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Reliability of shallow foundations designed against bearing failure
using LRFD

GORDON A. FENTON*$, XIANYUE ZHANG% and D. V. GRIFFITHS’

$Department of Engineering Mathematics, Dalhousie University, Halifax, Nova Scotia, Canada B3J 2X4

%Jacques Whitford, 805-8th Avenue SW, Suite 300, Calgary, Alberta, Canada T2P1H7

’Division of Engineering, Colorado School of Mines, Golden, CO 80401-1887, USA

Worldwide, there is growing interest in the development of a rational reliability-based

geotechnical design code. The reasons for this interest are at least two-fold; first,

geotechnical engineers face significantly more uncertainties than those faced in other

fields of engineering, therefore there is a need to properly characterize and deal with these

uncertainties. Second, for decades, structural engineers have used a reliability-based

design code, and there is a need to develop the same for geotechnical engineers, in order

that the two groups can ‘speak the same language’. This paper develops a theoretical

model to predict the probability that a shallow foundation will exceed its supporting soil’s

bearing capacity. The footing is designed using characteristic soil properties (cohesion and

friction angle) derived from a single sample, or ‘core’, taken in the vicinity of the footing,

and used in a load and resistance factor design approach. The theory predicting failure

probability is validated using a two-dimensional random finite element method analysis

of a strip footing. Agreement between theory and simulation is found to be very good.

Therefore, the theory can be used with confidence to perform risk assessments of

foundation designs and develop resistance factors for use in code provisions.

Keywords: Bearing capacity; Risk assessment; Load and resistance factor design;

Ultimate limit state; Shallow foundation

1. Introduction

When designing a shallow foundation, the designer faces a

variety of uncertainties. For example, the load applied to

the footing will have some uncertainty associated with it,

and the ground supporting the footing will not be perfectly

understood. For this reason, there will always be some risk

that the footing will experience a bearing capacity failure. It

is the responsibility of the designer to ensure that the risk of

bearing capacity failure is sufficiently small. This paper

develops a theoretical tool that can be used to estimate the

probability of bearing capacity failure of shallow founda-

tions. The theory is based on a theoretical and simulation-

based study by Zhang (2007).

The shallow foundations are assumed to follow a design

process that initially involves determining the characteristic

load that the footing is to support. Then, the ground at the

site is investigated to establish characteristic soil properties

for use in the bearing capacity prediction model. Finally,

the footing dimensions are determined in order to satisfy

the following load and resistance factor design (LRFD)

equation

fgR̂u]I [aLL̂L�aDL̂D]; (1)

where fg is the geotechnical resistance factor, R̂u is the

ultimate geotechnical resistance based on characteristic soil

properties, I is an importance factor, L̂L is the characteristic
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live load, L̂D is the characteristic dead load, and aL and aD

are the live and dead load factors, respectively. Only dead

and live loads are considered in this paper, although the

results are easily extended to other load combinations.

The load factors used in this paper will be as specified by

the National Building Code of Canada (NBCC 2006); aL�
1.5 and aD�1.25. It is noted that the purpose of this paper

is not to validate any recommendations the National

Building of Canada may have on geotechnical design, but

to develop a model which can be subsequently used to find

the resistance factors required for the ultimate limit state

design of a shallow foundation (see Fenton et al. 2007).

The ultimate geotechnical resistance, Ru, is determined

using characteristic soil properties, in this case the char-

acteristic values of the soil’s cohesion, c, and friction angle,

f (note that primes are omitted from these quantities

simply because any definitions for cohesion and friction

that lead to a reasonable approximation of bearing capacity

are acceptable). The characteristic values are defined here

as the median of the sampled observations of c and the

arithmetic average of the sampled observations of f at the

site. These choices are made to simplify their distributions

and will be assumed to be the characteristic values used in

the design process, as proposed by Fenton et al. (2007). The

importance factor, I, reflects the severity of the failure

consequences, and may be larger than 1.0 for important

structures, such as hospitals, whose failure consequences

are severe and whose target probabilities of failure are much

less than for typical structures. Typical structures are

usually designed using I�1, which will be assumed in this

paper. Structures with low failure consequences (minimal

risk of loss of life, injury and/or economic impact) may have

IB1.

If the soil is assumed weightless, the computation of the

ultimate bearing stress, qu, simplifies to:

qu�cNc: (2)

The assumption that the soil is weightless is conservative

since the soil weight contributes to the overall bearing

capacity and allows this study to concentrate solely on the

effect of spatial variability of the soil on failure probability.

The ultimate geotechnical resistance, Ru, is the product of

qu and the footing area. Since the theory developed here is

validated using a two-dimensional simulation of a soil

supporting a strip footing, Ru in this paper is computed as:

Ru�Bqu�BcNc; (3)

which has units of force per unit length of the strip footing

out-of-plane (i.e. in the direction of the strip). Two forms of

equation (3) will be considered in this paper; one will be the

design equation, R̂u; which is based on characteristic soil

parameters, ĉ and f̂; and the other will be the true

(random) Ru of a strip footing placed on a spatially variable

soil.

The Nc factor is generally determined using plasticity

theory (see, e.g. Prandtl 1921, Terzaghi 1943, Sokolovski

1965) in which a rigid base punches into a softer material.

The theories presented by these authors assume that the soil

underlying the footing has properties that are spatially

constant (everywhere the same). Henceforth, this type of

ideal soil will be referred to as a uniform soil. Under this

assumption, most bearing capacity theories (e.g. Prandtl

1921, Meyerhof 1951, 1963) assume that the failure slip

surface takes on a logarithmic spiral shape to give:

Nc�

eptanftan2

�
p

4
�

f

2

�
� 1

tanf
: (4)

It is hypothesized in this paper that equivalent soil

parameters, c̄ and f̄ (and thus N̄c); can be found such

that a uniform soil having parameters c̄ and f̄ will have the

same bearing capacity as the actual bearing capacity of the

spatially variable soil. If c̄ and f̄ are known, then equation

(3) can be modified as follows to determine the true

ultimate geotechnical resistance of the footing,

Ru�Bc̄N̄c; (5)

where N̄c is the equivalent Nc factor which is obtained by

using the equivalent friction angle f̄ in equation (4),

N̄c�

eptanf̄tan2

�
p

4
�

f̄

2

�
� 1

tanf̄
: (6)

Characteristic soil properties are determined by taking m

samples of the soil near the footing, and using some sort of

average of the observed soil properties. For example, the soil

sample could be a CPT sounding or a core (both called

vertical samples) taken at a distance r from the footing

centerline. Only one such vertical sample will be considered

in this paper � if vertical samples are well spaced

horizontally, the sample closest to the footing location

should be used. Of course, more than one vertical sample

may be available, in which case the site understanding is

increased and the failure probabilities predicted here would

be conservative. It is pointed out that there are several

assumptions made in this paper, most conservative, but

some unconservative. These assumptions will be enumer-

ated and discussed in the conclusions.

From the m samples, the characteristic cohesion, ĉ, is

assumed to be the median of the samples. The median can

be computed by ordering the samples, co
1 ; c

o
2 ; . . . ; co

m; where

co
i denotes an observed cohesion value, from the smallest to

the largest, and then using the classical median estimator:

ĉ�

co
(m�1)=2 if m is odd

1

2
(co

m=2�co
1�m=2) if m is even

:

8><
>: (7)

203Reliability of shallow foundations
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If c is lognormally distributed, as assumed here, an

equivalent (in mean) estimate of the median involves a

multiplicative form that is the geometric average:

ĉ�
�Ym

i�1

co
i

	1=m

�exp



1

m

Xm

i�1

lnco
i

�
; (8)

which is the mth root of the product of the observed values.

There are two advantages to the latter multiplicative form

of the median estimator; first, it is easier to see that

equation (8) is dominated by low values of co
i � e.g. if any

co
i �0; then ĉ�0; and second, it can be shown that ĉ will

tend to a lognormal distribution by the Central Limit

Theorem (taking the natural logarithm of both sides of

equation (8) leads to a sum of random variables on the

right-hand-side which the Central Limit Theorem says will

tend to a normal distribution). The median estimate given

by equation (8) is used in this paper.

The friction angle will be assumed to follow a symmetric

and bounded distribution, as discussed next. As the

distribution is symmetric, an arithmetic average is selected

to define the characteristic friction angle, f̂; simply because

the arithmetic average preserves the mean of the distribu-

tion. In this case, the characteristic friction angle is defined

as:

f̂�
1

m

Xm

i�1

fo
i ; (9)

where fo
i are the friction angles observed (sampled) at the

site. It is assumed that both the cohesion and friction angle

observations are taken from the same set of samples, i.e.

that each sample, i�1,2, . . . m yields both a friction angle

(fo
i ) and a cohesion (co

i ) observation.

Using the characteristic soil properties, the design

ultimate geotechnical resistance becomes:

R̂u�BĉN̂c; (10)

where

N̂c�

eptanf̂tan2

�
p

4
�

f̂

2

�
� 1

tanf̂
: (11)

The determination of the probability of bearing capacity

failure now involves determining the joint distributions

of the load, the ‘as-sampled’ characteristic soil properties (ĉ

and N̂c); and the true equivalent soil properties (/c̄ and N̄c):

2. The random soil model

The soil cohesion, c, is assumed to be lognormally

distributed with mean mc, standard deviation sc, and spatial

correlation length ulnc. A lognormally distributed random

field is obtained from a normally distributed random field,

Glnc(x~ ); having zero mean, unit variance, and spatial

correlation length ulnc through the transformation:

c(x
~
)�expfmlnc�slncGlnc(x~ )g; (12)

where x
~

is the spatial position at which c is desired, s2
lnc�

ln(1�V 2
c ); mlnc� ln(mc)�s2

lnc=2; and Vc�sc /mc is the

cohesion’s coefficient of variation.

The correlation coefficient between the log-cohesion at a

point x
~ 1 and a second point x

~ 2 is specified by a correlation

function, rlnc(t~ ); where t
~
�x

~ 1�x
~ 2 is the vector between

the two points. A simple exponentially decaying (Marko-

vian) correlation function will be assumed having the form:

rlnc(t~ )�exp

�
�

2½t
~
½

ulnc

�
; (13)

where /j t
~
j is the length of the vector /t

~
. The spatial

correlation length, ulnc, is loosely defined as the separation

distance within which two values of ln c are significantly

correlated. Mathematically, ulnc is defined as the area under

the correlation function, rlnc(t~ ) (Vanmarcke 1984).

The spatial correlation function, rlnc(t~ ) has a corre-

sponding variance reduction function, glnc(D), which spe-

cifies how the variance is reduced upon local averaging of

lnc over some domain D. In the two-dimensional analysis

used to validate the theory, D�D1�D2 is an area and the

two-dimensional variance reduction function is defined by:

glnc(D1;D2)�
4

(D1D2)2 g
D1

0
g

D2

0

(D1�t1)

� (D2�t2)r(t1; t2)dt1dt2; (14)

which can be evaluated using Gaussian quadrature (see, e.g.

Fenton and Griffiths 2003 and Griffiths and Smith 2006,

for more details).

It should be emphasized that the correlation function

selected above acts between values of ln c. This is because

lnc is normally distributed and a normally distributed

random field is simply defined by its mean and covariance

structure. In practice, the correlation length ulnc can be

estimated by evaluating spatial statistics of the log-cohesion

data directly (see, e.g. Fenton 1999). Unfortunately, as such

studies are scarce, little is currently known about the spatial

correlation structure of natural soils. For the problem

considered here, it turns out that a worst case correlation

length exists which can be conservatively assumed in the

absence of improved information.

The random field is also assumed in the simulations to be

statistically isotropic (the same correlation length in any

direction through the soil). Although the horizontal corre-

lation length is often greater than the vertical due to soil

layering, taking this into account was deemed to be a site

specific refinement which does not lead to an increase in the

general understanding of the probabilistic behavior of

shallow foundations. The theory presented below, however,

204 G. A. Fenton et al.
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is applicable to both isotropic and anisotropic fields,

although only the isotropic case was validated.

The friction angle, f, is assumed to be bounded both

above and below, so that neither normal nor lognormal

distributions are appropriate. A beta distribution is often

used for bounded random variables. Unfortunately, a beta

distributed random field has a very complex joint distribu-

tion, and simulation is cumbersome and numerically

difficult. To keep things simple, a bounded distribution is

selected which resembles a beta distribution but which

arises as a simple transformation of a standard normal

random field, Gf(x
~
); according to:

f(x
~
)�fmin�

1

2
(fmax�fmin)



1�tanh

�
sGf(x

~
)

2p

��
; (15)

where fmin and fmax are the minimum and maximum

friction angles in radians, respectively, and s is a scale factor

which governs the friction angle variability between its two

bounds. Figure 1 shows how the distribution of f (normal-

ized to the interval [0, 1]) changes as s changes, going from

an almost uniform distribution at s�5 to a very normal

looking distribution for smaller s. Thus, varying s between

about 0.1 and 5.0 leads to a wide range in the stochastic

behavior of f. In all cases, the distribution is symmetric so

that the midpoint between fmin and fmax is the mean.

Values of s greater than about 5 lead to a U-shaped

distribution (higher at the boundaries), which is deemed

unrealistic.

The following relationship between s and the variance of

f derives from a third-order Taylor series approximation to

tanh in the second line and a first-order approximation to

the expectation in the third line:

s2
f�(0:5)2(fmax�fmin)2E

�
tanh2

�
sGf

2p

�	

#(0:5)2(fmax�fmin)2E

� �
sGf

2p

�2

1 �
�

sGf

2p

�2

	
;

#(0:5)2(fmax�fmin)2 s2

4p2 � s2
(16)

where E [G2
f]�1; since Gf is a standard normal random

variable. Equation (16) slightly overestimates the true

standard deviation of f by 0% when s�0 to 11% when

s�5. A much closer approximation over the entire range

05s55 is obtained by slightly decreasing the 0.5 factor to

0.46 (this is an empirical adjustment),

sf#
0:46(fmax � fmin)sffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

4p2 � s2
p (17)

The close agreement is illustrated in figure 2.

Equation (16) can be generalized to yield the covariance

between f(x
~ i) and f(x

~ j) for any two spatial points x
~ i and x

~ j ;

as follows:

Cov[f(x
~ i);f(x

~ j)]

�(0:5)2(fmax�fmin)2E

�
tanh

�
sGf(x

~ i)

2p

�
tanh

�
sGf(x

~ j)

2p

�	

#(0:5)2(fmax�fmin)2

E

� �
sGf(x

~ i)

2p

��
sGf(x

~ j)

2p

�

1 �
1

2

��
sGf(x

~ i)

2p

�2

�
�

sGf(x
~ j)

2p

�2�
	
;

#(0:46)2(fmax�fmin)2 s2rf(x
~ i � x

~ j)

4p2 � s2

�s2
frf(x

~ i�x
~ j) (18)

where the empirical correction found in equation (17) was

introduced in the second last step.

0 0.2 0.4 0.6 0.8 1
x

0
2

4
6

f X
(x

)

s =  1.0
s =  2.0
s =  5.0

Figure 1. Bounded distribution of friction angle normal-

ized to the interval [0,1].

0 1 2 3 4 5
s

0
0.

04
0.

08
0.

12

σ
φ

simulated
0.46(φmax- φmin) s / (4π2  + s2)1/2

Figure 2. Relationship between sf and s derived from

simulation (100,000 realizations for each s) and the Taylor’s

series derived approximation given by equation (17). The

vertical scale corresponds to fmax�fmin�0.349 radians

(208).
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It seems reasonable to assume that if the spatial correla-

tion structure of a soil is caused by changes in the

constitutive nature of the soil over space, then both the

cohesion and friction angle would have similar correlation

lengths. Thus, uf is taken to be equal to ulnc in this study,

and f is assumed to have the same correlation structure as c

(equation 13), i.e. rf(t
~
)�rlnc(t~ ): Both correlation lengths

will be referred to generically from now on simply as u, and

both correlation functions as r(t
~
); remembering that this

length and correlation function reflects correlation between

points in the underlying normally distributed random fields,

Glnc(x~ ) and Gf(x
~
); and not directly between points in the

cohesion and friction fields (although the correlation lengths

in the different spaces are actually quite similar). The

correlation lengths can be estimated by statistically analyz-

ing data generated by inverting equations (12) and (15).

Since both fields have the same correlation function, r(t
~
);

they will also have the same variance reduction function, i.e.

glnc(D)�gf(D)�g(D), as defined by equation (14).

The two random fields, c and f, are assumed indepen-

dent. Fenton and Griffiths (2003) found that the non-zero

correlations between c and f have only a minor influence

on the estimated probabilities of bearing capacity failure.

Since the general consensus is that c and f are negatively

correlated (Wolff 1985, Cherubini 2000) and the mean

bearing capacity for independent c and f was slightly lower

than for the negatively correlated case (Fenton and

Griffiths 2003), the assumption of independence between

c and f is slightly conservative. However, the difference is

minor, and is not deemed a major source of conservatism.

3. The random load model

The load acting on the footing is assumed composed of a

live load component and a dead load component. The dead

load component is relatively static over the lifetime of the

supported structure, and is assumed to have a fixed (non-

time varying) lognormal distribution with mean mD and

standard deviation sD.

The definition of live load is somewhat more complicated

than that of dead load, since live loads change dynamically

with time. Live loads used in design are based on the

maximum (extreme) live load experienced by the structure

over the structure’s lifetime. Since the maximum live load

observed over the first year of service is likely to be

significantly less than that observed over the first 100 years

of service, it is apparent that the distribution of the

maximum live load depends on the assumed lifetime. The

maximum live load experienced by the footing will be

denoted LLe, the subscript ‘e’ implying ‘extreme’. It is

assumed that LLe is also lognormally distributed with mean

mLe and standard deviation sLe. Figure 3 illustrates the

difference between the maximum lifetime live load and the

instantaneous ‘any time’ live load distributions. Also shown

is the dead load distribution. Although the true distribution

of the live load is more likely to be an extreme value

distribution, the lognormal distribution is a conservative

assumption, in that it has a heavier upper tail, which leads

to a tractable solution in the following. In any case, the total

load acting on the footing will be the sum of a lognormal

dead load and an extreme value live load. The resulting

distribution will be a mixture of lognormal and extreme

value distributions � the lognormal distribution is a reason-

able approximation to this mixture.

The characteristic design loads, also shown in figure 3,

will be assumed defined in terms of the means of the load

components in the following fashion:

L̂L�kLe
mLe

(19a)

L̂D�kDmD; (19b)

where mLe and mD are the means of the live and dead loads,

respectively, and kLe and kD are live and dead load bias

factors, respectively. The bias factors provide some degree

of ‘comfort’ by increasing the loads from the mean value to

a value having a lesser chance of being exceeded. The

locations of the characteristic design loads, relative to their

distributions, are illustrated in figure 3.

For typical multi-story office buildings, Allen (1975)

estimates mLe�1.7 kN/m2, based on a 30-year lifetime.

The corresponding characteristic live load given by the

NBCC (2006) is L̂L�2:4 kN=m2; which implies that kLe�
2.4/1.7�1.41. Dead load, on the other hand, is largely

static, and the time span considered (e.g. lifetime) has little

effect on its distribution. Becker (1996) estimates kD�1.18.

The total true load acting on the footing, L, is the sum of

dead and maximum lifetime live loads:

L�LD�LLe
: (20)

Since the sum of two lognormally distributed random

variables does not have a simple closed form solution, for

Load (l )

f L
(l

)

Instantaneous live load distribution
Maximum lifetime live load distribution
Dead load distribution

µL

µL e

µD

LL LD

Figure 3. Instantaneous live, maximum lifetime live, and

dead load distributions.

206 G. A. Fenton et al.
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simplicity it will be assumed here that L is also lognormally

distributed with parameters:

mL�mD�mLe

s2
L�s2

D�s2
Le

;

where dead and live loads are assumed uncorrelated in the

calculation of the variance of L.

Figure 4 illustrates how the assumed lognormal distribu-

tion of L agrees with simulation. To produce each figure,

1000 independent realizations of LLe and LD were simulated

and added in equation (20) to obtain 1000 realizations of L.

A frequency density plot of these realizations was then

produced and a fitted lognormal distribution superim-

posed. The left plot (a) was produced assuming a dead to

live load ratio mD/mLe�1.0, while the right plot (b) assumed

mD/mLe�3.0. In both cases, the lognormal fit is seen as very

reasonable. In fact, the p-value corresponding to the

hypothesis test having null that the total load is lognormally

distributed is 0.17 in (a) and 0.27 in (b). These large

p-values support the hypothesis that the total load distribu-

tion is closely approximated by the lognormal distribution

and this distribution will be adopted here.

4. Analytical approximation to the probability of failure

The design footing width, B, is obtained using equation (10)

in equation (1), which, in terms of the characteristic soil

properties becomes:

B�
I [aLL̂L � aDL̂D]

fgĉN̂c

: (21)

The probability of bearing capacity failure is the probability

that the true footing load, L, exceeds the true bearing

capacity, quB, where B is as designed in equation (21):

pf �P[L�quB]�P[L� c̄N̄cB]: (22)

Substituting equation (21) into equation (22) and collecting

random terms to the left of the inequality leads to:

pf �P

�
L

ĉN̂c

c̄N̄c

�
I [aLL̂L � aDL̂D]

fg

	
: (23)

Letting

Y �L
ĉN̂c

c̄N̄c
; (24)

means that

pf �P

�
Y �

I [aLL̂L � aDL̂D]

fg

	
; (25)

and the task is to find the distribution of Y. Assuming that

Y is lognormally distributed (an assumption that is

supported to some extent by the central limit theorem),

then:

lnY � lnL�lnĉ�lnN̂c�lnc̄�lnN̄c; (26)

is normally distributed and pf can be found once the mean

and variance of ln Y are determined. The mean of ln Y is

mlnY �mlnL�mln ĉ�m
lnN̂c

�mln c̄�mlnN̄c
(27)

and the variance of lnY is

s2
lnY �s2

lnL�s2
lnĉ�s2

lnc̄�s2

lnN̂c

�s2

lnN̄c

�2Cov[lnc̄; lnĉ]

�2Cov[lnN̄c; lnN̂c] (28)

where the load L, and soil properties c and f are reasonably

assumed to be mutually independent. To find the para-

meters in equations (27) and (28), the following assump-

tions are made.

(a) (b)
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l )
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Figure 4. Comparison of simulated and fitted lognormal distribution for total load, L, with ratio of dead to live load of 1.0 in

(a) and 3.0 in (b).
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1. m error-free observations of the soil cohesion and

friction angle have been obtained by site exploration.

In this paper, it is assumed that these observations are

extracted from a single boring, or sounding, taken near

the footing.

2. The equivalent cohesion, c̄; is the geometric average of

the cohesion field over some zone of influence, D,

under the footing:

c̄�exp



1

DgDlnc(x
~
)dx

~

�
: (29)

In this two-dimensional analysis, D is an area and the

above is a two-dimensional integration. If c(x
~
) lognor-

mally distributed, as assumed, then c̄ is also lognor-

mally distributed.

3. The equivalent friction angle, f̄; is the arithmetic

average of the friction angle over the zone of influence,

D:

f̄�
1

DgDf(x
~
)dx

~
: (30)

This relationship preserves the mean, i.e. mf̄�mf:

Probably the greatest source of uncertainty in this theory

involves the choice of the domain, D, over which the

equivalent soil properties are averaged under the footing.

The averaging domain was found by trial and error to be

best approximated by D�W�W, centered directly under

the footing, where W is 40% of the average mean wedge

zone depth:

W �
0:4

2
m̂Btan

�
p

4
�

mf

2

�
; (31)

and where mf is the mean friction angle (in radians) within

the zone of influence of the footing, and m̂B is an estimate of

the mean footing width obtained by using mean soil

properties (mc and mf) in equation (21):

m̂B�
I [aLL̂L � aDL̂D]

fgmcmNc

: (32)

To first order, the mean of Nc is:

mNc
#

eptanmf tan2

�
p

4
�

mf

2

�
� 1

tanmf

: (33)

The choice of a square averaging domain is arbitrary. In

principle, the domain D should represent the area of soil

that directly contributes to the bearing capacity. That is, D

would be the area of soil that deforms during failure. Since

this area will change, sometimes dramatically, from realiza-

tion to realization, the above can only be considered a

rough empirical approximation. Figure 5 illustrates the

location of the averaging domain D relative to the footing

centerline.

Armed with the above information and assumptions, and

given the basic statistical parameters of the loads, c, f, the

number and locations of the soil samples, and the averaging

domain size D, the components of equations (27) and (28)

can be computed as follows.

(1) Assuming that the total load L is equal to the sum of

the maximum live load, LLe, acting over the lifetime of the

structure and the static dead load, LD, i.e. L�LLe�LD,

both of which are random, then

mlnL� ln(mL)�
1

2
ln(1�V 2

L) (34a)

s2
lnL� ln(1�V 2

L); (34b)

where mL�mLe
�mD; and VL is the coefficient of variation

of the total load defined by

V 2
L�

s2
Le
� s2

D

(mLe
� mD)2

: (35)

(2) With reference to equation (8),

mlnĉ�E

�
1

m

Xm

i�1

lnco
i

	
�mlnc; (36)

s2
lnĉ#

s2
lnc

m2

Xm

i�1

Xm

j�1

r(x
~

o
i �x

~

o
j ); (37)

where x
~

o
i is the spatial location of the center of the ith soil

sample (i�1,2, . . ., m) and r is the correlation function

defined by equation (13). The approximation in the

variance arises because correlation coefficients between

the local averages associated with observations (in that all

tests are performed on samples of some finite volume) are

approximated by correlation coefficients between the local

average centers. Assuming that ln ĉ actually represents a

local average of ln c over a domain of size Dx�H, where Dx

H

W

W

r

∆x

D Q

x2

x1

ground level

bedrock

soil samplefooting
centerline

Figure 5. Averaging regions used to predict probability of

bearing capacity failure.
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is the horizontal dimension of the soil sample, which, for

example, can be thought of as the horizontal zone of

influence of a CPT sounding, and H is the depth over which

the samples are taken, then s2
lnĉ is more accurately

computed as:

s2
lnĉ�s2

lncg(Dx;H): (38)

See figure 5 for an illustration of the soil sample domain.

(3) With reference to equation (29):

mlnc̄�E

�
1

Dg D

lnc(x
~
)dx

~

	
�mlnc; (39)

s2
lnc̄�s2

lncg(D); (40)

g(D)�g(W,W), as discussed above is defined by equation

(14).

(4) Since m
f̂
�mf (see equation 9), the mean and variance

of N̂c can be obtained using first order approximations to

expectations of equation (11) (Fenton and Griffiths 2003)

as follows:

mlnN̂c
�mlnNc

# ln

eptanmf tan2

�
p

4
�

mf

2

�
� 1

tanmf

; (41)

s2

lnN̂c

#s2

f̂

�
d ln N̂c

df̂
jmf
�2

�s2

f̂

�
bd

bd2 � 1
[p(1�a)2d�1�d2]�

1 � a2

a

	2

; (42)

where a�tan(mf); b�epa; d�tan((p=4)�(mf=2)): The

variance of f̂ can be obtained by making use of equation

(18):

s2

f̂
#

s2
f

m2

Xm

i�1

Xm

j�1

r(x
~

0
i �x

~

0
j )�s2

fg(Dx;H); (43)

where x
~

0
i is the spatial location of the center of the ith soil

observation (i�1,2, . . ., m). See equation (17) for the

definition of sf. All angles are measured in radians,

including those used in equation (17).

(5) Since mf̄�mf (see equation 30), the mean and variance

of N̄c can be obtained in the same fashion as for N̂c (in

fact, they only differ due to differing local averaging in

the variance calculation). With reference to equations 6

and 41:

mlnN̄c
�mlnN̂c

�mlnNc
; (44)

s2

lnN̄c

#s2

f̄

�
dlnN̄c

df̄
jmf

�2

�s2

f̄

�
bd

bd2 � 1
[p(1�a2)d�1�d2]�

1 � a2

a

	2

; (45)

s2

f̄
�s2

fg(D)�s2
fg(W ;W ): (46)

See previous item for definitions of a, b, and d. The variance

reduction function g(W,W) is defined for two-dimension by

equation (14), and equation (17) defines sf. All angles are

measured in radians.

(6) The covariance between the observed cohesion values

and the equivalent cohesion beneath the footing is obtained

as follows for D�W�W and Q�Dx�H (see figure 5):

Cov[lnc̄; lnĉ]#
s2

lnc

D2Q2 g
D

g
Q

r(x
~ 1�x

~ 2)dx
~ 1dx

~ 2�s2
lncgDQ; (47)

where gDQ is the average correlation coefficient between the

two areas D and Q. The area D denotes the averaging region

below the footing over which equivalent properties are

defined, and the area Q denotes the region over which soil

samples are gathered. These areas are illustrated in figure 5.

In detail, gDQ is defined by:

gDQ�
1

(W 2DxH)2

�g
W=2

�W=2
g

H

H�W
g

r�Dx=2

r�Dx=2
g

H

0

r(j1�x1; j2�x2)dj2dj1dx2dx1; (48)

where r is the horizontal distance between the footing

centerline and the centerline of the soil sample column.

Equation (48) can be evaluated by Gaussian quadrature.

(7) The covariance between N̄c and N̂c is similarly

approximated by:

Cov [lnN̄c; lnN̂c]#s2
lnNc

gDQ; (49)

s2
lnNc

#s2
f

�
dlnNc

df
jmf
�2

�s2
f

�
bd

bd2 � 1
[p(1�a2)d�1�d2]�

1 � a2

a

	2

: (50)

Substituting these results into equations (27) and (28) gives:

mlnY �mlnL; (51)

s2
lnY �s2

lnL�[s2
lnc�s2

lnNc
][g(Dx;H)

�g(W ;W )�2gDQ]; (52)

which can now be used in equation (25) to produce

estimates of pf. Letting:

q�I [aLL̂L�aDL̂D]; (53)

the probability of failure becomes:

pf �P[Y �q=fg]�P[lnY � ln(q=fg)]

�1�F
�

ln(q=fg) � mlnY

slnY

�
(54)

where F is the standard normal cumulative distribution

function.

(48)
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5. Comparison of theory with simulation

To test the proposed theory, a series of nsim�2000

realizations of a strip footing were simulated (Zhang

2007), for each of a series of soil variability parameters

and soil sampling distances, and used to estimate the

probability of bearing capacity failure. The simulation-

based estimates were then compared to that predicted by

the above theory.

In detail, the simulation proceeds as follows.

1. The strength parameters, c and f, of a soil mass are

simulated as spatially variable random fields using the

local average subdivision (LAS) method (Fenton and

Vanmarcke 1990).

2. The simulated soil mass is virtually sampled over a

column (as in a CPT or SPT sounding) near the footing

(see figure 5). Virtual sampling means that the

simulated soil values are observed at each of the

specified observation points (in this case, over a

column of soil ‘elements’). No attempt is made here

to include the effects of measurement error nor of

errors in mapping actual observations, e.g. CPT values,

to engineering properties, such as cohesion and friction

angle. Thus, the predicted failure probability (either

from theory or simulation) will be somewhat uncon-

servative (failure probability increases as measurement

error increases). However, both the theory and the

simulation treat measurement error in the same way,

allowing a consistent comparison between the two.

3. The virtually sampled soil properties are used to

estimate the characteristic engineering properties (see

equations (8) and (9)).

4. The characteristic soil properties are used to determine

R̂u (see equation (10)) and the design footing width, B,

from equation (21).

5. A footing of width B, rounded up to span a whole

number of finite elements, is now virtually placed on

the simulated soil mass, and a random load having a

distribution appropriate to the characteristic loads

used in the design is simulated and applied to the
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Figure 6. Comparison of theory and simulation-based failure probabilities when sampling directly under the footing (r�0 m)

for various resistance factors, fg.
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footing. The response of the soil to the loaded footing

is then assessed using the finite element method (Smith

and Griffiths 2004) and whether or not the footing

experiences a bearing capacity failure is recorded.

6. The entire process from step 1 to step 5 is repeated nsim

times. If nf of these repetitions result in a bearing

capacity failure, then the probability of failure, pf, is

estimated as:

p̂f �
nf

nsim

: (55)

The standard error of the failure probability estimator, p̂f ; is

sp̂f
#

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p̂f=nsim

p
:

The simulated design problem was one of a strip footing

supporting loads having means and standard deviations:

mLe
�200 kN=m sLe

�60 kN=m (56a)

mD�600 kN=m sD�90 kN=m: (56b)

Assuming bias factors kD�1.18 (Becker 1996) and kLe
�

1:41 (Allen 1975) gives the characteristic loads:

L̂L�1:41(200)�282 kN=m (57a)

L̂D�1:18(600)�708 kN=m; (57b)

and the total factored design load (assuming I�1) is:

q�I(aLL̂L�aDL̂D)�1:5(282)�1:25(708)

�1308 kN=m: (58)

As long as the ratio of dead to live load (assumed to be 3.0

in this study), the coefficients of variation of the load

(assumed to be VLe
�0:3 and VD�0.15), and the char-

acteristic bias factors, kLe
and kD, are unchanged, the

results presented here are independent of the load applied

to the strip footing. Minor changes in load ratios, coeffi-

cients of variation, and bias factors should not result in

significant changes to the probability of bearing failure.

The correlation length, u, was varied between 0.1 and

50.0 m, and two coefficients of variation of cohesion, Vc,

were considered: Vc�0.3 and 0.5. The corresponding

coefficients of variation of the friction angle are Vf�0.20

(s�3) and Vf�0.29 (s�5). The friction angle distribution

is assumed to range from fmin�0.1745 radians (108) to
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Figure 7. Comparison of theory and simulation-based failure probabilities when sampling near the footing (r�4.5 m) for

various resistance factors, fg.
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fmax�0.5236 radians (308). The cohesion was assumed to

have constant mean of 100 kPa.

Figures 6�8 illustrate the agreement between theory and

simulation for three different sampling locations; r�0.0 m

in figure 6, r�4.5 in figure 7, and r�9.0 m in figure 8. As

expected, the probability of bearing capacity failure in-

creases as the distance between the footing and the

sampling point increases. What this means is that as the

understanding of the soil conditions under the footing

worsens, the probability of failure increases, all else being

held constant.

Figures 6�8 clearly demonstrate the existence of a ‘worst

case’ correlation length, between about 1 and 5 m, where

the bearing capacity failure probability reaches a maximum

both in the simulations and in the theory. This worst case

correlation length is of the same magnitude as the mean

footing width (m̂B�1:26 m): The presence of a worst case

correlation length can be explained as follows; if the

random soil fields are stationary then soil samples yield

perfect information, regardless of their location relative to

the footing, if the correlation length is either zero or infinity.

When the information is perfect, then the probability of a

bearing capacity failure goes to zero since the design

becomes perfect (assuming that fgB1.0, and that the

load bias factors are �1.0).

When the correlation length is zero, the soil sample will

consist of an infinite number of independent ‘observations’

whose average is equal to the true mean (or true median, if

the average is a geometric average). Since the footing also

averages the soil properties, the footing ‘sees’ the same true

mean (or true median) value predicted by the soil sample.

Thus, the sample information when the correlation length is

zero becomes perfect, and so the probability of failure is

zero.

At the other end of the scale, when the correlation length

goes to infinity, the soil becomes uniform, having the same

value everywhere. In this case, any soil sample also perfectly

predicts conditions under the footing.

At intermediate correlation lengths, soil samples become

imperfect estimators of conditions under the footing, and
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Figure 8. Comparison of theory and simulation-based failure probabilities when sampling at some distance from the footing

(r�9.0 m) for various resistance factors, fg.
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so the probability of bearing capacity failure increases.

Thus, the maximum failure probability will occur at some

correlation length between 0 and infinity. The precise value

depends on the geometric characteristics of the problem

under consideration, such as the footing width, depth to

bedrock, length of soil sample and/or the distance to the

sample point. Notice in figures 6�8 that the worst case point

does show some increase as the distance to the sample

location, r, increases.

The resistance factor, fg appearing in equation (21), is

varied over a range of possible values in figures 6�8. The

dependence of the failure probability on the resistance factor

suggests that these figures can be used in the reverse direction

to determine the resistance factor required to achieve a

certain maximum acceptable failure probability. For exam-

ple, suppose that the maximum acceptable failure probability

is 0.01, that Vc�0.5 (and so Vf�0.29), and that the worst

case correlation length is assumed. In this case, figure 6(a)

suggests that fg�0.6 should be used in the LRFD design

equation (equation 21). The determination of resistance

factors required for various target maximum acceptable

failure probabilities, soil variabilities, and site understanding

is the topic of a companion paper by Fenton et al. (2007).

The failure probabilities are well predicted by the theory

when the sampling point is directly below the footing

(r�0.0 m). There are some discrepancies for very small

probabilities, but this may be largely due to estimator error

in the simulations. For example, if pf�0.001, then the

estimator error is sp̂f
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
(0:001)(0:999)2000

p
�0:0007: This

means that p̂f has a coefficient of variation of 70%, which is

not very accurate when pf is as small as 0.001. This means

that the simulation cannot be used to validate small

probabilities, i.e. probabilities less than about 0.005.

When the sampling location moves away from the footing

(r�0), the failure probability becomes somewhat under-

predicted at worst case correlation lengths, but still well

predicted at small and large scales. This underprediction at

intermediate correlation lengths is unconservative, but the

theoretical failure probabilities underestimate the simulated

probabilities by no less than a factor of about 2/3, which

suggests that the theoretical probabilities are in the correct

ballpark.

6. Conclusions

This paper presents an analytical technique for estimating

the probability of bearing capacity failure of a shallow

footing. The theory is compared to simulation and the

agreement is very good, especially when the soil is sampled

directly under the footing. In other cases, the results are

reasonably accurate considering all other sources of un-

certainty and typical levels of accuracy in geotechnical

calculations.

The theoretical failure probabilities are unconservative in

the following ways.

1. Measurement and model errors are not considered in

this study. The statistics of measurement errors are

very difficult to determine, since the true values need to

be known. Similarly, model errors, which relate both

the errors associated with translating measured values

(e.g. CPT measurements to friction angle values) and

the errors associated with predicting bearing capacity

by an equation, such as equation (2), to the actual

bearing capacity are extremely difficult to measure

simply because the true bearing capacity along with the

true soil properties are rarely, if ever, known. In the

authors’ opinion this is the major source of unconser-

vativism in the presented theory. When confidence in

the measured soil properties or in the model used is

low, the results presented here can still be employed by

assuming that the soil samples were taken further away

from the footing location than they actually were (e.g.

if low-quality soil samples are taken directly under the

footing, at r�0, the failure probability corresponding

to a larger value of r, say r�4.5 m, should be used).

2. The failure probabilities given by the above theory are

underpredicted by a factor of up to about 2/3 when soil

samples are taken at some distance from the footing at

worst case correlation lengths.

On the other hand, the predicted failure probabilities are

conservative in the following ways.

1. c and f are assumed independent, rather than

negatively correlated, which leads to a somewhat

higher probability of failure and therefore somewhat

conservative results. However, the effect of non-zero

correlation of c and f was found by Fenton and

Griffiths (2003) to be quite minor, so this is not deemed

to be a strong conservatism.

2. If the worst case correlation length is assumed due to

lack of site specific information, the slight under-

prediction of the failure probability may actually be

more realistic, since it is unlikely that the correlation

length of the residual random process at a site (after

removal of any mean or mean trend estimated from the

site investigation, assuming there is one) will actually

equal the ‘worst case’ correlation length.

3. The soil is assumed weightless in this study. The

addition of soil weight, which the authors feel to be

generally less spatially variable than soil strength

parameters, should reduce the failure probability.

4. More than one CPT, or multiple samples, may be

available at the site in the footing region, so that the

site understanding may exceed even the r�0 m case

213Reliability of shallow foundations
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considered here if trends and layering are carefully

taken into account.

To some extent the conservative and unconservative factors

listed above cancel one another out. In addition, the

accuracy of the theory is only as good as the accuracy of

the parameters that go into it. For example, the theory

depends on knowledge about the mean load, the variance of

the soil properties (c and f) and the covariance structure.

The worst case correlation length can be used to specify the

covariance structure (conservative), but often the variances

of the soil properties are only poorly known. In light of this

uncertainty, the accuracy of the theoretically predicted

failure probability is quite adequate. Thus, the theory can

be used to assess the reliability of designs, and more

importantly, to aid in the development of reliability-based

design codes.
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7. Notation

a tan mf
b epa

B strip footing width

c cohesion

/c̄ geometric average of cohesion field over domain D

ĉ geometric average of observed (sampled) cohesion

values

/co
i observed (sampled) cohesion value

d /tan
p

4
�

mf

2

 !

D effective soil property averaging domain centered

under footing�W�W

D1 x1 dimension of the averaging domain D

D2 x2 dimension of the averaging domain D

E[ �] expectation operator

fL(l) probability density function of load

Glnc standard normal random field (log-cohesion)

Gf standard normal random field (underlying friction

angle)

H depth to bedrock and depth of assumed soil sample

I importance factor

kLe extreme lifetime live load bias factor

kD dead load bias factor

L total true (random) footing load (kN/m)

LD true (random) dead load (kN/m)

/L̂D characteristic dead load�kDmD (kN/m)

/LLe
true (random) maximum live load over design life

(kN/m)

/L̂L characteristic live load�kLemLe (kN/m)

m number of soil observations

nf number of failures out of nsim realizations

nsim number of realizations in a simulation

Nc N-factor associated with cohesion, which is a function

of f

/N̄c effective N-factor associated with cohesion, which is

based on an arithmetic average of the friction angle

over domain D

/N̂c characteristic N-factor associated with cohesion, which

is based on an arithmetic average of the observed

friction angles over domain Q (m soil sample

observations)

pf probability of bearing capacity failure

qu ultimate bearing stress

q factored design load�I(aLL̂L�aDL̂D)

Q characteristic soil property averaging domain Dx�H

r distance between soil sample and footing center (m)

Ru ultimate geotechnical resistance (actual, random)

/R̂u ultimate geotechnical resistance based on character-

istic soil properties

s scale factor used in distribution of f

Vc coefficient of variation of cohesion

VD coefficient of variation of dead load

VL coefficient of variation of total load

/VLe
coefficient of variation of extreme lifetime load

Vf coefficient of variation of friction angle

W side dimension of effective averaging domain D

/x
~

spatial coordinate, (x1, x2) in 2-D

/x
~

0
i spatial coordinate of the center of the ith soil sample

xi spatial direction (x1 or x2)

Y true load times ratio of estimated to effective bearing

capacity

aL live load factor

aD dead load factor

Dx horizontal dimension of soil samples

f friction angle (radians unless otherwise stated)

fg resistance factor

/f̄ arithmetic average of f over domain D

/f̂ arithmetic average of the m observed friction angles

fmin minimum friction angle

fmax maximum friction angle

/f0
i ith observed friction angle

F standard normal cumulative distribution function

g(D) common variance function giving variance reduction

due to averaging over domain D

glnc(D) variance function giving variance reduction due to

averaging log-cohesion over domain

gf(D) variance function giving variance reduction due to

averaging Gf over domain D

214 G. A. Fenton et al.
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gDQ average correlation coefficient between domains D

and Q

mc cohesion mean

mlnc log-cohesion mean

/mlnĉ mean of the estimate of log-cohesion based on a

geometric average of cohesion observations

/mlnc̄ mean of the effective log-cohesion based on a

geometric average of cohesion over domain D

mNc mean of Nc

mlnNc mean of ln Nc

/mlnN̂c
mean of lnN̂c

/mlnN̄c
mean of lnN̄c

mD mean dead load

mL mean total load on strip footing (kN/m)

mL
e

mean extreme live load over design life

mlnL mean total log-load on strip footing

mf mean friction angle

/m
f̂

mean of estimated friction angle

/mf̄ mean of effective friction angle in zone of influence

under footing

mlnY mean of lnY

/m̂B estimated mean footing width

u correlation length of the random fields

ulnc correlation length of the log-cohesion field

uf correlation length of the Gf field

/r(t
~
) common correlation function

/rlnc(t~ ) correlation function giving correlation between two

points in the log-cohesion field

/rf(t
~
) correlation function giving correlation between two

points in the Gf field

sc cohesion standard deviation

sD dead load standard deviation

sL
e

standard deviation of extreme lifetime live load

sL standard deviation of total load

slnL standard deviation of total log-load

slnc log-cohesion standard deviation

/slnc̄ standard deviation of ln c̄

/slnĉ standard deviation of ln ĉ

sf standard deviation of f

/sf̄ standard deviation of f̄

slnN
c

standard deviation of ln Nc

/slnN̄c
standard deviation of lnN̄c

/slnN̂c
standard deviation of lnN̂c

slnY standard deviation of ln Y

/t
~

vector between two points in the soil domain

t1 horizontal component of the distance between two

points in the soil domain

t2 vertical component of the distance between two points

in the soil domain
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