
doi: 10.1098/rspa.2009.0165
 published online 29 July 2009Proc. R. Soc. A

 
D. V. Griffiths, Jinsong Huang and Gordon A. Fenton
 
dimensions

0On the reliability of earth slopes in three
 
 

References
pa.2009.0165.full.html#ref-list-1
http://rspa.royalsocietypublishing.org/content/early/2009/07/28/rs

 This article cites 19 articles

P<P Published online 29 July 2009 in advance of the print journal.

Subject collections
 (7 articles)civil engineering   �

 
Articles on similar topics can be found in the following collections

Email alerting service  herethe box at the top right-hand corner of the article or click 
Receive free email alerts when new articles cite this article - sign up in

articles must include the digital object identifier (DOIs) and date of initial publication. 
priority; they are indexed by PubMed from initial publication. Citations to Advance online 
prior to final publication). Advance online articles are citable and establish publication
yet appeared in the paper journal (edited, typeset versions may be posted when available 
Advance online articles have been peer reviewed and accepted for publication but have not

 http://rspa.royalsocietypublishing.org/subscriptions go to: Proc. R. Soc. ATo subscribe to 

This journal is © 2009 The Royal Society

 on 29 July 2009rspa.royalsocietypublishing.orgDownloaded from 

http://rspa.royalsocietypublishing.org/content/early/2009/07/28/rspa.2009.0165.full.html#ref-list-1
http://rspa.royalsocietypublishing.org/cgi/collection/civil_engineering
http://rspa.royalsocietypublishing.org/cgi/alerts/ctalert?alertType=citedby&addAlert=cited_by&saveAlert=no&cited_by_criteria_resid=royprsa;rspa.2009.0165v1&return_type=article&return_url=http://rspa.royalsocietypublishing.org/content/early/2009/07/28/rspa.2009.0165.full.pdf
http://rspa.royalsocietypublishing.org/subscriptions
http://rspa.royalsocietypublishing.org/


 on 29 July 2009rspa.royalsocietypublishing.orgDownloaded from 
Proc. R. Soc. A
doi:10.1098/rspa.2009.0165

Published online

On the reliability of earth slopes in
three dimensions

BY D. V. GRIFFITHS1, JINSONG HUANG1,* AND GORDON A. FENTON2

1Division of Engineering, Colorado School of Mines, Golden, CO, USA
2Department of Engineering Mathematics, Dalhousie University,
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The paper investigates the probability of failure of two-dimensional and three-dimensional
slopes using the random finite-element method (RFEM). In this context, RFEM
combines elastoplastic finite-element algorithms with random field theory in a Monte
Carlo framework. Full account is taken of local averaging and variance reduction over
each element, and an exponentially decaying (Markov) spatial correlation function is
incorporated. It is found that two-dimensional probabilistic analysis, which implicitly
assumes perfect spatial correlation in the out-of-plane direction, may underestimate the
probability of failure of slopes.

Keywords: three dimensional; slope stability; finite-element method; probability of failure;
spatial correlation; random fields
1. Introduction

A considerable number of studies (e.g. Cavounidis 1987; Duncan 1996; Stark &
Eid 1998) have compared the factor of safety from a full three-dimensional
slope analysis (FS3) with that obtained from a traditional two-dimensional
analysis (FS2) and concluded that in the majority of cases for rather uniform
slopes FS3 ≥ FS2. The additional stability observed in three-dimensional slopes
is generally attributed to the support offered by the boundary conditions in the
out-of-plane direction, which is in contrast to the ‘smooth’ conditions implied in
a two-dimensional plane strain analysis. The assumption that two-dimensional
analysis leads to conservative factors of safety needs some qualification, however.
First, a conservative result will only be obtained if the most ‘pessimistic’ plane
within a three-dimensional problem is selected for two-dimensional analysis.
Griffiths & Marquez (2008) clearly showed planes within a three-dimensional
slope that gave higher (unconservative) two-dimensional factors of safety than
that of the full three-dimensional problem. In a slope that contains layering and
strength variability in the out-of-plane direction, the choice of a two-dimensional
pessimistic section may not be intuitively obvious. Although Hutchinson & Sarma
(1985) and Hungr (1987) have both asserted that the factor of safety in three
dimension is always greater than that in two dimension, it cannot be ruled out
that an unusual combination of soil properties and geometry could lead to a
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three-dimensional mechanism that is more critical. Bromhead & Martin (2004)
argued that some landslide configurations with highly variable cross-sections
could lead to failure modes in which the three-dimensional mechanism was the
most critical. Other investigators have indicated more critical three-dimensional
factors of safety (e.g. Chen & Chameau 1982; Seed et al. 1990), although this
remains a controversial topic. Most importantly, as the two-dimensional factor
of safety is generally considered to be conservative, practitioners are reluctant to
invest in the more time-consuming three-dimensional approaches.

Furthermore, it is well known that ‘high’ factors of safety do not necessarily
mean low probabilities of failure (e.g. Christian et al. 1994; Chowdhury & Xu
1995; Duncan 2000). A key question to be addressed in this paper is: under
what circumstances will the probability of failure of a slope predicted by a
full three-dimensional analysis be higher than that obtained from an equivalent
two-dimensional analysis?

The level of stability of natural and constructed slopes is usually expressed by a
factor of safety, defined as the ratio of the integral of characteristic shear strength
to driving forces (gravitational) over the critical failure surface. In foundations
engineering, recent interest and application of load and resistance factor design
methods allows the engineer to implicitly account for uncertainties by choosing
conservatively high characteristic loads and conservatively low characteristic
resistances (e.g. AASHTO 2007). The choice, however, is somewhat arbitrary,
and in slope stability analysis, the main uncertainty lies in the characteristic
shear strength, which may also depend on groundwater conditions. Slopes with
nominally the same factor of safety based on characteristic shear strengths could
have significantly different failure probabilities because of the uncertainties and
how they are dealt with. Duncan (2000) pointed out that through regulation
or tradition, the same value of safety factor is often applied to conditions that
involve widely varying degrees of uncertainty. This is not logical. A low safety
factor does not necessarily correspond to a high probability of failure and vice
versa. The relationship between the factor of safety and probability of failure
depends on the uncertainties in loads and resistances.

Finite-element investigations of slope reliability have usually been based on
two-dimensional analyses (Paice & Griffiths 1997; Griffiths & Fenton 2000, 2004;
Hicks & Samy 2002) with none, to our knowledge, using three-dimensional finite
elements. A difficulty with three-dimensional slope analysis is that the methods
have tended to be extensions of two-dimensional limit equilibrium methods of
slices (to ‘methods of columns’), where soil variability and boundary conditions
are hard to account for in a systematic way (e.g. Griffiths et al. 2009). Important
early work was reported by Vanmarcke (1977), which led other investigators such
as Yücemen & Al-Homoud (1990) and Auvinet & Gonzalez (2000) to consider
the three-dimensional slope reliability.

A methodology developed by the authors, called the ‘random finite-element
method’ (RFEM), is used in this paper for three-dimensional probabilistic
analysis (Fenton & Griffiths 2008). The method combines nonlinear finite-element
methods with random field generation techniques. This method fully accounts for
spatial correlation and averaging and is also a powerful slope stability analysis
tool that does not require a priori assumptions related to the shape or location of
the failure mechanism. In this study, the RFEM is further developed to combine
three-dimensional elastoplastic finite elements and three-dimensional random
Proc. R. Soc. A
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Table 1. Nomenclature.

cu undrained cohesion
Cu dimensionless undrained cohesion
FS factor of safety
FS2 two-dimensional factor of safety
FS3 three-dimensional factor of safety
H slope height
L slope length
Lcrit critical slope length corresponding to minimum pf
(L/H )crit critical length ratio corresponding to minimum pf
(L/H )3>2 cross-over length ratio above which two-dimensional analysis ceases to be

conservative
pf probability of failure
W width of preferred failure mechanism
Wcrit average width of preferred failure mechanism following Monte Carlo

simulations
γsat saturated soil unit weight
θln Cu spatial correlation length of undrained cohesion
Θ dimensionless spatial correlation length of undrained cohesion
μCu mean dimensionless undrained cohesion
μCuA mean dimensionless undrained cohesion after local averaging
μFS mean factor of safety
μln Cu equivalent normal mean of undrained cohesion
vCu coefficient of variation of dimensionless undrained cohesion
vFS coefficient of variation of factor of safety
ρ(τ) correlation coefficient between properties assigned to two points
σCu s.d. of dimensionless undrained cohesion
σCuA s.d. of dimensionless undrained cohesion after local averaging
σFS s.d. of factor of safety
σln Cu equivalent normal s.d. of undrained cohesion
τ absolute distance between two points in a random field
φu undrained friction angle
Φ(·) the cumulative standard normal distribution function.

field theory in a Monte Carlo framework to directly assess the influence of the
coefficient of variation of soil strength and spatial correlation length on slope
reliability. The three-dimensional results are compared with an equivalent two-
dimensional probabilistic analysis by RFEM (e.g. Griffiths & Fenton 2004) which
assumes plane strain conditions and hence perfect correlation in the out-of-plane
direction. It will be shown that under some conditions, three-dimensional slope
stability analysis leads to higher probabilities of failure than two-dimensional (see
table 1 for the notation used in this paper).

2. Deterministic analyses

Before turning to probabilistic analyses, we initially present some deterministic
slope stability analysis results involving three-dimensional slopes with uniform
(constant) soil properties.
Proc. R. Soc. A
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Figure 1. Two-dimensional finite-element mesh.

Figure 2. Two-dimensional deformed mesh.

The two-dimensional slope profile shown in figure 1 uses eight-node plane
strain finite elements to model a 2h : 1v undrained clay slope sitting on rock,
with strength parameters φu = 0 and Cu = cu/(γsatH ) = 0.167. The slope stability
analyses use an elastic-perfectly plastic stress–strain with a Tresca failure
criterion. The left side of the slope is constrained by vertical rollers and the
bottom of the slope is fixed. Using typical slope stability analysis method
(stability charts, limit analysis or finite elements), it can be shown that FS ≈ 1.39.
A finite-element strength reduction approach (e.g. Griffiths & Lane 1999) gives
the nodal displacement vectors at failure shown in figure 2 indicating the general
shape and location of the failing soil mass.

A three-dimensional slope profile, modelled using 20-node hexahedral elements
in which the cross section of the slope shown in figure 1 is extended by a length
L/2 in the z-direction, is shown in figure 3. The bottom of the mesh (y = −H )
and the side (z = 0) are fully fixed corresponding to ‘rough’ conditions, while the
back (x = 0) and centre line (z = L/2) are allowed to move only in a vertical plane
(owing to symmetry only half of the total slope length needs to be modelled). The
total length L of the slope was varied in the range 0.8 < L/H < 12, enabling an
investigation to be made of the influence of three-dimensionality. Figure 4 shows
a typical deformed mesh at failure. A comparison of the factor of safety obtained
in the three-dimensional and two-dimensional (plane strain) analyses is given in
figure 5. The factor of safety in three dimension was always higher than in two
dimension owing to side support, but tended to the plane strain solution for length
ratios of the order of L/H > 10. It should be mentioned that Griffiths & Marquez
(2007) used a mesh density similar to that shown in figure 3 but demonstrated
that while finer meshes always gave slightly lower factors of safety than the coarser
mesh, the difference never exceeded 2 per cent.
Proc. R. Soc. A
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Figure 3. Three-dimensional finite-element mesh (all dimensions in metres).

Figure 4. Three-dimensional deformed mesh.

3. Random finite-element method

In the remainder of this study, the (dimensionless) shear strength parameter
Cu is assumed to be a random variable characterized statistically by a
lognormal distributions (i.e. the logarithm of the property is normally
distributed). The lognormal distribution is one of many possible choices
(e.g. Fenton & Griffiths 2008); however, it offers the advantage of simplicity, in
that it is arrived by a simple nonlinear transformation of the classical normal
(Gaussian) distribution. Lognormal distributions guarantee that the random
variable is always positive.

The lognormally distributed undrained shear strength Cu is characterized by
three parameters, the mean, μCu , the s.d. σCu and the spatial correlation length
θln Cu . The variability of Cu can conveniently be expressed by the dimensionless
Proc. R. Soc. A
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Figure 5. Comparison of three-dimensional (solid line) and two-dimensional (dashed line)
slope analyses.

coefficient of variation defined as

vCu = σCu

μCu

. (3.1)

As the actual undrained shear strength field is lognormally distributed, its
logarithm yields an ‘underlying’ normally distributed (or Gaussian) field. The
mean and s.d. of the underlying normal distribution of ln Cu are related to the
mean and s.d. of Cu using the standard transformation formulae (e.g. Fenton &
Griffiths 2008)

σln Cu =
√

ln{1 + v2
Cu

} (3.2)

and

μln Cu = ln μCu − 1
2
σ 2

ln Cu
(3.3)

and their inverse form

μCu = exp
(

μln Cu + 1
2
σ 2

ln Cu

)
(3.4)

and
σCu = μCu

√
exp(σ 2

ln Cu
) − 1. (3.5)

The spatial correlation length is measured with respect to the underlying normal
field; hence the spatial correlation length (θln Cu) describes the distance over
which the spatially random values of ln Cuwill tend to be significantly correlated
spatially. A large value of θln Cu will imply a smoothly varying field, while a small
value will imply a rapidly varying field.
Proc. R. Soc. A
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Figure 6. Influence of the spatial correlation length in RFEM analysis. (a) Θ = 0.2, and (b) Θ = 2.

In this work, an exponentially decaying (Markovian) correlation function of
the following form is used

ρ(τ) = e−2τ/θln Cu , (3.6)

where ρ(τ) is the correlation coefficient between properties assigned to two points
in the random field separated by an absolute distance τ .

In the current study, the spatial correlation length has been non-
dimensionalized by dividing it by the height of the embankment H (figure 3)
and will be expressed in the form

Θ = θln Cu

H
. (3.7)

Figure 6a,b shows typical two-dimensional random fields of undrained strength
corresponding to different spatial correlation lengths. Figure 6a shows a relatively
low spatial correlation length of Θ = 0.2 (implying a rapidly varying field) and
figure 6b shows a relatively high spatial correlation length of Θ = 2 (implying
a smoothly varying field). The figures depict the variation of cu that has been
mapped onto the finite-element mesh and have been scaled in such a way that dark
and light regions depict ‘strong’ and ‘weak’ soil, respectively. Black represents the
strongest element and white the weakest in the particular simulation. It should
be emphasized that both these shear strength distributions come from the same
lognormal distribution (same mean and s.d.) and it is only the spatial correlation
length that is different.
Proc. R. Soc. A
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The input parameters relating to the mean, s.d. and spatial correlation length
are assumed to be defined at the ‘point’ level. While statistics at this resolution
are obviously impossible to measure in practice, they represent a fundamental
baseline of the inherent soil variability, which can be corrected through local
averaging to take account of the sample size. In the context of the RFEM
approach, the sample size is the volume of each finite element used to discretize the
slope, and each element is assigned a constant property. If the point distribution is
normal, local averaging results in a reduced variance but the mean is unaffected.
In a lognormal distribution, however, both the mean and the s.d. are reduced
by local averaging. Following local averaging (Fenton & Vanmarcke 1990), the
adjusted statistics (μCuA, σCuA) represent the mean and s.d. of the lognormal field
that is actually mapped onto the finite-element mesh. Further details can be
found in Griffiths & Fenton (2004).

For each simulation of the Monte Carlo process, the random field is initially
generated and mapped onto the finite-element mesh. After application of gravity
loads, failure is said to have occurred if the algorithm is unable to converge within
a user-defined iteration ceiling and tolerance (e.g. Griffiths & Lane 1999). An
inability to converge in this context implies that no stress redistribution can
be found that is simultaneously able to satisfy both the Tresca failure criterion
and global equilibrium with the applied gravitational loads. Each simulation of
the Monte Carlo process involves the same mean, s.d. and spatial correlation
length of undrained strength; however, the spatial distribution of the property
varies from one simulation to the next. Following the Monte Carlo process, pf
is easily estimated by dividing the number of failures by the total number of
simulations. The analysis has the option of including cross-correlation between
properties and anisotropic spatial correlation lengths (e.g. the spatial correlation
length in a naturally occurring stratum of soil is often higher in the two horizontal
directions than in the vertical). For the sake of simplicity in the current study, the
spatial correlation length has been assumed to be isotropic (e.g. the same in all
three directions). By comparison, two-dimensional plane strain RFEM analyses
such as those shown in figure 6 are highly anisotropic because an infinite spatial
correlation length (perfect correlation) is implied in the out-of-plane direction.

4. Single random variable probabilistic analysis

Before presenting the results of the RFEM analyses, we will first discuss a
simplified probabilistic analysis assuming a single random variable (SRV). In
this method, the slope is assumed to be uniform (spatially constant properties)
with Cu selected randomly from a lognormal distribution with a given mean
and s.d. SRV probabilistic methods actually imply an infinite spatial correlation
length Θ = ∞.

As there is only one random variable in an undrained slope analysis and
FS ∝ Cu, then FS is also lognormally distributed with vFS = vCu and the
probability of failure (pf ) is simply equal to the probability that FS will be
less than unity. Quantitatively, this equals the area beneath the probability
density function of FS corresponding to FS < 1. For the slope shown in
figure 1 which has μFS = 1.39, if we let vCu = vFS = 0.5, equations (3.2) and
(3.3) give the mean and s.d. of the underlying normal distribution of ln FS as
Proc. R. Soc. A
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Figure 7. Slope failure with isotropic Θ = 0.2 and smooth boundary condition (all dimensions
in metres).

μln FS = 0.218 and σln FS = 0.472, respectively. The probability of failure is
therefore given by

pf = p[FS < 1] = Φ

(−μln FS

σln FS

)
= 0.32, (4.1)

where Φ is the cumulative standard normal distribution function.

5. Random finite-element method probabilistic analyses

In all the RFEM analyses that follow, the bottom of the mesh (y = −H ) is fully
fixed and the back of the mesh (x = 0) is allowed to move only in a vertical
plane. It is noted that unlike the deterministic study shown previously, there is
no symmetry in the RFEM analyses owing to the spatial varying soil properties. In
these analyses, both rough and smooth boundary conditions have been considered
at the ends of the mesh in the out-of-plane direction (z = 0 and L). In the rough
cases, the ends are fully fixed, and in the smooth case, they are allowed to move
only in a vertical plane. In this study, it was determined that 2000 simulations of
the Monte Carlo process for each parametric group were sufficient to give reliable
and reproducible estimates of the probability of failure pf . It can be noted that
neither the rough nor the smooth vertical boundary conditions are particularly
realistic. Real three-dimensional slopes tend to have rough sloping sides as might
be observed at the abutments of an earth dam. In this paper, however, we have
considered only simple boundary condition in order to focus on the influence of
three-dimensional failure mechanisms.

Figures 7–9 show typical failed slopes with different (isotropic) correlation
lengths given by Θ = 0.2, 2.0 and 200.0. The grey scale depicts the undrained
strength, although it should be emphasized that each figure represents just one
Proc. R. Soc. A
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Figure 9. Slope failure with (isotropic) Θ = 200.0 and smooth boundary condition (all dimensions
in metres).

simulation sampled from a suite of 2000 Monte Carlo repetitions. It can be seen
that the failure zone, when it occurs, typically involves a greater volume of soil
when the spatial correlation length is much smaller or much larger than the
slope height.

Figure 8 demonstrates an important characteristic in three-dimensional slope
analysis called the ‘preferred’ failure mechanism width W . This is the width of the
failure mechanism in the z-direction that the finite-element analysis ‘seeks out’.
Proc. R. Soc. A
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Figure 10. Probability of failure versus slope length ratio (Case 1: vCu = 0.5, Θ = 1.0, FS = 1.39,
slope angle 2h : 1v). Dashed line, two-dimensional RFEM; solid line with squares, three-dimensional
RFEM (rough); solid line with circles, three-dimensional RFEM (smooth).

Table 2. Parameters for studying the influence of three-dimensionality.

case figure vCu Θ FS slope angle

1 10 0.5 1.0 1.39 2h : 1v
2 11 1.0 1.0 1.39 2h : 1v
3 12 0.5 2.0 1.39 2h : 1v
4 13 1.0 2.0 1.39 2h : 1v
5 14 0.5 1.0 1.11 2h : 1v
6 15 0.5 1.0 1.39 1h : 1v

Over a suite of Monte Carlo simulations, the average preferred failure mechanism
width is called Wcrit. It will be shown that this dimension has a significant
influence on three-dimensional slope reliability depending on whether the length
of the slope L is greater than or less than Wcrit.

(a) Influence of the out-of-plane dimension

For each case shown in table 2, the length ratio (figure 3) is varied in the
range 0.2 < L/H < 16 to investigate the influence of three-dimensionality, with
results presented in figures 10–15. Cases 2–6 are obtained by changing parameters
(in bold) from the initial Case 1. All three-dimensional finite elements in the
mesh (apart from some on the slope surface) are cubes of side length 2 m. The
column marked ‘FS’ gives the factor of safety that would be obtained from a
two-dimensional slope stability analysis on an x–y plane with a uniform strength
set equal to μCu .
Proc. R. Soc. A
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Figure 11. Probability of failure versus slope length ratio (Case 2: vCu = 1.0, Θ = 1.0, FS = 1.39,
slope angle 2h : 1v). Dashed line, two-dimensional RFEM; solid line with squares, three-dimensional
RFEM (rough); solid line with circles, three-dimensional RFEM (smooth).
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Figure 12. Probability of failure versus slope length ratio (Case 3: vCu = 0.5, Θ = 2.0, FS = 1.39,
slope angle 2h : 1v). Dashed line, two-dimensional RFEM; solid line with squares, three-dimensional
RFEM (rough); solid line with circles, three-dimensional RFEM (smooth).

In the case of smooth boundary conditions, the pf of one slice (L/H = 0.2) in
the three-dimensional analysis is equivalent to that given by a two-dimensional
RFEM analysis, as the three-dimensional analysis is essentially replicating plane
strain. It is also shown in the smooth case that as L/H is increased, pf
initially decreases, reaching a minimum before rising to eventually exceed the
two-dimensional value.
Proc. R. Soc. A
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Figure 13. Probability of failure versus slope length ratio (Case 4: vCu = 1.0, Θ = 2.0, FS = 1.39,
slope angle 2h : 1v). Dashed line, two-dimensional RFEM; solid line with squares, three-dimensional
RFEM (rough); solid line with circles, three-dimensional RFEM (smooth).
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Figure 14. Probability of failure versus slope length ratio (Case 5: vCu = 0.5, Θ = 1.0, FS = 1.11,
slope angle 2h : 1v). Dashed line, two-dimensional RFEM; solid line with squares, three-dimensional
RFEM (rough); solid line with circles, three-dimensional RFEM (smooth).

For given values of vCu and Θ, let us define the critical slope length Lcrit and
the critical slope length ratio (L/H )crit as being that value of L/H for which the
slope is safest and its probability of failure pf a minimum. It will be shown that
this minimum probability of failure in the smooth case occurs when Lcrit ≈ Wcrit.

If we reduce the slope length ratio below this critical value (L < Lcrit), the slope
finds it easier to form a global mechanism spanning the entire width of the mesh
with smooth end conditions, so the value of pf increases, tending eventually to
Proc. R. Soc. A
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Figure 15. Probability of failure versus slope length ratio (Case 6: vCu = 0.5, Θ = 1.0, FS = 1.39,
slope angle 1h : 1v). Dashed line, two-dimensional RFEM; solid line with squares, three-dimensional
RFEM (rough); solid line with circles, three-dimensional RFEM (smooth).

the plane strain value. However, if we increase the slope length ratio above this
critical value (L > Lcrit), the slope finds it easier to form a local mechanism. As
L > Wcrit, the mechanism has more opportunities to develop somewhere in the
z-direction, hence pf again increases.

In the rough case, pf is close to zero for a narrow slice and increases steadily
as L/H is increased owing to a gradual reduction in the supporting influence of
the rough boundaries in the three-dimensional case.

As the length ratio is increased in both the rough and smooth cases, the
three-dimensional pf eventually exceeds the two-dimensional value, indicating
that two-dimensional analysis will always give unconservative results if the slope
is long enough. It may also be speculated that pf → 1 as L/H → ∞ regardless of
boundary conditions.

The critical length ratio (L/H )crit and the length ratio beyond which the
pf in a two-dimensional analysis ceases to be conservative (L/H )3>2 are listed
in table 3.

When vCu is high, it can be expected that the failure mechanism finds it easier
to seek out a localized weak zone, leading to a smaller (L/H )crit. This is clearly
demonstrated if one compares the results of Cases 1 and 2, where increasing
the strength variability has reduced not only (L/H )crit but also the value of the
cross-over length ratio (L/H )3>2.

It can also be observed by comparing Cases 1 and 3 that increasing the spatial
correlation length has a similar influence. As the spatial correlation length is
reduced, as shown, for example, in figure 7, the soil properties change rapidly
from point to point, the locally averaged variance of the undrained strength is
greatly reduced and the slope tends to behave more like a deterministic slope
with uniform (constant) properties throughout. In this case, the preferred failure
mechanism occupies a wider region leading to a higher (L/H )crit. As the spatial
Proc. R. Soc. A
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Table 3. The influence of three-dimensionality.

case figure changes (L/H )crit (L/H )3>2

smooth rough

1 10 initial case (2h : 1v) (vCu = 0.5, Θ = 1, FS = 1.39) 2.8 11.0 18.0a

2 11 increasing vCu = 1.0 1.0 2.4 4.0
3 12 increasing Θ = 2.0 2.2 4.8 17.0a

4 13 increasing vCu = 1.0 and Θ = 2.0 2.0 2.0 3.0
5 14 decreasing FS = 1.11 1.2 2.8 6.6
6 15 increasing slope angle (1h : 1v) 1.8 5.0 9.4
aEstimated values based on extrapolation of figures 10 or 12.

correlation length is increased, however, weak or strong soils are more likely to be
bunched together, making local mechanisms easier to develop leading to a lower
values of (L/H )crit.

It is interesting to note from figure 13 (Case 4) that when spatial correlation
length and soil variability are both increased, there is no obvious minimum in
the pf versus L/H plot, although a critical length ratio of about (L/H )crit ≈ 2 is
indicated at the point where pf starts to rise. This case indicates that when the
spatial correlation length and soil variability are both high and the slope length
ratio is shorter than (L/H )crit, the preferred mechanism for smooth boundary
conditions is essentially global and almost equivalent to the two-dimensional
plane strain. As shown in table 3, the cross-over length ratios (L/H )3>2 for both
rough and smooth boundary conditions in Case 4 were the lowest of any of the
cases considered.

Comparing the results of Cases 1 and 5, reducing the factor of safety (based
on the mean) to FS = 1.11 reduces both (L/H )crit and (L/H )3>2. This is to be
expected because local failure is more likely to occur when the soil is weak.

Comparing the results of Cases 5 and 6 with Case 1, it is seen that increasing
the slope gradient (from 2h : 1v to 1h : 1v) has a similar influence as reducing the
FS. Steeper slopes will have lower (L/H )crit and (L/H )3>2 than flatter slopes.

In the deterministic factor of safety analyses with rough boundary condition
(figure 5), the factor of safety in three dimension was always higher than in
two dimension but tended to the plane strain solution for length ratios of the
order of L/H ≥ 10. In the probabilistic analyses, the probability of failure in
three dimension with rough boundary conditions was initially lower than in two
dimension but increases with increasing length ratio to eventually exceed the
two-dimensional value at (L/H )3>2. Although the rough Cases 1–4 have the same
factor of safety (based on the mean) and slope angle as in the deterministic
analysis from figure 5, the cross-over length ratio in the probabilistic analyses
varied quite widely in the range 3 < (L/H )3>2 < 18.

(b) Influence of spatial correlation length

In the following, the coefficient of variation of strength, the factor of safety
(based on the mean) and the slope angle have been fixed. The spatial correlation
length is varied in the range Θ = {0.125, 0.25, . . . , 8} to investigate the influence of
Proc. R. Soc. A
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Figure 16. Probability of failure versus spatial correlation length (Case 7: vCu = 0.5, FS = 1.39, slope
angle 2h : 1v, L/H = 1). Solid line, SRV method; solid line with triangles, line, two-dimensional
RFEM; solid line with squares, three-dimensional RFEM (rough); solid line with circles, three-
dimensional RFEM (smooth).

Table 4. Parameters for studying the influence of spatial correlation length (2h : 1v).

case figure vCu FS L/H

7 16 0.5 1.39 1
8 17 0.5 1.39 6
9 18 0.5 1.39 12

10 19 1.0 1.39 6

spatial correlation length on the pf of different slope length ratios. The parameters
are shown in table 4 with results shown in figures 16–19. Also included in these
figures are the results obtained by the SRV method and two-dimensional RFEM.

For the very short slope shown in figure 16 (Case 7: L/H = 1) where the
slope length ratio is smaller than (L/H )crit, the three-dimensional pf is always
lower than the two-dimensional value regardless of boundary conditions. The
three-dimensional pf with rough boundary conditions is much lower than
both the three-dimensional pf with smooth boundary and the two-dimensional
analysis, confirming that boundary support has a strong influence on pf for
short slopes.

For the longer slope shown in figure 17 (Case 8: L/H = 6), it can be seen
that the two-dimensional analysis underestimates pf compared with the three-
dimensional analysis for Θ > 1.5 in the smooth case and Θ > 3.8 in the rough case.
As indicated in figure 7, when the spatial correlation length is small, the weak
and strong zones of soil are varying rapidly over short distances and the preferred
mechanism tends to be global and occupy a wide zone of soil. As the spatial
correlation length is increased in figure 8, the preferred mechanism is attracted
to local pockets of weak soil and has less width. If the failure mechanism is of
Proc. R. Soc. A
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Figure 17. Probability of failure versus spatial correlation length (Case 8: vCu = 0.5, FS = 1.39, slope
angle 2h : 1v, L/H = 6). Solid line, SRV method; solid line with triangles, line, two-dimensional
RFEM; solid line with squares, three-dimensional RFEM (rough); solid line with circles, three-
dimensional RFEM (smooth).
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Figure 18. Probability of failure versus spatial correlation length (Case 9: vCu = 0.5, FS = 1.39, slope
angle 2h : 1v, L/H = 12). Solid line, SRV method; solid line with triangles, line, two-dimensional
RFEM; solid line with squares, three-dimensional RFEM (rough); solid line with circles, three-
dimensional RFEM (smooth).

the local type, it has more opportunities to fail at different locations along the
slope length direction, leading to higher values of pf . As the spatial correlation
is further increased, the three-dimensional pf eventually increases beyond the
two-dimensional pf which, for a plane strain analysis, assumes an infinite spatial
correlation length in the out-of-plane direction.
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Figure 19. Probability of failure versus spatial correlation length (Case 10: vCu = 1.0, FS = 1.39,
slope angle 2h : 1v, L/H = 6). Solid line, SRV method; solid line with triangles, line, two-
dimensional RFEM; solid line with squares, three-dimensional RFEM (rough); solid line with
circles, three-dimensional RFEM (smooth).

Table 5. Probability of failure for very large Θ from three-dimensional RFEM analyses with rough
boundary conditions (vCu = 0.5, 2h : 1v).

case L/H three-dimensional pf SRV pf

7 1 0.08 0.32
8 6 0.26
9 12 0.31

Further increase in the length ratio as shown in figure 18 (Case 9: L/H = 12)
continues this trend with the cross-over point (L/H )3>2 occurring at still smaller
values.

Case 8 (vCu = 0.5) shown in figure 17 was reanalysed using a higher soil
variability (Case 10: vCu = 1.0) with the results presented in figure 19. Comparing
these results shows that increased soil variability has caused (L/H )3>2 to be
reduced to quite low values for both smooth and rough boundary conditions.
It can also be noted that pf from both three-dimensional RFEM analyses reaches
a maximum at around Θ ≈ 1.0 indicating a ‘worst-case’ correlation length. It can
be argued, therefore, that a worst-case Θ must always exist in a three-dimensional
RFEM analyses whenever pf exceeds the value corresponding to a slope
with uniform (constant) properties throughout. This is because when Θ → ∞
(implying a uniform slope at each simulation), the preferred failure mechanism
must be global as shown in figure 9, and the pf from the three-dimensional RFEM
analyses must finally return to, or even fall below the SRV value.

It is expected that both the two-dimensional and three-dimensional (smooth)
RFEM analyses converge on the SRV solution as Θ tends to infinity. For the
three-dimensional rough case, however, when Θ → ∞, the pf tends to a value that
Proc. R. Soc. A
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depends on the length ratio L/H . If the length ratio is greater than 10, the rough
boundary has little influence on pf as indicated previously in the deterministic
analysis (figure 5) and pf will converge on the SRV solution as Θ → ∞. If the
slope length ratio L/H is less than 10, however, the rough boundary will result
in pf tending to a value below the SRV solution as Θ → ∞. To confirm these
predictions, Cases 7–9 have been reanalysed with a spatial correlation length set
to a very large value and the results summarized in table 5.

6. Concluding remarks

The paper has investigated the probability of slope failure using both two-
dimensional and three-dimensional RFEM probabilistic analyses. The main
conclusion is that by implicitly assuming an infinite spatial correlation length
in the out-of-plane direction, two-dimensional (plane strain) probability analysis
may underestimate the probability of slope failure. This is counter to the
usual assumption made in deterministic slope stability analysis that two-
dimensional analysis leads to conservative factors of safety compared with
three-dimensional owing to the additional support provided by the boundaries
in the out-of-plane direction.

The condition under which two-dimensional ceases to be conservative in
probabilistic slope analysis depends on several factors and is problem dependent
as shown in table 3. As a general trend, the longer the slope in the out-of-
plane direction, the more likely it is that the two-dimensional analysis will
underestimate the probability of failure. The paper defined a cross-over length
ratio (L/H )3>2 above which a two-dimensional analysis could be unconservative
The cross-over length ratio (L/H )3>2 was higher when the boundary conditions
in the out-of-plane direction were rough rather than smooth. The lowest value
of the cross-over length ratio observed for the more realistic rough cases was
(L/H )3>2 ≈ 3, which may be used as a conservative upper limit to the safe use of
two-dimensional probabilistic analysis.

It was also observed from the three-dimensional analyses, that for slopes with
higher length ratios, a worst-case correlation length leads to a maximum value of
the probability of failure. This has implications for design where, in the absence
of good quality site-specific data, the worst-case spatial correlation length value
should be assumed to ensure conservative probabilistic estimates.

The two-dimensional RFEM program is available from the authors’ website at
www.mines.edu/∼vgriffit/rfem.
The authors wish to acknowledge the support of NSF grant CMS-0408150 on ‘Advanced
probabilistic analysis of stability problems in geotechnical engineering’.
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