to the element. Figushows two typical random field realisations ofitained shear
strength with different scale of fluctuation. Tdi@rker elements indicate stronger soils.

Figure 3: Typical random field realisations of umided shear strength.

3 PARAMETRIC STUDIES

A parametric study was carried out in which onlg timdrained shear strength was defined accordimgdistribution
(i.e. lognormal) Other parameters were based on their mean valuethap remained constant for each finite element
analysis. The undrained shear strength is exptéssbe form of a dimensionless stability coeffiti given by:

N, = (5)

S
W
wherec, is the mean undrained shear strengtls, the unit weight of the soil artd is the height of the slope. Other
parameters are based on their mean values, suitte asit weighty = 20 kN/ni, slope heightH = 10 m, Young’s
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modulus of the soiE = 1 x 10° kPa and Poisson’s rati® = 0.3. The scale of fluctuation is made dimensiss by
dividing it by the height of the slope (i.8/H). The values assumed for each paranwi@summarised in Table 1.

Table 1: Input parameters for parametric studies

Parameter Input values
B 14°,18.4°, 26.6°, 45°
D 1,2,3
Ns 0.1,0.2,0.3,0.4,0.5
cov 0.1,0.3,0.5,1.0
M 0.1,05,1,5,10

Figure 4 summarises the probability of failure &lirslope geometries considered in this study. damh set of slope
geometries and parameters, as described in Talle&terministic-OS can be obtained based on the mean undrained
shear strength. This value is plotted on the hoteloaxis of Figure 4. By varying the soil varilitlyi parameters (i.e.
COV and8/H), P;is obtained for each case via the Monte Carlo sitrart process. This value is plotted on the velrtica
axis.

Figure 4:P; versug=OSfor COV = 0.1, 0.3, 0.5, and 1.0.
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To distinguish between the influencesG@®V and 8/H, Ps is plotted againdtOS for four differentCOVs (i.e. 0.1, 0.3,
0.5 and 1.0). It can be observed from Figure 4 tbaa givenFOS, the correspondinB; values vary between zero and
unity. Generally, even for the case of low to intermedizlues ofCOV (e.g. 0.1 and 0.3), slope failure is still likely
to happen when theOS> 1. For example, tachieve a zer®;, the deterministi&OS must be greater than 1.3 and 1.5
for COVs of 0.1 and 0.3 respectively. Thissultsuggests that soil variability should always besidered in the
stability analysis of a marginally stable slopead@OV of 0.1 — 0.3 is commonly observed in practice (keal. 1983;
Kulhawy et al. 1991). For high values @OV (e.g. 0.5 and 1.0), the distribution Bfis more widely distributed. In
this case, even slopes with hi§®©Ss (e.g. 2 — 5) are vulnerable to failure. The ressui Figure 4 show that the
deterministicFOS is a poor indicator of the stabilitf a slope, as slopes with hif®Ss could be associated with high
Ps values depending on the valueG@V and 8/H.

Figures 5 shows the influence 6fH on theP; for S = 45°, 26.6°, 18.4°, and 14° with the stabilityeffacient and depth
factor fixed atNs = 2 andD = 2. The correspondingOSs for each slope geometry were found to be 1.1,1125 and
1.4 respectively. As previously mentioned, a largkie of @8/H represents a more correlated field, while a snallier
indicates a more randomly varying field. It canrmded from these charts thatincreases a€0QV increases. This
result is expected because a higB@V will result in lower strength values and failuse dominated by these low
strength regions. Hence, the probability of fialwill increase accordingly.
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Figure 5:P; versus@/H for = 45, 26.6, 18.4, and 14; Ny= 0.2 and = 2

Generally, these charts indicate two general trémtlse results; th®; generally converges to unity or zero for different
COVs. Increases in the value 8fH will either increase or decrease #edepending on the values of the applicable
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COV. For example, in Figure 5, for slope wifh= 45°,P; increases whefl/H increases fo€OV = 0.1 butP; decreases
when 8 /H increases folCOV = 0.3. It is also noted that the results in Figurar® very similar to those observed by
Griffiths and Fenton (2004) for a slope wifh= 26.6°,D = 2 andNs = 0.25. These results indicate that, assuming a
perfectly correlated field (i.e. a larg® or ignoring spatial variability, a slope stahiliinalysis could overestimate or
underestimate the probability of failure. Simitegnds can also be observed from the results émesl with3 = 26.6°,
18.4° and 14° respectively, as shown in Figure 5.

Figure 6 shows the relationship betweenRhand 8 /H for 5 = 45°, 26.6°, 18.4°, and 14° wifh = 1, 2 and 3. The
stability coefficient and coefficient of variati@me fixed alNs = 0.2 andCOV = 0.5 respectively. Fgf = 45° and 26.6°,
Ps increases a8 /H increase wheb = 1, whileP; decreases a8/H decreases whedb = 2 and 3. Fof = 18.4° and
14°, P; increases ag /H increase whe; increases a# /H increase whef = 1 and 2, whileP; decreases a8 /H
decreases whdn = 3.
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Figure 6:P; versus@/H for = 45, 26.6", 18.4, and 14; Ny= 0.2 andCOV = 0.5

Overall, the results show that the influence@dH on Py is more significant for slopes withOSs close to unity (i.e.
marginally stable). In the most critical casdl, can either increase or decrease by approximatébs =s
6 /H increases from 0.1 to 10.  The results in Figur@nd 6 suggest that spatial correlation of godrgth is an
important factor to be considered in the stabditalysis of a marginally stable slope.
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4 SUMMARY AND CONCLUSIONS

In this paper, a parametric study involving theatality of spatially cohesive slopes has beeniedrput to investigate
the influence of the spatial variability of undraghshear strengtitj. The random finite element method (RFEM),
which uses random field theory and elasto-plagtitef element analysis, is adopted in this stud@iize undrained shear
strength is treated asspatially random variable, which is described inme of a lognomal distribution. The slope
angles Q) of 45°, 26.6°, 18.4° and 14° and depth fact@rsdf 1, 2 and 3 are considered in the parametudiss. The
probability of failure P;) of a slope is computed via the Monte Carlo sioiteprocess. A deterministic factor of
safety FOS) is also computed based on the mean undrained stieagth values.

The results oh comparison between tiRg and FOS values indicate that the scale of fluctuatiéh lfas a significant
effect on the probability of failure of marginakéyable slopes (¥ FOS< 1.5), even for low to intermediate values of
the COV (e.g. 0.1 — 0.3). For higher values @V (e.g. 0.5 — 1), slopes with higkOSs (e.g. 1.5 — 5) are also
vulnerable to failure depending on the valueg.ofThe results also indicate th@has a significant influence d#. Ps
can either increase or decrease éa#H increases from a low to a high value. If a pdalecorrelated field
(i.e large ) is assumed or spatial variability is ignored,)apse stability analysis could overestimate or uedémate
the probability of failure. Therefore, the spat@rrelation of soil strength should be consideiredany stability
analysis.
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