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Abstract: Shallow foundation designs are typically governed either by settlement, a serviceability limit state, or by bearing
capacity, an ultimate limit state. While geotechnical engineers have been designing against these limit states for over half
a century, it is only recently that they have begun to migrate towards reliability-based designs. At the moment, reliability-
based design codes are generally derived through calibration with traditional working stress designs. To take advantage of
the full potential of reliability-based design the profession must go beyond calibration and take geotechnical uncertainties
into account in a rational fashion. This paper proposes a load and resistance factor design (LRFD) approach for the bearing
capacity design of a strip footing, using load factors as specified by structural codes. The resistance factors required to
achieve an acceptable failure probability are estimated as a function of the spatial variability of the soil and by the level
of ‘‘understanding’’ of the soil properties in the vicinity of the foundation. The analytical results, validated by simulation,
are primarily intended to aid in the development of the next generation of reliability-based geotechnical design codes, but
can also be used to assess the reliability of current designs.

Key words: bearing capacity, reliability, resistance factors, load and resistance factor design, ultimate limit state, shallow
foundation.

Résumé : Les conceptions de fondations superficielles sont typiquement régies soit par le tassement, un état limite de ser-
vice, ou par la capacité portante, un état limite ultime. Alors que les ingénieurs en géotechnique ont conçu en utillisant ces
états limites depuis plus d’un demi-siècle, ce n’est que récemment qu’ils ont commencé à migrer vers les conceptions ba-
sées sur la fiabilié. Présentement, les codes de conception basés sur la fiabilité sont généralement dérivés au moyen de ca-
librage avec les calculs traditionnels de contrainte de travail. Pour prendre avantage du plein potentiel de la conception
basée sur la fiabilité, la profession doit aller au delà du calibrage et prendre en compte les incertitudes géotechniques de
manière rationnelle. Cet article propose une approche de conception basée sur un facteur de charge et de résistance
(« LRFD ») pour le calcul de la capacité portante d’une semelle filante en utilisant des facteurs de charge tels que spéci-
fiés dans les codes de structure. Les facteurs de résistance requis pour obtenir une probabilité de rupture acceptable sont
estimés comme une fonction de la variabilité spatiale du sol et par le niveau de ‘‘compréhension’’ des propriétés du sol
dans le voisinage de la fondation. Les résultats analytiques, validés par simulation, sont principalement destinés à aider au
développement de la prochaine génération de codes de conception géotechnique basé sur la fiabilité, mais peuvent aussi
être utilisés pour évaluer la fiabilité des conceptions courantes.

Mots-clés : capacité portante, fiabilité, facteurs de résistance, conception avec les facteurs de force et de résistance, état li-
mite ultime, fondation superficielle.

[Traduit par la Rédaction]

Introduction

The design of a shallow footing typically begins with a
site investigation aimed at determining the strength and
compressibility characteristics of the founding soil or rock.
Once this information has been gathered, the geotechnical
engineer is in a position to determine the footing dimensions
required to avoid entering various limit states. In so doing, it
will be assumed here that the geotechnical engineer is in

close communication with the structural engineer(s) and is
aware of the loads that the footings are being designed to
support. The limit states that are usually considered in the
footing design are serviceability limit states (typically defor-
mation) and ultimate limit states. The latter is concerned
with safety and includes the load-carrying capacity, or bear-
ing capacity, of the footing. Figure 1 illustrates a bearing
capacity (ultimate limit state) failure of a strip footing
founded on a spatially variable soil. The failure surface
passes through the lower strength (lighter) regions of the soil.

This paper develops a load and resistance factor design
(LRFD) approach for shallow foundations designed against
bearing capacity failure. The design goal is to determine the
footing dimensions such that the ultimate geotechnical re-
sistance based on characteristic soil properties, bRu, satisfies

½1� �g
bRu � I

X
i

�i
bLi

where �g is the geotechnical resistance factor, I is an impor-
tance factor, ai is the ith load factor, and bLi is the ith char-
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acteristic load effect. The goal of this paper is to determine
the relationship between �g and the probability that the de-
signed footing will experience a bearing capacity failure.
The authors recognize that the use of the symbol �g is
somewhat confusing in a geotechnical paper as the friction
angle also uses the symbol �; however, the symbol � is
commonly used for resistance factor by the National Build-
ing Code of Canada (NBCC) (NRC 2005) and in other
structural codes (see, for example, the use of the symbol �
for resistance factor in Commentary K ‘‘Foundations’’ of the
User’s Guide – NBC 2005 Structural Commentaries, NRC
2006) to represent resistance factor. The authors are also
adopting the common notation where the subscript denotes
the material that the resistance factor governs. For example,
where �c and �s are resistance factors governing concrete
and steel, the letter g in �g will be taken to denote ‘‘geo-
technical’’ or ‘‘ground’’.

The importance factor, I, reflects the severity of the failure
consequences and may be larger than 1.0 for important struc-
tures, such as hospitals, whose failure consequences are se-
vere and whose target probabilities of failure are much less
than for typical structures. Typical structures usually are de-
signed using I = 1, which will be assumed in this paper.
Structures with low failure consequences (minimal risk of
loss of life, injury, and (or) economic impact) may have I < 1.

Only one load combination will be considered in this
paper, �L

bLL þ �D
bLD, where bLL is the characteristic live

load, bLD is the characteristic dead load, and aL and aD are
the live and dead load factors, respectively. The load factors
used in this paper will be as specified by the NBCC (NRC
2005); aL = 1.5 and aD = 1.25. The theory presented here,
however, is easily extended to other load combinations and
factors, so long as their (possibly time-dependent) distribu-
tions are known.

The characteristic loads will be assumed to be defined in
terms of the means of the load components in the following
fashion:

½2a� bLL ¼ kLe�Le

½2b� bLD ¼ kD�D

where �Le
and mD are the means of the live and dead loads,

respectively, and kLe and kD are live and dead load bias fac-
tors, respectively. The bias factors provide some degree of
‘‘comfort’’ by increasing the loads from the mean value to
a value having a lesser chance of being exceeded. Since
live loads are time varying, the value of �Le

is more specifi-

cally defined as the mean of the maximum live load experi-
enced over a structure’s lifetime (the subscript e denotes
extreme). This definition has the following interpretation: if
a series of similar structures, all with the same lifespan, is
considered and the maximum live load experienced in each
throughout its lifespan is recorded, then a histogram of this
set of recorded maximum live loads could be plotted. This
histogram then becomes an estimate of the distribution of
these extreme live loads and the average of the observed set
of maximum values is an estimate of �Le

. As an aside, the
distribution of live load is really quite a bit more complicated
than what is suggested by this explanation, as it actually de-
pends on both spatial position and time (e.g., regions near
walls tend to experience much higher live load than seen
near the center of rooms). However, historical estimates of
live loads are quite appropriately based on spatial averages
both conservatively and for simplicity, as discussed next.

For typical multistory office buildings, Allen (1975)
estimates �Le

to be 1.7 kN/m2, based on a 30 year lifetime.
The corresponding characteristic live load given by the
NBCC (NRC 2005) is bLL ¼ 2:4 kN=m2, which implies that
kLe ¼ 2:4=1:7 ¼ 1:41. Allen further states that the mean live
load at any time is approximately equal to the 30 year max-
imum mean averaged over an infinite area. The NBCC pro-
vides for a reduction in live loads with tributary area using
the formula 0:3þ

ffiffiffiffiffiffiffiffiffiffiffi
9:8=A

p
, where A is the tributary area (A >

20 m2). For A??, the mean live load at any time is thus
approximately mL = 0.3(1.7) = 0.51 kN/m2. The bias factor
that translates the instantaneous mean live load, mL to the
characteristic live load, bLL, is thus quite large having value
kL = 2.4/0.51 = 4.7.

Dead load, on the other hand, is largely static, and the
time span considered (e.g., lifetime) has little effect on its
distribution. Becker (1996b) estimates kD to be 1.18. Figure 2
illustrates typical probability density functions for the three
types of loads (instantaneous live, extreme live, and dead)
commonly considered and the relative locations of the char-
acteristic load values.

The characteristic ultimate geotechnical resistance, bRu, is
determined using characteristic soil properties, in this case
characteristic values of the soil’s cohesion, c, and friction
angle, � (note that although the primes are omitted from
these quantities it should be recognized that the theoretical
developments described in this paper are applicable to either
total or effective strength parameters). To obtain the charac-
teristic soil properties, the soil is sampled over a single col-
umn somewhere in the vicinity of the footing, for example,
a single CPT or SPT sounding near the footing. The sample
is assumed to yield a sequence of m observed cohesion val-
ues, co1; c

o
2; . . . ; c

o
m, and m observed friction angle values,

�o
1; �

o
2; . . . ; �

o
m. The superscript o denotes an observation. It

is assumed here that the observations are error-free, which
is an unconservative assumption. If the actual observations
have considerable error, then the resistance factor used in
the design should be reduced. This issue is discussed further
in the conclusions.

The characteristic value of the cohesion, bc, is defined in
this paper as the median of the sampled observations, coi ,
which, assuming c is lognormally distributed, can be com-
puted using the geometric average,

Fig. 1. Bearing failure of a strip footing founded on a spatially
variable soil by the random finite element method.
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½3� bc ¼
Ym
i¼1

coi

" #1=m
¼ exp

1

m

Xm
i¼1

ln coi

 !
The geometric average is used here because if c is lognor-
mally distributed, as assumed, then bc will also be lognor-
mally distributed.

The characteristic value of the friction angle is computed
as an arithmetic average

½4� b� ¼ 1

m

Xm
i¼1

�o
i

The arithmetic average is used here because � is assumed to
follow a symmetric bounded distribution and the arithmetic
average preserves the mean. That is, the mean of �b is the
same as the mean of �.

To determine the characteristic ultimate geotechnical re-
sistance, bRu, it will first be assumed that the soil is weight-
less. This simplifies the calculation of the ultimate bearing
stress, qu, to

½5� qu ¼ cNc

The assumption of weightlessness is conservative as the
soil weight contributes to the overall bearing capacity. This
assumption also allows the analysis to explicitly concentrate
on the role of cNc on ultimate bearing capacity, as this is the
only term that includes the effects of spatial variability relat-
ing to both shear strength parameters c and �.

Bearing capacity predictions, involving specification of the
Nc factor in this case, are generally based on plasticity theories
(see, e.g., Prandtl 1921; Terzaghi 1943; Sokolovski 1965) in
which a rigid base is punched into a softer material. These the-
ories assume that the soil underlying the footing has properties
that are spatially constant (everywhere the same). This type of
ideal soil will be referred to as a uniform soil henceforth.
Under this assumption, most bearing capacity theories (e.g.,
Prandtl 1921; Meyerhof 1951, 1964) assume that the failure
slip surface takes on a logarithmic spiral shape to give

½6� Nc ¼
e�tan�tan2 �

4
þ �

2

� �
� 1

tan �

See Griffiths and Fenton (2001) for a probabilistic analy-
sis of a footing founded on a purely cohesive (� = 0) soil.
The current paper considers the more general case of a c–�
soil. One can always set � = 0 in the following theory to
perform a total stress analysis on an ‘‘undrained clay’’ soil.

Consistent with the theoretical results presented by Fenton
et al. (2007), this paper will also concentrate on the design
of a strip footing, as illustrated in Fig. 1. In this case, the char-
acteristic ultimate geotechnical resistance, bRu, becomes

½7� bRu ¼ Bbqu
where B is the footing width and bRu has units of load per
unit length out-of-plane, that is, in the direction of the strip
foot. The characteristic ultimate bearing stress, bqu, is de-
fined by

½8� bqu ¼ bcbN c

where the characteristic Nc factor is determined using the
characteristic friction angle in eq. [6],

½9� bN c ¼
e�tan �̂tan2 �

4
þ �̂

2

� �
� 1

tanb�
For the strip footing and just the dead and live load com-

bination, the LRFD equation becomes

½10� �gBbqu ¼ Ið�L
bLL þ �D

bLDÞ

) B ¼ Ið�L
bLL þ �D

bLDÞ
�gbqu

To determine the resistance factor, �g, required to achieve
a certain acceptable reliability of the constructed footing, it
is necessary to estimate the probability of bearing capacity
failure of a footing designed using eq. [10]. This paper will
use the theoretical results presented by Fenton et al. (2007)
for a strip footing, which will be summarized in the section
entitled ‘‘Analytical approximation to the probability of fail-
ure’’. Once the probability of failure, pf, for a certain design
using a specific value for �g is known, this probability can
be compared to the maximum acceptable failure probability,
pm. If pf exceeds pm, then the resistance factor must be re-
duced and the footing redesigned. Similarly, if pf is less
than pm, then the design is overconservative and the value
of �g can be increased. A specific relationship between pm
and �g will be given here. Design curves will also be pre-
sented from which the value of �g required to achieve a
maximum acceptable failure probability can be determined.

As previously suggested, the determination of the required
resistance factor, �g, involves deciding on a maximum ac-
ceptable failure probability, pm. The choice of pm derives
from a consideration of acceptable risk and directly influen-
ces the size of �g. Different levels of pm may be considered
to reflect the ‘‘importance’’ of the supported structure — pm
may be much smaller for a hospital than for an uninhabited
storage warehouse.

The choice of a maximum failure probability, pm, should
consider the margin of safety implicit in current foundation
designs and the levels of reliability for geotechnical design
as reported in the literature. The values of pm for foundation

Fig. 2. Characteristic and mean values of live and dead loads along
with their corresponding distributions.
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designs are nearly the same or somewhat less than those for
concrete and steel structures because of the difficulties and
high expense of foundation repairs. A literature review of
the suggested acceptable probability of failure for founda-
tions is listed in Table 1.

Meyerhof (1995) was quite specific about acceptable
risks: ‘‘The order of magnitude of lifetime probabilities of
stability failure is about 10–2 for offshore foundation, about
10–3 for earthworks and earth retaining structures, and about
10–4 for foundations on land’’.

In this paper three maximum lifetime failure probabilities,
10–2, 10–3, and 10–4 will be considered. In general, and with-
out regard to the aforementioned structural categorizations
made by Meyerhof, these probabilities are deemed by the
authors to be appropriate for designs involving low, medi-
um, and high failure consequence structures, respectively.
Resistance factors required to achieve these target probabil-
ities will be recommended for the specific c–� soil consid-
ered. These resistance factors are smaller than those that the
theory suggests for an undrained soil, because a � = 0 soil
has only one source of uncertainty. In other words, the re-
sistance factors based on a generalized c–� soil are consid-
ered to be reasonably conservative.

It is also noted that the effect of structural importance
should actually be reflected in the importance factor, I, of
eq. [1] and not in the resistance factor. The resistance factor
should be aimed at a medium, or common, structural impor-
tance level, and the importance factor should be varied
above and below 1.0 to account for more and less important
structures, respectively. However, because acceptable failure
probabilities may not be simply connected to structural im-
portance, I = 1 is assumed in the following. For code provi-
sions, the factors recommended here should be considered to
be the ratio �g/I.

The random soil model
The soil cohesion, c, is assumed to be lognormally distrib-

uted with mean mc, standard deviation sc, and spatial corre-
lation length qln c. A lognormally distributed random field is
obtained from a normally distributed random field, Gln cðexÞhaving zero mean, unit variance, and spatial correlation
length qln c through the transformation

½11� cðxeÞ ¼ exp ½�ln c þ �ln cGln cðxeÞ�
where xe is the spatial position at which c is desired,
�2
ln c ¼ lnð1þ v2cÞ, �ln c ¼ lnð�cÞ � �2

ln c=2, and vc = sc/mc is
the coefficient of variation.

The correlation coefficient between the log-cohesion at a
point xe 1 and a second point xe 2 is specified by a correlation
function, �ln cð�eÞ, where �e ¼ xe 1 � xe 2 is the vector be-
tween the two points. In this paper, a simple exponentially
decaying (Markovian) correlation function will be assumed,
having the form

½12� �ln cð�eÞ ¼ exp

�
�ln c

�2j�ej�
where je� j ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

�21 þ �22
p

is the length of the vector e� . The spa-
tial correlation length, qln c, is loosely defined as the separa-
tion distance within which two values of ln c are significantly

correlated. Mathematically, qln c is defined as the area under
the correlation function, �ln cð�eÞ (Vanmarcke 1984).

The spatial correlation function, �ln cð�eÞ has a correspond-
ing variance reduction function, gln c(D), which specifies
how the variance is reduced upon local averaging of ln c
over some domain D. In the two-dimensional (2D) analysis
considered here, D = D1 � D2 is an area and the 2D var-
iance reduction function is defined by

½13� 	ln cðD1;D2Þ ¼
4

ðD1D2Þ2
Z D1

0

�
Z D2

0

ðD1 � �1ÞðD2 � �2Þ�ð�1; �2Þ d�1 d�2

which can be evaluated using Gaussian quadrature (see Fen-
ton and Griffiths 2003; Griffiths and Smith 2006 for more
details).

It should be emphasized that the previously selected cor-
relation function acts between values of ln c. This is because
ln c is normally distributed and a normally distributed ran-
dom field is simply defined by its mean and covariance
structure. In practice, the correlation length qln c can be esti-
mated by evaluating spatial statistics of the log-cohesion
data directly (see, e.g., Fenton 1999). Unfortunately, such
studies are scarce so that little is currently known about the
spatial correlation structure of natural soils. For the problem
considered here, it turns out that a worst case correlation
length exists that can be conservatively assumed in the ab-
sence of improved information.

The random field is also assumed here to be statistically
isotropic (the same correlation length in any direction
through the soil). Although the horizontal correlation length
is often greater than the vertical as a result of soil layering,
taking this into account was deemed to be a site-specific re-
finement that does not lead to an increase in the general
understanding of the probabilistic behaviour of shallow foun-
dations. The theoretical results presented here, however, ap-
ply also to anisotropic soils, so that the results are easily
extended to specific sites. The authors have found that when
the soil is sampled at some distance from the footing (i.e.,
not directly under the footing), increasing the correlation
length in the horizontal direction to values above the worst-
case isotropic correlation length leads to a decreased failure
probability, so that the isotropic case is also conservative for
low to medium levels of site understanding. When the soil is
sampled directly below the footing, the failure probability in-
creases as the horizontal correlation length is increased
above the worst case scale, which is unconservative.

The friction angle, �, is assumed to be bounded both
above and below, so that neither normal nor lognormal dis-
tributions are appropriate. A beta distribution is often used

Table 1. Literature review of lifetime probabilities
of failure of foundations.

Source pm

Meyerhof (1970, 1993, 1995) 10–2 – 10 – 4

Simpson et al. (1981) 10–3

NCHRP (1991) 10–2 – 10 –4

Becker (1996a) 10–3 – 10–4
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for bounded random variables. Unfortunately, a beta dis-
tributed random field has a complex joint distribution and
simulation is cumbersome and numerically difficult. To
keep things simple, a bounded distribution is selected that
resembles a beta distribution but it arises as a simple trans-
formation of a standard normal random field, G�ðexÞ, ac-
cording to

½14� �ðxeÞ ¼ �min þ
1

2
ð�max � �minÞ

"
1þ tanh

�
sG�ðxeÞ2�

�#
where �min and �max are the minimum and maximum fric-
tion angles in radians, respectively, and s is a scale factor
that governs the friction angle variability between its two
bounds (see Fenton and Griffiths 2008, for more details).
Figure 3 shows how the distribution of � (normalized to the
interval [0,1]) changes as s changes, going from an almost
uniform distribution at s = 5 to a very normal looking distri-
bution for smaller s. Thus, varying s between about 0.1 and
5.0 leads to a wide range in the stochastic behaviour of �.
In all cases, the distribution is assumed to be symmetric so
that the midpoint between �min and �max is the mean. Values
of s less than 1 lead to narrower distributions, however
those with s greater than about 5 lead to U-shaped distribu-
tions (higher at the boundaries), which are unrealistic.

The following relationship between s and the variance of

� derives from a third-order Taylor series approximation to
tanh and a first-order approximation to the final expectation,

½15�

�2
� ¼ ð0:5Þ2ð�max � �minÞ2E

"
tanh 2

�
sG�

2�

�#

’ ð0:5Þ2ð�max � �minÞ2E
"

ðsG�=2�Þ2
1þ ðsG�=2�Þ2

#
’ ð0:5Þ2ð�max � �minÞ2 s2

4�2 þ s2

where E[�] is the expectation operator and E½G2
�� ¼ 1 be-

cause G� is a standard normal random variable. Equation
[15] slightly overestimates the true standard deviation of �,
from 0% when s = 0 to 11% when s = 5. A closer approx-
imation over the entire range 0 £ s £ 5 is obtained by
slightly decreasing the 0.5 factor to 0.46 (this is an empiri-
cal adjustment)

½16� �� ’ 0:46ð�max � �minÞsffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4�2 þ s2

p
The close agreement is illustrated in Fig. 4.

Equation [15] can be generalized to yield the covariance
between �ðexiÞ and �ðex jÞ, for any two spatial points exi and
xe 1 as follows,

½17� Cov½�ðex iÞ; �ðex jÞ� ¼ ð0:5Þ2ð�max � �minÞ2E
�
tanh

�
sG�ðxe iÞ2�

�
tanh

�
sG�ðxe iÞ2�

�	

’ ð0:5Þ2ð�max � �minÞ2 E

(
½sG�ðxe iÞ=2��½sG�ðxe jÞ=2��

1þ 1

2

�
ðsG�ðxe iÞ=2�Þ2 þ ðsG�ðxe jÞ=2�Þ2

	)
’ ð0:46Þ2ð�max � �minÞ2

s2��
�
xe i � xe j�

4�2 þ s2

¼ �2���
�ex i � ex j�

where the empirical correction found in eq. [16] was intro-
duced in the second to last step.

It seems reasonable to assume that if the spatial correla-
tion structure of a soil is caused by changes in the constitu-
tive nature of the soil over space, then both cohesion and
friction angle would have similar correlation lengths. Thus,
q� is taken to be equal to qln c in this study, and � is as-
sumed to have the same correlation structure as c (eq. [12]),
that is, ��ð�eÞ ¼ �ln cð�eÞ. Both correlation lengths will be re-
ferred to generically from now on simply as q, and both cor-
relation functions as �ð�eÞ, remembering that this length and
correlation function reflects correlation between points in
the underlying normally distributed random fields, Gln cðxeÞand G�ðxeÞ, and not directly between points in the cohesion
and friction fields (although the correlation lengths in the
different spaces are quite similar). The correlation lengths
can be estimated by statistically analyzing data generated
by inverting eqs. [11] and [14]. Because both fields have
the same correlation function, �ð�eÞ, they will also have the
same variance reduction function, that is, gln c(D) = g�(D) =
g(D), as defined by eq. [13].

The two random fields, c and �, are assumed to be inde-
pendent. Nonzero correlations between c and � were found
by Fenton and Griffiths (2003) to have only a minor influ-
ence on the estimated probabilities of bearing capacity fail-
ure. Because the general consensus is that c and � are
negatively correlated (Wolff 1985; Cherubini 2000) and the
mean bearing capacity for independent c and � was slightly
lower than for the negatively correlated case (Fenton and
Griffiths 2003), the assumption of independence between c
and � is slightly conservative.

Analytical approximation to the probability of
failure

In this section, an analytical approximation to the proba-
bility of bearing capacity failure of a strip footing is sum-
marized. Equation [5] was developed assuming an ideal soil
whose shear strength is the same everywhere (i.e., a uniform
soil). When soil properties are spatially variable, as they are
in reality, then the hypothesis made in this study is that eq.
[5] can be replaced by
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½18� qu ¼ cN c

where c and N c are the equivalent cohesion and equivalent
Nc factor, defined as those uniform soil parameters that lead
to the same bearing capacity as observed in the real, spa-
tially varying, soil. In other words, it is proposed that
equivalent soil properties, c and �, exist such that a uniform
soil having these properties will have the same bearing capa-
city as the actual spatially variable soil. The value of N c is
obtained by using the equivalent friction angle, �, in eq. [6],

½19� N c ¼
e�tan � tan 2 �

4
þ �

2

� �
� 1

tan �

In the design process, eq. [18] is replaced by eq. [8] and
the design footing width, B, is obtained using eq. [10],
which, in terms of the characteristic design values becomes

½20� B ¼ Ið�L
bLL þ �D

bLDÞ
�gbcbN c

The design philosophy proceeds as follows: find the
required footing width B such that the probability that the

actual load, L, exceeds the actual resistance, quB, is less
than some small acceptable failure probability, pm. If pf is
the actual failure probability, then

½21� pf ¼ P½L > quB� ¼ P½L > cN cB�

and a successful design methodology will have pf £ pm.
Substituting eq. [20] into eq. [21] and collecting random
terms to the left of the inequality leads to

½22� pf ¼ P L
bcbN c

cN c

>
Ið�L

bLL þ �D
bLDÞ

�g

" #
Letting

½23� Y ¼ L
bcbN c

cN c

means that

½24� pf ¼ P Y >
Ið�L

bLL þ �D
bLDÞ

�g

" #
and the task is to find the distribution of Y. Assuming that Y
is lognormally distributed (an assumption found to be rea-
sonable by Fenton et al. 2007, which is also supported to
some extent by the central limit theorem), then

½25� ln Y ¼ ln Lþ ln bc þ ln bN c � ln c � ln N c

is normally distributed and pf can be found once the mean
and variance of ln Y are determined. The mean of ln Y is

½26� �ln Y ¼ �ln L þ �ln cb þ �
ln Nbc

� �ln c � �ln Nc

and the variance of ln Y is

½27� �2
ln Y ¼ �2

ln L þ �2
ln cb þ �2

ln c þ �2
ln Nbc

þ �2
ln Nc

�2Cov½ln c; ln bc� � 2Cov½ln Nc; ln bNc�

where the load, L, and soil properties, c and � have been
assumed to be mutually independent.

To find the parameters in eqs. [26] and [27], the follow-
ing two assumptions are made:

Fig. 3. Bounded distribution of friction angle normalized to the interval [0, 1].

Fig. 4. Relationship between s� and s derived from simulation
(100 000 realizations for each s) and the Taylor’s series derived
approximation given by eq. [16]. The vertical scale corresponds to
�max – �min = 0.349 radians (208).
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(1) The equivalent cohesion, c, is the geometric average of
the cohesion field over some zone of influence, D, under
the footing,

½28� c ¼ exp
1

D

Z
D

ln cðxeÞ dxe
� 	

Note that in this 2D analysis, D is an area and the above
is a 2D integration. If cðxeÞ is lognormally distributed as
assumed, then c is also lognormally distributed. This re-
lationship also preserves the mean, i.e. �� ¼ ��.

(2) The equivalent friction angle, �, is the arithmetic aver-
age of the friction angle over the zone of influence, D

½29� � ¼ 1=D

Z
D

�ðxeÞ dxe
Probably the greatest source of uncertainty in this analysis

involves the choice of the domain, D, over which the equiv-
alent soil properties are averaged under the footing. The
averaging domain was found by trial and error to be best
approximated by D = W � W, centered directly under the
footing (see Fig. 5). In this study, W is taken as 80% of the
average mean depth of the wedge zone directly beneath the
footing, as given by the classical Prandtl failure mechanism,

½30� W ¼ 0:8

2
b�Btan

�

4
þ
��

2

� �
and where m� is the mean friction angle (in radians), within
the zone of influence of the footing, and b�B is an estimate
of the mean footing width obtained by using mean soil
properties (mc and m�) in eq. [10],

½31� b�B ¼ Ið�L
bLL þ �D

bLDÞ
�g�c�Nc

The footing shown in Fig. 5 is just one possible realiza-
tion since the footing width, B, is actually a random varia-
ble. The averaging area D with dimension W suggested by
eq. [30] is significantly smaller than that suggested by Fen-
ton and Griffiths (2003). The 2003 study assumed that the
footing width was known, rather than designed, and recog-
nized that the larger averaging region did not well represent
the mean bearing capacity, which of course is the most im-
portant value in probability calculations. The smaller aver-
aging region used in this study may be reasonable if one
considers the actual quantity of soils involved in resisting
the bearing failure along the failure surfaces. That is, D
would be the area of soil that deforms during failure. As
this area will change, sometimes dramatically, from realiza-
tion to realization, this can only be considered to be a rough
empirical approximation. The problem of deciding on an ap-
propriate averaging region needs further study. In the simu-
lations performed to validate the theory presented here, the
soil depth is taken to be H = 4.8 m and Dx = 0.15 m, where
Dx is the width of the columns of finite elements used in the
simulations (see Fig. 1).

To first order, the mean of Nc is,

½32� �Nc
’

e�tan �� tan 2 �
4
þ ��

2

� �
� 1

tan ��

Armed with the aformentioned information and assump-
tions, the components of eqs. [26] and [27] can be computed
as follows (given the basic statistical parameters of the
loads, c, �, the number and locations of the soil samples,
and the averaging domain size D):

(1) Assuming that the total load L is equal to the sum of the
maximum live load, LLe , acting over the lifetime of the
structure and the static dead load, LD, that is,
L ¼ LLe þ LD, both of which are random, then

½33a� �ln L ¼ lnð�LÞ �
1

2
lnð1þ v2LÞ

½33b� �2ln L ¼ lnð1þ v2LÞ

where �L ¼ �Le
þ �D is the sum of the mean (max life-

time) live and (static) dead loads, and vL is the coeffi-
cient of variation of the total load defined by

½34� v2L ¼
�2Le þ �2D

ð�Le
þ �DÞ2

(2) With reference to eq. [3],

½35� �ln cb ¼ E
1

m

Xm
i¼1

ln coi

" #
¼ �ln c

½36� �2
ln cb ’ �2ln c

m2

Xm
i¼1

Xm
j¼1

�ðxeoi � xeoj Þ
where exoi is the spatial location of the center of the ith
soil sample (i = 1,2,. . .m) and r is the correlation func-
tion defined by eq. [12]. The approximation in the var-
iance arises because correlation coefficients between the
local averages associated with observations (in that all
tests are performed on samples of some finite volume)
are approximated by correlation coefficients between the
local average centers. Assuming that ln bc actually repre-
sents a local average of ln c over a domain of size Dx �
H, where Dx is the horizontal dimension of the soil sam-

Fig. 5. Averaging regions used to predict probability of bearing ca-
pacity failure.
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ple, which, for example, can be thought of as the horizon-
tal zone of influence of a CPT or SPT sounding, and H is
the depth over which the samples are taken, then s2

ln cb is
probably more accurately computed as

½37� �2
ln cb ¼ �2ln c	ð�x;HÞ

(3) With reference to eq. [28],

½38� �ln c ¼ E
1

D

Z
D

ln cðxeÞ dxe
� 	

¼ �ln c

½39� �2ln c ¼ �2ln c	ðDÞ

where g(D) = g(W,W), as discussed previously, is de-
fined by eq. [13].

(4) Because �b� ¼ �� (see eq. [4]), the mean and variance ofbN c can be obtained using first order approximations to
expectations of eq. [9] (Fenton and Griffiths 2003), as
follows:

½40� �
ln bN c

¼ �ln Nc
’ ln

e�tan �� tan 2 �
4
þ ��

2

� �
� 1

tan ��

½41� �2
ln bN c

’ �2
�b
 
d ln bN c

db�





��

!2

¼ �2

�b bd

bd2 � 1
½�ð1þ a2Þd þ 1þ d2� � 1þ a2

a

� �2

where a = tan(m�), b = epa, d = tan[(p/4) + (m�/2)]. The
variance of b� can be obtained by making use of eq. [17],

½42�
s2

�b ’
s2
�

m2

Xm
i¼1

Xm
j¼1

�ðxeoi � xeoj Þ
¼ s2

�	ð�x;HÞ

where xeoi is the spatial location of the center of the ith soil
observation (i = 1,2,. . .,m). See eq. [16] for the definition
of s�.

(5) Because �� ¼ �� (see eq. [29]), the mean and variance of
N c can be obtained in the same fashion as for bN c (in
fact, they only differ as a result of different local aver-
aging in the variance calculation). With reference to
eqs. [19] and [32]

½43� �ln N c
¼ �

ln bN c

¼ �ln Nc

½44� �2
ln N c

’ �2
�

d ln N c

d�






��

 !2

¼ �2

�

bd

bd2 � 1
½�ð1þ a2Þd þ 1þ d2� � 1þ a2

a

� �2

½45� �2
�
¼ �2�	ðDÞ ¼ �2�	ðW ;WÞ

See previous item for definitions of a, b, and d. The var-
iance reduction function, g(W,W) is defined for 2D by
eq. [13] and eq. [16] defines s�.

(6) The covariance between the observed cohesion values
and the equivalent cohesion beneath the footing is ob-
tained as follows for D = W � W and Q = Dx � H:

½46� Cov½ln c; ln bc� ’ �2ln c

D2Q2

Z
D

�
Z
Q

�ðxe 1 � xe 2Þ dxe 1 dxe 2 ¼ �2
ln c	DQ

where gDQ is the average correlation coefficient between
the two areas D and Q. The area D denotes the aver-
aging region below the footing over which equivalent
properties are defined, and the area Q denotes the region
over which soil samples are gathered. These areas are
illustrated in Fig. 5. In detail, gDQ is defined by

½47� 	DQ ¼ 1

ðW2�xHÞ2
Z W=2

�W=2

Z H

H�W

Z rþ�x=2

r��x=2

�
Z H

0

�ð
1 � x1; 
2 � x2Þ d
2 d
1 dx2 dx1

where r is the horizontal distance between the footing
centerline and the centerline of the soil sample column.
Equation [47] can be evaluated by Gaussian quadrature.

(7) The covariance between N c and bN c is similarly approxi-
mated by

½48� Cov½ln N c; ln bN c� ’ �2ln Nc
	DQ

½49� �2ln Nc
’ �2

�

d ln Nc

d�
j��

� �2

¼ �2�
bd

bd2 � 1
½�ð1þ a2Þd þ 1þ d2� � 1þ a2

a

� �2

Substituting these results into eqs. [26] and [27] gives

½50� �ln Y ¼ �ln L

½51� �2
ln Y ¼ �2

ln L

þ ð�2
ln c þ �2ln Nc

Þ½	ð�x; HÞ þ 	ðW;WÞ � 2	DQ�

which can now be used in eq. [24] to produce estimates of
pf. If the friction angle is nonrandom, as in a purely cohe-
sive soil where � = 0, then s2

ln Nc
¼ 0 and eq. [51] simpli-

fies slightly. The primary impact of taking � = 0 is that the
variability of Y is reduced as only one soil parameter is now
random. As will be shown shortly, this means that if only
cohesion is random, a larger resistance factor can be used,
as expected. In other words, the resistance factors presented
for the more general c–� case are conservative. Letting

½52� q ¼ Ið�L
bLL þ �D

bLDÞ

allows the probability of failure to be expressed as

½53� pf ¼ P½Y > q=�g�
¼ P½ln Y > ln ðq=�gÞ�

¼ 1� �
ln ðq=�gÞ � �ln Y

sln Y

� 	
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where � is the standard normal cumulative distribution
function.

Figure 6 illustrates the best and worst agreement between
failure probabilities estimated via simulation and those com-
puted using eq. [53]. The failure probabilities are slightly
underestimated at the worst case correlation lengths when
the sample location is not directly below the footing. Given
all the approximations made in the theory, the agreement is
very good (within a 10% relative error), allowing the resist-
ance factors to be computed with confidence even at proba-
bility levels that the simulation cannot estimate; the
simulation involved only 2000 realizations and so cannot
properly resolve probabilities much less than 0.001.

Required resistance factor

Equation [53] can be inverted to find a relationship be-
tween the acceptable probability of failure, pf = pm, and the
resistance factor, �g, required to achieve that acceptable fail-
ure probability,

½54� �g ¼
Ið�L

bLL þ �D
bLDÞ

expð�ln Y þ �ln Y�Þ

where b is the desired reliability index corresponding to pm.
That is �(b) = 1 – pm. For example, if pm = 0.001, then b =
3.09.

The computation of sln Y in eq. [54] involves knowing
the size of the averaging domain, D, under the footing. In
turn, D depends on the average mean wedge zone depth
(by assumption) under the footing, which depends on the
mean footing width, b�B. Unfortunately, the mean footing
width given by eq. [31] depends on �g, so solving eq. [54]
for �g is not entirely straightforward. One possibility is to
iterate eq. [54] until a stable solution is obtained. However,
the authors have found that eq. [54] is quite insensitive to
the initial size of D and using an ‘‘average’’ value of �g in
eq. [31] of 0.7 is quite sufficient. In other words, approxi-
mating

½55� b�B ¼ Ið�L
bLL þ �D

bLDÞ
0:7�c�Nc

allows sln Y to be suitably estimated for use in eq. [54].
In the following, the value of �g required to achieve three

target lifetime failure probability levels (10–2, 10–3, and 10–4)
for a specific case (a strip footing founded on a soil with
specific statistic parameters) will be investigated. The re-
sults are to be viewed relatively. It is well known that the
true probability of failure for any design will only be
known once an infinite number of replications of that par-
ticular design have been observed over infinite time (and
thus exposed to all possible loadings). One of the great ad-
vantages of probabilistic models is that it is possible to
make probabilistic statements immediately, so long as we
are willing to accept the fact that the probability estimates
are only approximate. In that past history provides a
wealth of designs that have been deemed by society to be
acceptably reliable (or not, as the case may be), the results
presented here need to be viewed relative to past designs
so that the acceptable risk levels based on the past many

years of experience are incorporated. In other words, the
results presented in the following, although rational and
based on rigorous research, need to be moderated and ad-
justed by past experience.

The following parameters will be varied in the simulation
study to investigate their effects on the resistance factor re-
quired to achieve a target lifetime failure probability pm:

(1) Three values of pm are considered, 0.01, 0.001, and
0.0001, corresponding to reliability indices of approxi-
mately 2.3, 3.1, and 3.7, respectively.

(2) The correlation length, q is varied from 0.0 to 50.0 m.
(3) The mean cohesion was set to mc = 100 kN/m2. Four coef-

ficients of variation for cohesion are considered, vc = 0.1,
0.2, 0.3, and 0.5. The s factor for the friction angle distri-
bution (see Fig. 3) is set correspondingly to s = 1, 2, 3,
and 5. That is, when vc = 0.2, s is set to 2.0, and so on.
The friction angle distribution is assumed to range from
�min = 0.1745 radians (108) to �max = 0.5236 radians
(308). The corresponding coefficients of variation for
friction angle are v� = 0.07, 0.14, 0.20, and 0.29.

(4) Three sampling locations are considered: r = 0, 4.5, and
9.0 m from the footing centerline (see Fig. 5 for the de-
finition of r).

The design problem considered involves a strip footing
supporting loads having means and standard deviations

½56a� �Le
¼ 200 N=m �Le ¼ 60 kN=m

½56b� �D ¼ 600 N=m �D ¼ 90 kN=m

Assuming bias factors kD = 1.18 (Becker 1996b) and
kLe ¼ 1:41 (Allen 1975) gives the characteristic loads

½57a� bLL ¼ 1:41ð200Þ ¼ 282 kN=m

½57b� bLD ¼ 1:18ð600Þ ¼ 708 N=m

and the total factored design load (assuming I = 1) is

½58� q ¼ Ið�L
bLL þ �D

bLDÞ
¼ 1:5ð282Þ þ 1:25ð708Þ
¼ 1308 kN=m

So long as the ratio of dead to live load (assumed to be
3.0 in this study), the coefficients of variation of the load
(assumed to be vLe ¼ 0:3 and vD = 0.15), and the character-
istic bias factors, kLe and kD, are unchanged, the results pre-
sented here are independent of the load applied to the strip
footing. Minor changes in load ratios, coefficients of varia-
tion, and bias factors should not result in significant changes
to the resistance factor.

Considering the slightly unconservative underestimation
of the probability of failure in some cases (see Fig. 6b), it
is worthwhile investigating how sensitive eq. [54] is to
changes in pm of the same order as the errors in estimation
of pf. If pm is replaced by pm/1.5, then this corresponds to
underestimating the failure probability by a factor of 1.5,
which was well above the maximum difference seen be-
tween theory and simulation. It can be seen from Fig. 7,
which illustrates the effect of errors in the estimation of the
failure probability, that the effect on �g is minor, especially
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considering all other sources of error in the analysis. Of the
cases considered in this study, the �g values least affected
by an underestimation of the probability occur when the
soil is sampled under the footing (r = 0) and for small pm,
as seen in Fig. 7a. The worst case is shown in Fig. 7b and
all other results (not shown) were seen to lie between these
two plots. Even in the worst case of Fig. 7b, the change in
�g due to errors in probability estimation are relatively small
and will be ignored.

Figures 8, 9, and 10 show the resistance factors required for
the cases where the soil is sampled directly under the footing,
at a distance of 4.5 m and at a distance of 9.0 m from the foot-
ing centerline, respectively, to achieve the three target failure
probabilities. The worst case correlation length is clearly be-
tween about 1 and 5 m, as evidenced by the fact that in all
plots the lowest resistance factor occurs when 1 < q < 5 m.
This worst case correlation length is of the same magnitude
as the mean footing width (b�B = 1.26 m), which can be

explained as follows: if the random soil fields are station-
ary then soil samples yield perfect information, regardless
of their location, if the correlation length is either zero (as-
suming soil sampling involves some local averaging) or in-
finity. When the information is perfect the probability of a
bearing capacity failure goes to zero and �g ? 1.0 (or
possibly greater than 1.0 to compensate for the load bias
factors). When the correlation length is zero, the soil sam-
ple will consist of an infinite number of independent ‘‘ob-
servations’’ whose average is equal to the true mean (or
true median, if the average is a geometric average). Be-
cause the footing also averages the soil properties, the
footing ‘‘sees’’ the same true mean (or true median) value
predicted by the soil sample. When the correlation length
goes to infinity, the soil becomes uniform, having the
same value everywhere. In this case, any soil sample also
perfectly predicts conditions under the footing.

At intermediate correlation lengths soil samples become

Fig. 6. Comparison of failure probabilities estimated from simulation based on 2000 realizations and theoretical estimates using eq. [53].
Plot (a) shows probabilities when the soil has been sampled directly under the footing, while (b) shows the probabilities when the soil has
been sampled 9 m from the footing centerline. Note the change in the vertical scales; the probability of failure is much lower when samples
are taken directly under the proposed footing.

Fig. 7. Effect of failure probability underestimation on the resistance factor required by eq. [54].
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imperfect estimators of conditions under the footing, and so
the probability of bearing capacity failure increases, or con-
versely, the required resistance factor decreases. Thus, the
minimum required resistance factor will occur at some cor-
relation length between 0 and infinity. The precise value
depends on the geometric characteristics of the problem
under consideration, such as the footing width, depth to bed-

rock, length of soil sample, and (or) the distance to the sam-
ple point. Notice in Figs. 8, 9, and 10 that the worst case
point does show some increase as the distance to the sample
location, r, increases.

As expected, the smallest resistance factors correspond
with the smallest acceptable failure probability considered,
pm = 0.0001, and with the poorest understanding of the soil

Fig. 8. Resistance factors required to achieve acceptable failure
probability, pm, when soil is sampled directly under the footing (r =
0).

Fig. 9. Resistance factors required to achieve acceptable failure
probability, pm, when soil is sampled at r = 4.5 m from the footing
centerline.
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properties under the footing (i.e., when the soil is sampled
9 m away from the footing centerline). When the cohesion
coefficient of variation is relatively large, vc = 0.5, with
corresponding v� ’ 0:29, the worst case values of �g dip
almost down to 0.1 in order to achieve pm = 0.0001. In
other words, there will be a significant construction cost
penalty if a high reliability footing is designed using a site

investigation that is insufficient to reduce the residual vari-
ability to less than vc = 0.5.

The simulation results can also be used to verify the theo-
retically determined resistance factors. This is done by using
the simulation-based failure probabilities as values of pm in
the theory and comparing the resistance factor, �g, used in
the simulation to that predicted by eq. [54]. The comparison
is shown in Fig. 11. For perfect agreement between theory
and simulation, the points should align along the diagonal.
The agreement is deemed to be very good and much of the
discrepancy is due to failure probability estimator error, as
discussed next. In general, however, the theory-based esti-
mates of �g are seen to be conservative, that is somewhat
less than seen in the simulations on average.

Those simulations having less than 2 failures out of
the 2000 realizations were omitted from the comparison
in Fig. 11, as the estimator error for such low probabil-
ities is as large, or larger, than the probability being esti-
mated. In fact, for those simulations having 2 failures out
of 2000 (included in Fig. 11), the estimated probability
of failure is 0.001, which has standard errorffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
0:001ð0:999Þ=2000

p
¼ 0:0007. This error is almost as

large as the probability being estimated, having a coeffi-
cient of variation of 70%. In fact most of the discrepancies
in Fig. 11 are easily attributable to estimator error in the
simulation. The coefficient of variation of the estimator at
the 0.01 probability level is 20%, which is still larger than
most of the relative errors seen in Fig. 11 (the maximum
relative error in Fig. 11 is 0.28 at �g = 0.5).

The ‘‘worst case’’ resistance factors required to achieve
the indicated maximum acceptable failure probabilities, as
seen in Figs. 8–10, are summarized in Table 2. In the ab-
sence of better knowledge about the actual correlation length
at the site in question, these factors are the largest values
that should be used in the LRFD bearing capacity design of
a strip footing founded on a c–� soil.

Fig. 10. Resistance factors required to achieve acceptable failure
probability, pm, when soil is sampled at r = 9.0 m from the footing
centerline.

Fig. 11. Required resistance factors, �g, based on simulation versus
those based on eq. [54]. For perfect agreement, the points would all
lie on the diagonal.
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It is noted, however, that the factors listed in Table 2 are
sometimes quite conservative. For example, when vc = 0.3,
r = 4.5 m, and pm = 0.001, Table 2 suggests that �g = 0.42
for the c–� soil considered here. However, if the soil is
undrained, with � = 0 (all else being the same), then the
only source of variability in the shear strength is the cohe-
sion. In this case the above theory predicts a resistance
factor of �g = 0.60, which is considerably larger than that
suggested by Table 2.

To compare the resistance factors recommended in Table
2 to resistance factors recommended in the literature and to
current geotechnical LRFD codes, changes in the load fac-
tors from code to code need to be taken into account. It
will be assumed that all other sources define �Le

, mD, kLe ,
and kD in the same way, which is unfortunately by no means
certain. The easiest way to compare resistance factors is to
compare the ratio of the resistance factor, �g, to the total
load factor, a. The total load factor, defined for fixed dead
to live load ratio, is the single load factor that yields the
same result as the individual live and dead load factors, that
is, �ðbLL þ bLDÞ ¼ �L

bLL þ �D
bLD. For mean dead to live load

ratio RD=L ¼ �D=�Le
and characteristic bias factors kD and kL,

½59� � ¼ �L
bLL þ �D

bLDbLL þ bLD

¼
�LkL�Le

þ �DkD�D

kL�Le
þ kD�D

¼ �LkL þ �DkDRD=L

kL þ kDRD=L

which, for RD/L = 3, kL = 1.41, kD = 1.18, gives a = 1.32.
Table 3 compares the ratio of the resistance factors recom-
mended in this study to total load factor ratio with three
other sources. The individual ‘‘current study’’ values corre-

spond to the moderate case where vc = 0.3 and acceptable
failure probability p = 0.001. The resistance factor derived
from the Australian Standard (2004) on bridge foundations
assumes a dead to live load ratio of 3.0 (not stated in the
code) and that the site investigation is based on CPT tests.

Apparently the resistance factor recommended by Foye et
al. (2006) assumes very good site understanding – they spec-
ify that the design assumes a CPT investigation that is pre-
sumably directly under the footing. Foye’s recommended
resistance factor is based on a reliability index of b = 3,
which corresponds to pm = 0.0013, which is very close to
that used in Table 3 (pm = 0.001). The small difference be-
tween the ‘‘current study’’ r = 0 result and Foye’s may be
due to differences in load bias factors – these are not speci-
fied by Foye et al.

The resistance factor specified by the Canadian Founda-
tion Engineering Manual (CFEM) (CGS 2006) is some-
where between that predicted here for the r = 0 and r =
4.5 m results. The CFEM resistance factor apparently pre-
sumes a reasonable, but not significant, understanding of
the soil properties under the footing (e.g., r ’ 3 m rather
than r = 0 m). The corroboration of the rigorous theory
proposed here by an experience-based code provision is,
however, very encouraging. The authors also note that the
CFEM is the only source listed in Table 3 for which the
live and dead load bias factors used in this study can be
reasonably assumed to also apply.

The AS 5100.3 standard (Australian Standard 2004) re-
sistance factor ratio is very close to that predicted here using
r = 4.5 m. It is probably reasonable to assume that the Aus-
tralian Standard recommendations correspond to a moderate
level of site understanding (e.g., r = 4.5 m) and an accept-
able failure probability of about 0.001.

Summary
One of the main impediments to the practical use of this

paper is that it depends on an a-priori knowledge of the var-
iance, and, to a lesser extent as ‘‘worst case’’ results are pre-
sented herein, the correlation structure of the soil properties.
However, assuming that at least one CPT or SPT sounding
(or equivalent) is taken in the vicinity of the footing, it is
probably reasonable to assume that the residual variability
is reduced to a coefficient of variation of no more than
about 0.3, and often considerably less (the results collected
by other investigators, e.g., Phoon and Kulhawy 1999, sug-
gest that this may be the case for ‘‘typical’’ site investiga-
tions). If this is so, the resistance factors recommended in
Table 2 for vc = 0.3 are probably reasonable for the load
and bias factors assumed in this study.

Table 2. Worst case resistance factors for various coefficients of variation, vc, distance to sampling location,
r, and acceptable failure probabilities, pm.

r = 0.0 m r = 4.5 m r = 9.0 m

vc

pm =
0.01

pm =
0.001

pm =
0.0001

pm =
0.01

pm =
0.001

pm =
0.0001

pm =
0.01

pm =
0.001

pm =
0.0001

0.1 1.00 0.99 0.89 1.00 0.89 0.79 1.00 0.86 0.76
0.2 0.96 0.80 0.69 0.79 0.62 0.51 0.74 0.57 0.46
0.3 0.80 0.63 0.52 0.59 0.42 0.32 0.54 0.38 0.28
0.5 0.58 0.41 0.31 0.35 0.21 0.14 0.31 0.18 0.11

Table 3. Comparison of resistance factors recommended in this
study to those recommended by three other sources.

Load factors
RD/L aL aD �g �g/a

Current study, r = 0 m 3 1.5 1.25 0.63 0.48
Current study, r = 4.5 m 3 1.5 1.25 0.42 0.32
Current study, r = 9.0 m 3 1.5 1.25 0.38 0.29
Foye et al. (2006) 4 1.6 1.20 0.70 0.54
CGS (2006) 3 1.5 1.25 0.50 0.38
Australian Standard (2004) 3 1.8 1.20 0.45 0.33
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The resistance factors recommended in Table 2 are con-
servative in (at least) the following ways.

(1) It is unlikely that the correlation length of the residual
random process at a site (after removal of any mean or
mean trend estimated from the site investigation, assum-
ing there is one) will actually equal the ‘‘worst case’’
correlation length.

(2) The soil is assumed to be weightless in this study. The
addition of soil weight will reduce the failure probability
and so result in higher resistance factors for fixed accep-
table failure probability.

(3) Sometimes more than one CPT or SPT sounding is taken
at the site in the footing region, so that the site under-
standing may exceed even the r = 0 m case considered
here if trends and layering are carefully accounted for.

(4) Both c and � are assumed to be independent, rather than
negatively correlated, which leads to a somewhat higher
probability of failure and correspondingly lower resistance
factor, and therefore to somewhat conservative results.
Because the effect of positive or negative correlation of c
and � was found by Fenton and Griffiths (2003) to be
quite minor, this is not a major source of conservatism.

On the other hand, the resistance factors recommended in
Table 2 are unconservative in (at least) the following ways.

(1) Measurement and model errors are not considered in this
study. The statistics of measurement errors are very dif-
ficult to determine, as the true values need to be known.
Similarly, model errors, which relate both the errors as-
sociated with translating measured values (e.g., CPT or
SPT measurements to friction angle values) and the
errors associated with predicting bearing capacity by an
equation such as eq. [5], are quite difficult to estimate
simply because the true bearing capacity along with the
true soil properties are rarely, if ever, known. In the
authors’ opinions this is the major source of unconserva-
tism in the presented theory. When confidence in the
measured soil properties or in the model used is low,
the results presented here can still be employed by as-
suming that the soil samples were taken further away
from the footing location than they actually were (e.g.,
if low-quality soil samples are taken directly under the
footing, r = 0, the resistance factor corresponding to a
larger value of r, say r = 4.5 m should be used).

(2) The failure probabilities given by the aforementioned
theory are slightly underpredicted when soil samples are
taken at some distance from the footing. The effect of
this underestimation on the recommended resistance fac-
tor has been shown to be relatively minor but neverthe-
less is slightly unconservative.

To some extent the conservative and unconservative fac-
tors listed previously cancel one another out. Figure 11 sug-
gests that the theory is generally conservative if measurement
errors are assumed to be insignificant. The comparison of re-
sistance factors presented in Table 3 demonstrates that the
‘‘worst case’’ theoretical results presented in Table 2 agree
quite well with current literature and LRFD code recommen-
dations, assuming moderate variability and site understand-
ing, suggesting that the theory is reasonably accurate. In any
case, the theory provides an analytical basis to extend code
provisions beyond mere calibration with the past.

The results presented in this paper are for a c–� soil in
which both cohesion and friction contribute to the bearing
capacity, and thus to the variability of the strength. If it is
known that the soil is purely cohesive (e.g., ‘‘undrained
clay’’), then the strength variability comes from one source
only. In this case, not only does eq. [51] simplify as
s2
ln Nc

¼ 0, but because of the loss of one source of variabil-
ity, the resistance factors increase significantly. The net
result is that the resistance factors presented in this paper
are conservative when � = 0. Additional research is needed
to investigate how the resistance factors should generally be
increased for ‘‘undrained clays’’.

The effect of anisotropy on the correlation lengths has not
been carefully considered in this study. It is known, how-
ever, that increasing the horizontal correlation length above
the worst case length is conservative when the soil is not
sampled directly below the footing. When the soil is
sampled directly under the footing, weak spatially extended
horizontal layers below the footing will obviously have to be
explicitly handled by suitably adjusting the characteristic
soil properties used in the design. If this is done, then the
resistance factors suggested here should still be conserva-
tive. The theory presented in this paper easily accomodates
the anisotropic case.

One of the major advantages to a table such as Table 2 is
that it provides geotechnical engineers with evidence that in-
creased site investigation will lead to reduced construction
costs and (or) increased reliability. In other words, Table 2 is
further evidence that you pay for a site investigation whether
you have one or not (Institution of Civil Engineers 1991).
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List of symbols

a tan m�
A load tributary area

b epa

B strip footing width
c cohesion
c geometric average of cohesion field over domain Dbc geometric average of observed (sampled) cohesion va-

lues
coi observed (sampled) cohesion value
d tan �

4
þ ��

2

� �
D effective soil property averaging domain centered under

footing W � W
D1 x1 dimension of the averaging domain D
D2 x2 dimension of the averaging domain D

E[�] expectation operator
fL probability density function of load

Gln c standard normal random field (log-cohesion)
G� standard normal random field (underlying friction angle)
H depth to bedrock and depth of assumed soil sample
I importance factor

kLe extreme lifetime live load bias factor
kD dead load bias factor
L total true (random) footing load, kN/mbLi ith characteristic load effect

LD true (random) dead load, kN/mbLD characteristic dead load (= kDmD), kN/m
LLe true (random) maximum live load over design life,

kN/mbLL characteristic live load (= kLe�Le
), kN/m

m number of soil observations
Nc N-factor associated with cohesion, which is a function

of �
N c effective N-factor associated with cohesion, which is

based on an arithmetic average of the friction angle
over domain DbN c characteristic N-factor associated with cohesion, which
is based on an arithmetic average of the observed fric-
tion angles over domain Q (m soil sample observations)

pf probability of bearing capacity failure
pm maximum acceptable probability of bearing capacity

failure
qu ultimate bearing stressbqu ultimate bearing stress estimated from characteristic

soil properties
q factored design load (¼ Ið�L

bLL þ �D
bLDÞ)

Q characteristic soil property averaging domain (=Dx�H)
r distance between soil sample and footing center, m

RD/L ratio of mean dead load and mean extreme lifetime
live loadbRu ultimate resistance based on characteristic soil proper-
ties

Ru true ultimate resistance (random)
s scale factor used in distribution of �

vc coefficient of variation of cohesion
vD coefficient of variation of dead load
vL coefficient of variation of total load
vLe coefficient of variation of extreme lifetime load
v� coefficient of variation of friction angle
W side dimension of effective averaging domain D
xe spatial coordinate, (x1,x2) in 2D

xeoi spatial coordinate of the center of the ith soil sample
xi spatial direction (x1 and x2)
Y true load times ratio of estimated to effective bearing

capacity
a total load factor
ai load factor corresponding to the ith load effect
aL live load factor
aD dead load factor
b reliability index corresponding to acceptable failure

probability, pm
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Dx horizontal dimension of soil samples
� friction angle (radians unless otherwise stated)
�g resistance factor

� arithmetic average of � over domain Db� arithmetic average of the m observed friction angles
�min minimum friction angle
�max maximum friction angle
�o
i ith observed friction angle
F standard normal cumulative distribution function

g(D) common variance function giving variance reduction
due to averaging over domain D

gln c(D) variance function giving variance reduction due to aver-
aging log-cohesion over domain D

g�(D) variance function giving variance reduction due to aver-
aging G� over domain D

gDQ average correlation coefficient between domains D
and Q

mc cohesion mean
mln c log-cohesion mean
�ln bc mean of the estimate of log-cohesion based on a geo-

metric average of cohesion observations
�ln c mean of the effective log-cohesion based on a geometric

average of cohesion over domain D
�Nc

mean of Nc
�
ln bNc

mean of ln bN c

�ln N c
mean of ln N c

mD mean dead load
mL mean total load on strip footing, kN/m
�Le

mean extreme live load over design life
mln L mean total log-load on strip footing
m� mean friction angle
�b� mean of estimated friction angle

�� mean of effective friction angle in zone of influence
under footing

mln Y mean of ln Yb�B estimated mean footing width
x1, x2 dummy variables used in eq. [47]

q correlation length of the random fields
qln c correlation length of the log-cohesion field
q� correlation length of the G� field

�ð�eÞ common correlation function
�ln cð�eÞ correlation function giving correlation between two

points in the log-cohesion field
��ð�eÞ correlation function giving correlation between two

points in the G� field
sc cohesion standard deviation
sD dead load standard deviation
�Le standard deviation of extreme lifetime live load

sln L standard deviation of total log-load
sln c log-cohesion standard deviation
�ln c standard deviation of ln c
�
lnbc standard deviation of ln bc
s� standard deviation of �
�� standard deviation of �

�ln Nc
standard deviation of ln Nc

�ln N c
standard deviation of ln N c

�
ln bN c

standard deviation of ln bN c

sln Y standard deviation of ln Y
�e vector between two points in the soil domain
t1 horizontal component of the distance between two

points in the soil domain
t2 vertical component of the distance between two points

in the soil domain

Fenton et al. 1571

# 2008 NRC Canada


