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Abstract: This paper investigates the probabilistic nature of ultimate limit state failures of deep foundations in purely fric-
tional soils (e.g., sands). In so doing, the theory required to predict both the probability of ultimate limit state failure and
the resistance factors needed to avoid this limit state are proposed. The proposed resistance factors are functions of site
understanding and failure consequence, and the theory leading to these resistance factors is validated via Monte Carlo simu-
lation of a two-dimensional spatially variable random field. In both the theory and the simulation, a pile is assumed to be
placed vertically at a certain position in the soil mass, and the soil is sampled at various distances from the pile to come up
with characteristic soil properties (namely friction angle) for use in the pile design. Agreement between theory and simula-
tion is found to be very good. The theoretical model is then employed to determine upper bound geotechnical resistance fac-
tors, which can be used to complement current ultimate limit state design code calibration efforts. An example of such a
calibration is presented.

Key words: reliability-based design, ultimate limit state design, load and resistance factor design, deep foundations, geotech-
nical resistance factor.

Résumé : Cet article investigue la nature probabiliste des ruptures à l’état limite ultime de fondations profondes dans des sols
purement frictionnels (ex. sables). Pour ce faire, la théorie requise pour prédire la rupture à l’état limite ultime ainsi que les
facteurs de résistance nécessaires pour éviter cet état limite sont proposés. Les facteurs de résistance proposés sont fonction de
la compréhension du site et des conséquences de la rupture, et la théorie qui supporte ces facteurs est validée par une simula-
tion Monte Carlo d’un champ aléatoire ayant des variations spatiales en deux dimensions. Autant dans la théorie que dans la
pratique, on suppose que le pieu est placé verticalement à une certaine position dans la masse de sol, et le sol est échantil-
lonné à plusieurs distances du pieu afin d’obtenir les propriétés caractéristiques du sol (comme l’angle de friction) pour la
conception du pieu. La concordance entre la théorie et la simulation est très bonne. Le modèle théorique est ensuite utilisé
pour déterminer les facteurs de résistance géotechnique de la frontière supérieure qui peuvent être utilisés pour complémenter
les efforts actuels de calibrage du code de conception à l’état limite ultime. Un exemple d’un tel calibrage est présenté.

Mots‐clés : conception basée sur la fiabilité, conception à l’état limite ultime, conception des facteurs de charge et résis-
tance, fondations profondes, facteur de résistance géotechnique.

[Traduit par la Rédaction]

Introduction
The soil supports a pile foundation through a combination

of end bearing and side friction and (or) cohesion. This paper
only examines axial frictional resistance of piles, as is found
in frictional soils, and end bearing is ignored. A mathemati-
cal theory is developed to theoretically estimate the failure
probability of deep foundations in soils under such effective
stress conditions. The theory is validated by simulation and
then used to estimate failure probabilities and resistance fac-
tors required for design. The resulting recommended design
factors can then be used to complement existing load and re-
sistance factor design (LRFD) calibration efforts for deep

foundations, such as the extensive experimental work carried
out by Paikowsky (2004).
The ultimate axial resistance of a pile, Ru, due to frictional

resistance between the pile and its surrounding soil is given by

½1� Ru ¼
Z H

0

ptðzÞ dz

where p is the effective perimeter length of the pile section,
t(z) is the average ultimate shear stress acting on the peri-
meter of the pile at depth z, and H is the buried length of
the pile. The average ultimate shear stress in soils under ef-
fective stress conditions can be estimated by

½2� tðzÞ ¼ KðzÞs 0
oðzÞ tandðzÞ

where K(z) is the coefficient of lateral earth pressure at depth
z, s 0

oðzÞ is the effective vertical stress at depth z, and d(z) is
the average interface friction angle between the soil and the
pile perimeter at depth z. The effective vertical stress, s 0

oðzÞ,
and interface friction angle, d(z), can be written as
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½3a� s 0
oðzÞ ¼ gz

½3b� dðzÞ ¼ bfðzÞ
where g is the effective unit weight of soil, b is a reduction
factor, which is commonly in the range 0.5–0.8 (Das 2000),
and f(z) is the average effective angle of internal friction of
the soil around the pile perimeter at depth z.
The value of K(z) is influenced by the material, size, shape

of the pile, and the method of pile installation, as well as by
the soil’s friction angle, compressibility, and degree of over-
consolidation. A reasonable approximation to K(z) is gener-
ally taken to be the Rankine passive earth pressure
coefficient, Kp(z), at the top of the pile trending to somewhat
less than the at-rest earth pressure coefficient, Ko(z), at the
pile tip (Das 2000). For coarse-grained soils, the at-rest earth
pressure coefficient is estimated by Jaky (1944) to be

½4� KoðzÞ ¼ 1� sinfðzÞ
Table 1 presents the average values of K(z) recommended

by Das (2000), which are given in terms of Jaky’s at-rest
earth pressure coefficient.
In this paper the earth pressure coefficient is assumed to

be

½5� KðzÞ ¼ a½1� sinfðzÞ�
where a lies in the range 1 < a < 1.8. Three different values
of a, namely a = 1.0, 1.2, and 1.4, are considered here for
bored, low-displacement, and high-displacement driven piles,
respectively. These are the midpoints of the ranges given in
Table 1.
If the model parameters (a, b, and effective perimeter, p)

and the soil parameters (g and fðzÞ), used in the above geo-
technical models are all precisely measured along the pile
depth, and it is further assumed that Jaky’s model is correct,
then the ultimate frictional resistance of a pile having length,
H, will be

½6� Ru ¼
Z H

0

pgza½1� sinfðzÞ� tanbfðzÞ dz

and this will be taken to be the “true” expression of the ulti-
mate pile resistance in both the theory and the simulation re-
sults to follow.
It is well known that all of the variables on the right-hand

side (RHS) of eq. [6], including H, are actually uncertain and
thus random, which means that Ru is also random. The task
of this paper is to determine the distribution of Ru, so that
failure probability estimates can be made and required resist-
ance factors determined.
As will be shown in the section “Theoretical estimation of

failure probability”, the model parameters a, p, and g all can-
cel out and disappear in the calculation of the pile failure
probability. The model parameter b also largely cancels out
(to first order). Thus, the precise values of these parameters
do not influence the resistance factors determined here, and
only the friction angle, fðzÞ, needs to be explicitly modeled
as a spatially varying random field in this analysis. This
does not mean that these model parameters do not influence
the true failure probability, just that this study concentrates
on failure probabilities arising due to uncertainties in the

loads and in the friction angle and not due to uncertainties
in these model parameters. Uncertainty in these parameters
can, however, be handled indirectly by suitably adjusting the
coefficient of variation of the friction angle. This issue will
be discussed at further length in the section “Conclusions”.
The limit state design (LSD) framework basically involves

identifying possible failure modes (e.g., punching shear fail-
ure, or excessive settlement) and then ensuring that the fac-
tored geotechnical resistance at each limit state is not less
than the factored load. At the ultimate limit state under con-
sideration here, the design requirement is

½7� 4guR̂u �
X
i

IiaiF̂i

where 4gu is the ultimate geotechnical resistance factor, R̂u is
the characteristic (design) ultimate geotechnical resistance, Ii
is an importance factor corresponding to the ith characteristic
load effect, F̂i, and ai is the ith load factor.
The characteristic ultimate geotechnical resistance, R̂u, is

determined using characteristic soil properties, in this case
the characteristic value of the soil’s friction angle, f. To ob-
tain the characteristic soil property, the soil is assumed to be
sampled over a single column somewhere in the vicinity of
the pile, for example, by a cone penetration test (CPT) or
standard penetration test (SPT) sounding. The sample is as-
sumed to yield a sequence of m observed friction angle val-
ues, f̂1; f̂2; . . . ; f̂m. The characteristic value of the friction
angle, f̂, is defined in this paper as an arithmetic average of
the sampled observations, f̂i,

½8� f̂ ¼ 1

m

Xm
i¼1

f̂ i

The characteristic ultimate geotechnical resistance, R̂u, is
then obtained by using the characteristic friction angle in
eq. [6],

½9� R̂u ¼ 1

2
pagH2ð1� sinf̂Þ tanðbf̂Þ

To determine the geotechnical resistance factor, 4gu, re-
quired to achieve a certain acceptable reliability, the failure
probability of the pile must be estimated. This probability
will depend on the load distribution, the load and resistance
factors selected, and the resistance distribution. The resist-
ance distribution is discussed in the section “Random soil
model”, and the load distribution is discussed in the section
“Random load model”. The section “Theoretical estimation
of failure probability” develops the theory proposed to allow
the estimation of the pile failure probability, while the section
“Comparison of theoretical and simulated failure probabil-
ities” describes the simulation used to validate the theory
and compares the simulation results to those predicted theo-
retically.
The LRFD approach involves selecting one or more maxi-

mum acceptable failure probability levels, pm. The choice of
pm derives from a consideration of acceptable risk and di-
rectly influences the size of 4gu. In this research, four maxi-
mum acceptable failure probabilities, 10–2, 10–3, 10–4, and
10–5, will be considered. These can be considered to be target
lifetime failure probabilities, so long as the selected coeffi-
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cients of variation of the resistance and load are those of the
minimum lifetime resistance and maximum lifetime loads
(particularly live loads), respectively. Some of these failure
probabilities, i.e., 10–3, 10–4, and 10–5, might be appropriate
for designs involving low (e.g., storage facilities), medium
(typical structures), and high (e.g., hospitals and schools)
failure consequence structures, respectively. A reasonable
value of maximum acceptable failure probability for a single
driven pile within a redundant pile group may be in the range
of 10–2–10–3 (Allen 2005). The geotechnical resistance fac-
tors required to achieve these maximum acceptable failure
probabilities will be recommended in the section “Geotechni-
cal resistance factors”.

Random soil model
The friction angle, f, is assumed to be bounded both

above and below, so that neither normal nor lognormal distri-
butions are appropriate. While a beta distribution is often
used for bounded random variables, a beta distributed ran-
dom field has a complex joint distribution, and both the the-
oretical development and simulation become cumbersome
and numerically difficult. In that the best friction angle distri-
bution has yet to be established by the geotechnical commun-
ity, the authors choose a “tanh” bounded distribution, which
is very similar in its properties to the beta distribution, but
which arises as a simple transformation of a standard normal
random field, GfðzÞ, according to

½10� fðzÞ ¼ fmin þ ðfmax � fmin Þ 1þ tanh
sGfðzÞ
2p

� �� �

where fmin and fmax are the minimum and maximum fric-
tion angles in radians, respectively, and s is a scale factor
that governs the friction angle variability between its two
bounds (see Fenton and Griffiths 2008, for more details).
This distribution has at least three advantages over the beta
distribution: (i) since it is derived from a standard normal
random field, its theoretical properties can be determined re-
latively accurately (which is important when developing a
theoretical model), (ii) its parameters can be easily obtained
from site data through a suitable transformation (similar to
the transformation required to determine the parameters of a
lognormal distribution), and (iii) the simulation of the friction
angle field is exact if the underlying standard normal field is
exact (and most random field simulators are aimed at render-
ing a standard normal field accurately).
Figure 1 illustrates how the distribution of f, normalized

over the range fmin = 0 to fmax = 1, changes as its variabil-
ity changes, going from an almost uniform distribution at s =
5 to a very normal looking distribution for smaller s. Thus,
varying s between about 0.1 and 5.0 leads to a wide range
in the stochastic behaviour of f. In all cases, the distribution
is assumed in this paper to be symmetric so that the midpoint

between fmin and fmax is the mean. Values of s greater than
about five lead to a U-shaped distribution (higher at the
boundaries), which is deemed to be unrealistic.
The following relationship between s and the standard de-

viation of f derives from a third-order Taylor series approxi-
mation to tanh and a first-order approximation to the final
expectation (Fenton and Griffiths 2008),

½11� sf ’ 0:46ðfmax � fmin Þsffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4p2 þ s2

p
where fmin and fmax are in radians.
The relationship between the coefficient of variation of the

friction angle, vf ¼ sf=mf, and the parameter s used in
eq. [10] can be obtained by inverting eq. [11] (see Naghibi
(2010) for details)

½12� s ’ 2pvfmfffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð0:46Þ2ðfmax � fmin Þ2 � ðvfmfÞ2

q
For example, Table 2 gives values of s corresponding to

various values of vf when f is bounded between 0.175 and
0.70 rad (10°–40°).
Equation [11] can be generalized to yield the covariance

between f(zi) and f(zj), for any two spatial points, zi and zj,
as follows (Fenton and Griffiths 2008):

½13� Cov½fðziÞ; fðzjÞ� ’ ð0:46Þ2ðfmax � fmin Þ2
s2rðzi � zjÞ
4p2 þ s2

¼ s2
frðzi � zjÞ

where r is the correlation coefficient between the friction an-
gle at a point zi and a second point zj. In this paper, a simple
isotropic exponentially decaying correlation function will be
assumed, having the form

½14� rðtÞ ¼ exp �2jtj
q

� �

where t = zi – zj is the distance between the two points. Note
that the correlation function reflects the correlation between
points in the underlying normally distributed random field,
GfðzÞ, and not directly between points in the friction field
(although the correlation lengths in the different spaces are
quite similar).
The next few sections of the paper will be making use of a

variance reduction function, g(H), which specifies how the
variance is reduced upon local averaging of f over some
length H. This function is defined to be the average correla-
tion coefficient between every pair of points over the length
H,

½15� gðHÞ ¼ 1

H2

Z H

0

Z H

0

rðz1 � z2Þ dz1 dz2

Table 1. Lateral earth pressure recommendations (Das 2000).

Pile type K(z)
Bored or jetted ’ Ko(z) = 1 – sinf(z)
Low-displacement driven ’ Ko(z) = 1 – sinf(z) to 1.4Ko(z) = 1.4[1 – sinf(z)]
High-displacement driven ’ Ko(z) = 1 – sinf(z) to 1.8Ko(z) = 1.8[1 – sinf(z)]
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Random load model
The load acting on a foundation is typically composed of

dead loads, which are largely static, and live loads, which
are largely dynamic. Dead loads are relatively well defined
and can be computed by multiplying volumes by characteris-
tic unit weights. The mean and variance of dead loads are
thus reasonably well known. On the other hand, live loads
are more difficult to characterize probabilistically. A typical
definition of a live load is the maximum dynamic load (e.g.,
wind, vehicle, bookshelf loads, etc.) that a structure will ex-
perience during its design life. Note that the distribution of
live load thus depends on the design lifetime. Dead and live
loads will be denoted as FD and FL respectively. Assuming
that the total load, F, is equal to the sum of the maximum
lifetime live load, FL, and the static dead load, FD, i.e.,

½16� F ¼ FL þ FD

then the mean and variance of F, are given by

½17a� mF ¼ mL þ mD

½17b� s2
F ¼ s2

L þ s2
D

where eq. [17b] is obtained under the reasonable assumption
that the dead and live loads are independent.
The dead and live loads are assumed here to be lognor-

mally distributed. The total load, F = FL + FD, is also as-
sumed to be lognormally distributed, which was found to be
a reasonable approximation by Fenton et al. (2008). The total
load distribution thus has parameters,

½18a� mlnF ¼ lnðmFÞ �
1

2
s2
lnF

½18b� s2
lnF ¼ ln 1þ s2

F

m2
F

� �

The design problem considered in this study involves a
pile supporting loads having means and standard deviations
shown in Table 3. As will be shown in the section “Theoret-
ical estimation of failure probability”, the choice in mean val-
ues makes no difference to the resistance factors presented in
this paper, so long as the coefficients of variation and the
dead to live load ratio are maintained. The mean values
shown in Table 3 are for illustrative purposed only. Reason-
ably conservative coefficients of variation of 30% for live
loads and 15% for dead loads were assumed, and these are
the important parameters in this study.
Assuming bias factors, kD = 1.18 (Becker 1996) and kL =

1.41 (Allen 1975), and importance factor, Ii = 1.0, gives the
characteristic live load, F̂L = 1.41mL = 28.2 kN, dead load,
F̂D = 1.18mD = 70.8 kN, and characteristic total factored de-
sign load, aLF̂L þ aDF̂D ¼ 1:5F̂L þ 1:25F̂D = (1.5)(28.2) +
(1.25)(70.8) = 130.8 kN. These numbers are for illustration
only, since the mean values can be scaled without changing
the results of the paper.

Theoretical estimation of failure probability
To estimate the probability of failure of a pile, the soil is first

modeled as a spatially varying random field. This study consid-
ers a two-dimensional random field in which the pile is placed
vertically at a certain position and soil samples, as in a CPT or
SPT sounding, are taken vertically at some, possibly different,
position. The theory required to estimate the failure probability
of a pile in soils under effective stress conditions can be ex-
plained as follows. When the soil properties are spatially varia-
ble, as they are in reality, then eq. [6] can be replaced by

½19� Ru ¼ 1

2
pagH2ð1� sinfÞ tanðbfÞ

where f is the equivalent friction angle of the soil, defined as
the uniform (constant) friction angle, which leads to the same
resistance as observed in the spatially varying soil over the pile

Fig. 1. Bounded distribution of friction angle normalized on the interval (0, 1).

Table 2. Coefficients of variation of
friction angle and corresponding s
values for fmin = 0.175 rad (10°) and
fmax = 70 rad (40°).

vf s
0.1 1.16
0.2 2.44
0.3 4.07
0.344 5.00
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length, H. It is assumed here that f is the arithmetic average of
the spatially variable friction angle over the pile length, H,

½20� f ¼ 1

H

Z H

0

fðzÞ dz ’ 1

n

Xn
i¼1

fi

where fðzÞ is interpreted as the average friction angle of the
soil around the pile perimeter at depth z. If the pile is broken
up into a series of elements (as will be done in the simula-
tion), f is determined using the sum at the right of eq. [20],
in which fi is the local average of fðzÞ over the ith element,
for i = 1, …, n.
The required minimum design pile length, H, can be ob-

tained by substituting eq. [9] into eq. [7] (taking Ii = 1.0 and
considering just dead and live loads),

½21� 4gu
1

2
pagH2ð1� sinf̂Þ tanðbf̂Þ

� �
¼ aLF̂L þ aDF̂D

which leads to

½22� H ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2ðaLF̂L þ aDF̂DÞ
4gupagð1� sinf̂Þ tanðbf̂Þ

s

By substituting eq. [22] into eq. [19], the ultimate geotech-
nical resistance, Ru, can be written as

½23� Ru ¼ aLF̂L þ aDF̂D

4gu

 !
ð1� sinfÞ½tanðbfÞ�
ð1� sinf̂Þ½tanðbf̂Þ�

The reliability-based design goal in this study is to find the
required length H such that the probability that the actual
load, F, exceeds the actual resistance, Ru, is less than some
small acceptable failure probability, pm. The actual failure
probability, pf, is

½24� pf ¼ P½F > Ru�
and a successful design methodology will have pf ≤ pm. Sub-
stituting eq. [23] into eq. [24] leads to

½25� pf ¼ P F >
aLF̂L þ aDF̂D

4gu

ð1� sinfÞ tanðbfÞ
ð1� sinf̂Þtanðbf̂Þ

� �" #

¼ P
Fð1� sinf̂Þ tanðbf̂Þ
ð1� sinfÞ tanðbfÞ >

aLF̂L þ aDF̂D

4gu

" #

where in the last step, all remaining random quantities were
moved to the left-hand side (LHS) of the inequality.
Note that the parameters a, g, and p have all cancelled out

of the above failure probability estimate. This means that the
values of these parameters will not affect the required resist-
ance factors obtained in this study. It is also instructive to in-
vestigate how varying the mean load and mean friction angle
might influence the failure probability, and hence the re-
quired resistance factor. If eq. [25] is rearranged so that the

load terms are grouped together, and similarly for the resist-
ance terms, one gets

½26� pf ¼ P
F

aLF̂L þ aDF̂D

>
1

4gu

ð1� sinfÞ tanðbfÞ
ð1� sinf̂Þ tanðbf̂Þ

� �" #

which involves comparing the distribution of the load term
on the LHS of the inequality to the distribution of the friction
angle term on the RHS. Interest is in how these two quanti-
ties are affected by changes in their means. The mean of the
load term is (see eq. [17a] and discussion at the end of the
section “Random load model”),

½27� E
F

aLF̂L þ aDF̂D

� �
¼ mL þ mD

aLkLmL þ aDkDmD

¼ 1þ RD=L

aLkL þ aDkDRD=L

from which it can be seen that the mean of the load term
depends only on the ratio of the dead to live load means,
RD/L = mD/mL, and not on the actual load means. Thus, the
load means can be scaled by any common amount without
affecting the overall pile failure probability predicted here.
The RHS of the inequality in eq. [26] involves the random

quantity ð1� sinfÞ tan ðbfÞ=ð1� sinf̂Þ tanðbf̂Þ, which to
first order has mean

½28� ð1� sinmfÞ tanðbmfÞ
ð1� sinmfÞ tanðbmfÞ

¼ 1

which is independent of the choice in the mean friction an-
gle, mf, and the choice in the parameter b. In other words,
these parameters can be changed without significantly affect-
ing the results of this study (at least to first order).
Attention is now turned to obtaining a solution to the fail-

ure probability given by eq. [25]. To simplify the notation,
the following variables corresponding to the elements of
eq. [25] will be defined,

½29a� X̂ ¼ ð1� sinf̂Þ tanðbf̂Þ

½29b� X ¼ ð1� sinfÞ tanðbfÞ

½29c� q ¼ aLF̂L þ aDF̂D

½29d� Y ¼ FX̂

X

which means that eq. [25] can be reexpressed as

½30� pf ¼ P½Y > q=4gu�
To compute the probability in eq. [30], the form of the dis-

tribution of Y must first be determined (e.g., lognormal, nor-
mal, etc.), followed by the specification of its parameters.
Since F is the sum of two lognormally distributed random
variables (FL and FD), and both X̂ and X are nonlinear trans-
formations of arithmetic averages, the exact distribution of Y
cannot easily be derived analytically. The central limit theo-
rem suggests a lognormal distribution since eq. [29d] is a
product of positive random variables. Figure 2, based on a

Table 3. Load distribution parameters.

mL
(kN)

mD
(kN)

sL
(kN)

sD
(kN)

mF
(kN)

sF
(kN) mlnF slnF

20 60 6 9 80 10.82 4.4 0.14
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simulation of 100 000 realizations of F, X̂ and X, presents a
histogram of Y along with a fitted lognormal distribution.
The simulation was performed by generating two-dimensional
random friction angle fields, using the parameters given in
Table 2 with a “worst-case” correlation length q = 6 m (the
worst-case correlation length will be discussed in the section
“Geotechnical resistance factors”), and realizations of the load
F using parameters given in Table 3. Clearly, the lognormal
hypothesis is very reasonable and will be adopted here.
Since Y is well approximated by a lognormal distribution,

its logarithm

½31� lnY ¼ lnF þ lnX̂ � lnX

is approximately normally distributed and pf can be found from

½32� pf ¼ P½ðY > q=4gu� ¼ P½lnY > ln ðq=4guÞ�
¼ 1�F

ln ðq=4guÞ � mln Y

sln Y

� �

where F is the standard normal cumulative distribution function.
The failure probability pf in eq. [32] can be estimated once the

mean and variance of ln Y are determined. These are given by

½33a� mlnY ¼ mlnF þ mlnX̂ � mlnX

½33b� s2
lnY ¼ s2

lnF þ s2
lnX̂

þ s2
lnX

� 2CovðlnX; lnX̂Þ
where the total load, F, and friction angle, f, are assumed to
be independent. The components of eq. [33] can be com-
puted as follows:

1. Assuming that the total load F is equal to the sum of the
maximum live load, FL, acting over the lifetime of the
structure and the static dead load, FD, i.e., F = FL +
FD, both of which are random, then

½34a� mlnF ¼ lnðmFÞ �
1

2
s2
lnF

½34b� s2
lnF ¼ ln 1þ s2

F

m2
F

� �

where mF = mL + mD is the sum of the mean live and
dead loads, and s2

F is the variance of the total load de-
fined by

½35� s2
F ¼ s2

L þ s2
D

assuming dead and live loads to be independent.
2. With reference to eq. [8] and the fact that the friction angle

random field is assumed to be stationary,

½36� mf̂ ¼ E
1

m

Xm
i¼1

f̂ i

" #
¼ 1

m

Xm
i¼1

mf ¼ mf

where E is the expectation operator. The mean and var-
iance of lnX̂ can be obtained by using eq. [36] and a
third-order Taylor series approximation to eq. [29a] as
follows (Naghibi 2010):

½37a� mlnX̂ ’ ln½ð1� sinmfÞ tan ðbmfÞ� þ
s2
f̂
d2

2

½37b� s2
lnX̂

’ d21s
2
f̂
þ d22

2
þ d1d3

� �
s4
f̂
þ
5d23s

6
f̂

12

where d1, d2, and d3 are derivatives of lnX̂ given by
eq. [A1]. The variance of f̂ can be obtained from

½38� s2
f̂
’ s2

f

m2

Xm
i¼1

Xm
j¼1

rðzoi � zoj Þ

where sf is given by eq. [11], zoi is the spatial location of
the center of the ith soil sample (i = 1, 2, …, m), and r is
the correlation function defined by eq. [14]. The approxi-
mation in eq. [38] arises because correlation coefficients
between the local averages associated with observations
are approximated by correlation coefficients between the
local average centers (Fig. 3). Assuming that f̂ actually
represents a local average of f over a sample length of size
D = Dz × m, where D is the depth over which the samples
are taken, m is the number of observations over sample
depth D, and Dz is the vertical dimension of each observa-
tion, then s2

f̂
is probably more accurately computed as

½39� s2
f̂
¼ s2

fgðDÞ

where g(D) is the variance reduction function that mea-
sures the reduction in variance due to local averaging
over the sample length D, as given by eq. [15]. All angles
are measured in radians, including those used in eqs. [11]
and [13].

3. With reference to eq. [20],

½40� m
f
¼ E

1

H

Z H

0

fðzÞ dz
� �

¼ 1

H

Z H

0

mf dz ¼ mf

By considering eqs. [40] and [29b], the mean and var-
iance of lnX can be obtained in the same fashion as for
lnX̂ (in fact, they only differ due to differing local aver-
aging in the variance calculation),

½41a� mlnX ’ ln½ð1� sinmfÞ tan ðbmfÞ� þ
s2
f
d2

2

½41b� s2
lnX

’ d21s
2
f
þ d22

2
þ d1d3

� �
s4
f
þ
5d23s

6

f

12

½41c� s2
f
’ s2

fgðHÞ

where d1, d2, d3, and g(H) are defined by
eqs. [A1a], [A1b], [A1c], and [15], respectively.

4. The covariance between lnX̂ over the sample depth, D =
Dz × m, and lnX along the pile length, H = Dz × n, in
eq. [33b], is approximated by

½42� CovðlnX; lnX̂Þ ’ d21s
2
fgHD þ s2

fgHD

d1d3

2
ðs2

f̂
þ s2

f
Þ

�

þ d23
4
s2
f̂
s2
f

�
þ d22

2
ðs2

fgHDÞ2

þ d23
6
ðs2

fgHDÞ3
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where gHD is the average correlation coefficient between
the soil in the sample length, D, and the soil along the
pile length, H. Assuming that the pile is broken up into a
series of n elements, gHD is given by

½43� gHD ’ 1

mn

Xm
i¼1

Xn
j¼1

r

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2 þ ðzj � zoi Þ2

qh i
dz

where r is the horizontal distance between the pile center-
line and the centerline of the soil sample column, zj is the
depth in which the center of j and zoi is the spatial loca-
tion of the center of the ith soil sample (see Fig. 4). The
approximation in the covariance (eq. [42]) arises both be-
cause of the use of a third-order Taylor series approximation
and because correlation coefficients between local averages
associated with observations are approximated by correla-
tion coefficients between the local average centers.
Substituting eqs. [34], [37], [41], and [42] into eq. [33]
leads to

½44a� mlnY ’ mlnF þ d2

2
ðs2

f̂
� s2

f
Þ

½44b� s2
lnY ’ s2

lnF þ d21ðs2

f
þ s2

f̂
Þ

þ d22
2
þ d1d3

� �
ðs4

f
þ s4

f̂
Þ

þ 5d23
12

ðs6

f
þ s6

f̂
Þ � 2CovðlnX; lnX̂Þ

The argument to F in eq. [32] is the reliability index,

½45� b ¼ lnðq=4guÞ � mln Y

sln Y

If the reliability index is specified through knowledge of
pm, then the geotechnical resistance factor is determined by

½46� 4gu ¼ expðlnq� mln Y � bsln YÞ

Fig. 3. Correlation between local averages is approximated by the correlation function, r(t), between centers.

Fig. 2. Frequency histogram of Y (solid line) and fitted lognormal distribution (dotted line).
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Comparison of theoretical and simulated
failure probabilities
To test the proposed theory, a series of nsim = 10 000 real-

izations of a soil mass are simulated for each of a range of
soil variability parameters and sampling distances, r. The re-
sulting Monte Carlo simulation-based failure probability esti-
mates are then compared to the theory presented in the
section “Theoretical estimation of failure probability”.
In detail the Monte Carlo simulation proceeds as follows:

1. The friction angle, f, of a soil mass is simulated as a spa-
tially variable random field using the local average sub-
division (LAS) method (Fenton and Vanmarcke 1990).
The number of soil cells in the X and Y directions are
assumed to be 128 × 128, and each cell size dimension
is taken to be 0.1 × 0.1. The correlation length is varied
from 0 to 50 m, and two coefficients of variation of
friction angle, vf, are considered: vf = 0.2 (s = 2.44)
and vf = 0.3 (s = 4.07). The friction angle is assumed
to have a bounded distribution from fmin = 0.175 rad
(10°) to fmax = 0.70 rad (40°).

2. The simulated soil is sampled along a vertical line through
the soil at some distance, r, from the pile. These vir-
tually sampled soil properties are used to estimate the
characteristic friction angle, f̂, according to eq. [8].
Three sampling distances are considered as illustrated in
Fig. 4: the first is at r = 0 m, which means that the
samples are taken at the pile location. In this case, un-
certainty about the pile resistance only arises if the pile
extends below the sampling depth. Typically, probabil-
ities of failure when r = 0 m are very small. The other
two sample distances considered are r = 4.5 and 9.0 m,
corresponding to reduced understanding of the soil con-
ditions at the pile location (see Fig. 4). These rather ar-
bitrary distances were based on preliminary random field
simulations, which happened to involve fields 9 m in
width. However, it is really the ratio, r/q, that governs
the failure probability. No attempt is made here to in-
clude the effects of measurement error nor of errors in
mapping actual observations, e.g., CPT values, to engi-
neering properties such as friction angle. Thus, the pre-
dicted failure probability (either from theory or
simulation) will be somewhat unconservative (failure

probability increases as measurement error increases).
However, both the theoretical technique and the simula-
tion treat measurement errors in the same way, allowing
a consistent comparison between the two. In addition,
since increasing r results in an increased conditional var-
iance at the pile location, r can be used as a proxy to
represent measurement and other sources of error —
simply set r to a value larger than the actual distance.
Similarly, using a higher coefficient of variation in the
friction angle distribution will produce a similar result.

3. The required design pile length, H, is calculated using
eq. [22].

4. Dead and live loads, FD and FL, respectively, are simulated
as independent lognormally distributed random variables
and then added to produce the actual total load on the
pile, F = FL + FD. The means and standard deviations
of the dead and live loads are assumed to be as given in
Table 3. As shown above, the mean loads do not affect
the failure probabilities — it is only the coefficients of
variation (e.g., s/m) that are important.

5. The true ultimate pile resistance, Ru, is computed using
eq. [6] by considering the simulated soil properties
along the pile.

6. The ultimate resistance, Ru, and total load F are compared.
If F > Ru, then the pile, as designed, is assumed to have
failed.

7. The entire process from steps 1–6 is repeated nsim times
(nsim = 10 000 in the present study). If nf of these repe-
titions result in a pile failure, then an estimate of the
probability of failure is pf ’ nf/nsim.

8. Repeating steps 1–7 using various values of 4gu in the de-
sign step allows plots of failure probability versus geo-
technical resistance factor to be produced for the
various sampling distances, coefficients of variation of
the friction angle, and correlation length.
The comparison between the probabilistic analyses of piles

using Monte Carlo simulation based on 10 000 realizations
with those computed theoretically by eq. [32] are illustrated
in Fig. 5. The parameters a = 1.2, b = 0.8 are used in the
simulation, but as mentioned above, they effectively cancel
out of the failure probability calculation so that the results in
Fig. 5 are quite general.
It is immediately clear from Fig. 5 that the probability of

failure, pf, increases with soil variability, vf, which is to be
expected. Also, as expected, the probabilities of failure are
smaller when the soil is sampled directly at the pile than
when sampled some distance away from the pile centerline.
This means that considerable construction savings can be
achieved by improving the sampling scheme, especially
when significant soil variability exists.
The worst agreement between theory and simulation occurs

when the soil is sampled at the pile location (Fig. 5a, r = 0 m).
This may be largely due to estimator error in the simulations.
For example, for those simulations having one failure out of
10 000, the estimated probability of failure is pf = 10–4, which
has standard error, sp̂f ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð10�4Þð0:9999Þ=10 000

p
’10�4.

This means that the simulation cannot be used to validate
small probabilities, i.e., probabilities about 10–4 or less —
the simulation-based probability estimates become highly
uncertain. The potential for large estimator error is seen in
Fig. 5a, where most failure probability estimates are zero,

Fig. 4. Relative locations of pile and soil samples.
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except for those worst cases where one out of the 10 000
realizations failed.
It can be seen from Fig. 5 that the agreement between

theory and simulation is reasonable and that the larger dis-
crepancies can easily be attributed to estimator error. The
overall agreement implies that the theory can be used to esti-
mate pile failure probabilities. The theory will thus be used
in the following section to provide recommendations regard-
ing geotechnical resistance factors required to achieve certain
target maximum acceptable lifetime failure probabilities.

Geotechnical resistance factors

In this section, the geotechnical resistance factor, 4gu, re-
quired to achieve four maximum acceptable failure probabil-
ity levels, (10–2, 10–3, 10–4, and 10–5), will be investigated.
The corresponding reliability indices of these four target
probabilities are approximately 2.3, 3.1, 3.7, and 4.3, respec-
tively.

Figures 6–8 show the geotechnical resistance factors re-
quired for the cases where the soil is sampled at the pile lo-
cation r = 0, at a distance of r = 4.5 m and at a distance of
r = 9 m from the pile centerline. Four coefficients of varia-
tion, vf = 0.1 (s = 1.16), vf = 0.2 (s = 2.44), vf = 0.3 (s =
4.07), and vf = 0.344 (s = 5) are considered for each of the
three sampling locations.
In the cases where the samples are taken at the pile loca-

tion so the soil conditions are well understood, the geotechni-
cal resistance factor exceeds 1.0 when pm ≥ 10–3. In the cases
where the samples are taken 4.5 and 9 m from pile center-
line, the geotechnical resistance factor exceeds 1.0 when
pm ≥ 10–2. The cases where 4gu > 1.0 are not shown.
The worst case values of geotechnical resistance factors

occur when the correlation length, q, is between about 1 and
10 m. Since the correlation length is very hard to estimate
(requiring large volumes of data), the occurrence of a worst
case means that failure probabilities, and required resistance
factors, can be conservatively estimated using the worst-case
correlation length — without having to know the actual cor-
relation length at the site.
As seen in Fig. 8, the smallest geotechnical resistance fac-

tors correspond to the smallest acceptable failure probability
considered, pm = 10–5, when the soil is sampled 9 m away
from the pile centerline, as expected. When the friction angle
coefficient of variation, vf, is relatively large (vf = 0.344) the
worst-case values of 4gu dip down to 0.57 to achieve pm =
10–5. In other words, there will be a significant construction
cost penalty if a highly reliable pile is to be designed using a
site investigation that is insufficient to reduce the residual
variability to less than vf = 0.344 and which is taken at a
fairly large distance from the pile (e.g., r = 9 m).
The worst-case values of geotechnical resistance factors re-

quired to achieve the indicated maximum acceptable failure
probabilities, as seen in Figs. 6–8, are summarized in Table 4.
Some of the geotechnical resistance factors recommended in
this study for pm = 10–2 and pm = 10–3 are greater than 1.0,
which may be because the load factors provide too much
safety for the larger acceptable failure probabilities when the
site is well understood.
To maintain a constant level of reliability in eq. [7],

changes in the load factors must be accompanied by a corre-
sponding changes in the required geotechnical resistance fac-
tor, 4gu. In other words, if one is to compare the geotechnical
resistance factors, 4gu, recommended here with values pro-
vided in other code documents, the ratio of the total load fac-
tor to the geotechnical resistance factor, aT=4gu, which is an
estimate of the overall factor of safety used by each document,
must be considered. The total load factor, aT, is defined as

½47� aT ¼ aLF̂L þ aDF̂D

F̂L þ F̂D

where aL and aD are the live and dead load factors, respec-
tively, and F̂L and F̂D are the characteristic live and dead
loads, respectively.
The dead load factor, aD = 1.25, and live load factor, aL =

1.5, used in this paper, are as specified by the National
Building Code of Canada (NBCC) (National Research Coun-
cil Canada 2005). Bias factors of kD = 1.18 (Becker 1996),

Fig. 5. Comparison of failure probabilities estimated by simulation
(10 000 realizations) and theory for geotechnical resistance factor
(4gu = 0.9) and three sampling locations: (a) r = 0 m; (b) r =
4.5 m; (c) r = 9 m.
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Fig. 6. Geotechnical resistance factors when the soil has been sampled at the pile location (r = 0 m) (note the reduced vertical scale):
(a) pm = 10–4; (b) pm = 10–5.

Fig. 7. Geotechnical resistance factors when the soil has been
sampled (r = 4.5 m) from the pile centerline: (a) pm = 10–3;
(b) pm = 10–4; (c) pm = 10–5.

Fig. 8. Geotechnical resistance factors when the soil has been
sampled (r = 9 m) from the pile centerline: (a) pm = 10–3; (b) pm =
10–4; (c) pm = 10–5.
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kL = 1.41 (Allen 1975), and the ratio of dead to live load
means, RD/L = 3.0, are assumed here. The characteristic dead
to live load ratio, R̂D=L, and the total load factor, aT, in this
paper are then

½48a� R̂D=L ¼ F̂D

F̂D

¼ kDmD

kLmL

¼ 1:18ð3mLÞ
1:41mL

¼ 1:18ð3Þ
1:41

¼ 2:5

½48b� aT ¼ aLF̂L þ aDF̂D

F̂L þ F̂D

¼ aL þ aDR̂D=L

1þ R̂D=L

¼ 1:5þ 1:25ð2:5Þ
1þ 2:5

¼ 1:32

Table 5 compares the total load factor to resistance factor
ratios recommended in this study with those recommended
by the Canadian Foundation Engineering Manual (CFEM)
(Canadian Geotechnical Society 1992), NBCC (National Re-
search Council Canada 2005), now also referenced by the
2006 CFEM (Canadian Geotechnical Society 2006), the
Canadian Highway Bridge Design Code (CHBDC) (Cana-
dian Standards Association 2006), the Australian Standard
Bridge Design Part 3 (AS 5100.3, Standards Australia
2004), two versions of the American Association of State
Highway and Transportation Officials codes (AASHTO
2002, 2007), and the National Cooperative Highway Re-
search Program (NCHRP 507, Paikowsky 2004). The geo-
technical resistance factors recommended in the current
study occupy the first six rows of Table 5 and correspond to
the cases where vf = 0.344, and samples are taken 4.5 and
9 m from the pile centerline for maximum acceptable failure
probabilities, pm = 10–3, 10–4, and 10–5.
The total load factor to resistance factor ratio, aT=4gu, is

generally higher in other documents than predicted here,
although when r = 9 m and pm = 10–5, the 2.32 given by
this study is comparable to the 1992 CFEM (Canadian Geo-
technical Society 1992) (2.62) and the lower end of the Aus-
tralian standard AS 5100.3 (Standards Australia 2004) (2.45).
With respect to the Canadian documents (CFEM, NBCC, and
CHBDC), the higher load to resistance factor ratios could be
due to some extent to the fact that the resistance factors pro-

vided in these documents do not distinguish between fric-
tional and cohesive soils, and presumably were selected
conservatively to provide sufficient reliability for any soil
type.
On the other hand, the Australian standard, AASHTO, and

NCHRP documents do distinguish between cohesive and
frictional soils, and their aT=4gu ratios are significantly higher
(more conservative) than suggested by this research. The
most likely reason for this discrepancy is that this study ne-
glects the effect of measurement error. For frictional soils,
measurement error can be significant, due to sample disturb-
ance and (or) correlation errors, and the friction angle used in
design is often quite a bit more uncertain than assumed here.
One way of accounting for measurement error in this re-
search is to calibrate the results against current standards. In
other words, the higher conservatism in existing codes im-
plies that the first six rows of Table 5 must be viewed in a
relative sense. For example, if it is assumed that the 2005
NBCC (National Research Council Canada 2005) and 2006
CHBDC (Canadian Standards Association 2006) codes are
aimed at a site understanding equivalent to the r = 9 m used
here and to a maximum acceptable failure probability of
about pm = 10–4 (which are both deemed to be reasonable
assumptions), then the results in the first six rows of Table 5
should be scaled so that they approximately match the NBCC
and CHBDC result of about aT=4gu = 3.3 when r = 9 m and
pm = 10–4. The actual scaling factor is the ratio of the resist-
ance factor required to achieve aT=4gu ’ 3.3 at r = 9 m and
pm = 10–4 to the corresponding value in Table 5 recom-
mended by the more recent Canadian codes. Based on Ta-
ble 5, the required ratio is 0.4/0.65 ’ 0.615, which when
multiplying the resistance factors listed in Table 4, yield a
set of resistance factors that are properly calibrated to exist-
ing practice. The resulting calibrated factors listed in Table 6
now provide a quantitative estimate of how the resistance fac-
tors should change as the degree of site understanding (meas-
ured by r) and failure consequence (measured by pm) change.
The factors in Table 6 can thus be used to determine how
code factors should be changed from currently acceptable
values as site understanding and target reliability changes.

Table 4. Worst-case geotechnical resistance factors for various coefficients of varia-
tion, vf, distance to sampling location, r, and acceptable failure probabilities, pm.

Geotechnical resistance factor

r (m) vf pm = 10–2 pm = 10–3 pm = 10–4 pm = 10–5

0.0 0.1 1.21 1.09 1.00 0.93
0.0 0.2 1.20 1.08 0.99 0.93
0.0 0.3 1.19 1.06 0.99 0.92
0.0 0.344 1.17 1.04 0.98 0.91
4.5 0.1 1.19 1.08 0.98 0.91
4.5 0.2 1.15 1.02 0.92 0.84
4.5 0.3 1.06 0.90 0.80 0.71
4.5 0.344 1.00 0.85 0.72 0.64
9.0 0.1 1.19 1.07 0.98 0.90
9.0 0.2 1.13 0.99 0.89 0.81
9.0 0.3 1.02 0.85 0.74 0.65
9.0 0.344 0.93 0.77 0.65 0.57
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Conclusions

The paper presents the theory required to estimate deep
foundation failure probability as a function of ground varia-
bility, vf, site understanding (as reflected by sampling dis-
tance), and target lifetime failure probability. The theory is
validated by random soil and load simulation and can be
used to complement code calibration efforts aimed at deter-
mining required geotechnical resistance factors for the ulti-
mate limit state design of deep foundations under effective
stress (frictional) conditions.
The overall goal of any LRFD is to achieve a certain target

maximum acceptable failure probability that depends on the
severity of failure consequences. The resistance factor thus
depends both on how well the ground conditions are under-
stood at the pile location and on the target failure probability.
A fairly wide range, from 10–2 to 10–5, in maximum accept-
able lifetime failure probabilities were investigated. The latter
end of this range would typically be selected when the failure
consequences are more severe, but in general, the overall
geotechnical system lifetime failure probability (which in-
cludes the effects of structural and geotechnical redundancy)
should be no larger than that of the supported structure.
Often a foundation failure probability that is lower than that
of the supported structure is selected simply because founda-
tions are very expensive to repair, and their failure generally
also leads to the additional costs associated with failure of
the supported superstructure.
The level of understanding of ground conditions is re-

flected in this study by varying the coefficient of variation,
vf, and by varying the effective distance between the pile
and the sampling location, r/q. Since the coefficient of varia-
tion, vf, and the correlation length, q, are often unknown for
a given site, a range in vf was considered, along with a
worse-case value of q, corresponding to the highest probabil-
ity of failure. Three different sampling locations were investi-
gated, with the distance between the pile location and the
sampling location, r, ranging from 0 to 9 m. In general, for

fixed design parameters, the probability of pile failure in-
creases as r and vf increase. Conversely, this means that for
fixed target failure probability, the geotechnical resistance
factor decreases as r and vf increase.
Since measurement and model errors were not directly

considered in this study, the geotechnical resistance factors
recommended above should be considered to be upper
bounds. The statistics of measurement errors are very diffi-
cult to determine, since the true values need to be known,
and should include errors associated with transforming meas-
urements into engineering properties (e.g., CPT observations
to friction angles). Model errors involve the assessment of
how accurately the “true” resistance is predicted by an equa-
tion such as eq. [6], a difficult task, since the true frictional
resistance along with the true soil properties are rarely, if
ever, known. As a result of the difficulties in quantifying
measurement and model error, the effect of these errors on
resistance factors are generally assessed through calibration
with past experience and through the careful analysis of full-
scale experiments. Calibration against existing Canadian co-
des (NBCC (National Research Council Canada 2005) and
CHBDC (Canadian Standards Association 2006)) was
adopted here to scale the required resistance factors so that
they match what is currently used at an assumed moderate to
low level of site understanding and a moderate maximum ac-
ceptable failure probability.
When confidence in the measured soil properties or in the

model used is lower, the results presented here can be em-
ployed by assuming that the soil samples were taken further
away from the pile centerline than they actually were (e.g., if
low-quality soil samples are taken at the pile location, r = 0,
the geotechnical resistance factor corresponding to a larger
value of r, say r = 9 m, should be used), or by increasing
the coefficient of variation, vf.
Many of the deep foundation design parameters, e.g., a, b,

g, and p, along with the mean load and friction angle, cancel
out of the failure probability equation, which means that
these parameters have no influence on the required geotech-

Table 5. Comparison of geotechnical resistance factors determined in this study (first six rows) to
those recommended by other sources.

Source R̂D=L aL aD aT 4gu aT=4gu
r = 4.5 m, pm = 10–3 2.5 1.50 1.25 1.32 0.85 1.55
r = 4.5 m, pm = 10–4 2.5 1.50 1.25 1.32 0.72 1.83
r = 4.5 m, pm = 10–5 2.5 1.50 1.25 1.32 0.64 2.06
r = 9.0 m, pm = 10–3 2.5 1.50 1.25 1.32 0.77 1.71
r = 9.0 m, pm = 10–4 2.5 1.50 1.25 1.32 0.65 2.03
r = 9.0 m, pm = 10–5 2.5 1.50 1.25 1.32 0.57 2.32
CFEM (1992)a 3.0 1.50 1.25 1.31 0.50 2.62
NBCC (2005)b 3.0 1.50 1.25 1.31 0.40 3.28
CHBDC (2006)c 3.0 1.70 1.20 1.33 0.40 3.33
AS 5100.3 (2004)d 3.0 1.80 1.20 1.35 0.40–0.55 2.45–3.38
AASHTO (2002) 3.7 2.86 1.30 1.63 0.50 3.26
AASHTO (2007) 3.7 1.75 1.25 1.36 0.25 5.44
NCHRP 507 (2004)e 2.0 1.75 1.25 1.42 0.25–0.40 3.55–5.68

aCanadian Geotechnical Society (1992).
bNational Research Council Canada (2005).
cCanadian Standards Association (2006).
dStandards Australia (2004).
ePaikowsky (2004).
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nical resistance factor, according to this theory. Since the
geotechnical resistance factor is primarily aimed at account-
ing for geotechnical variability (i.e., coefficient of variation,
vf), it makes sense that it should be largely independent of
fixed and known design parameters.
However, this does not mean that errors made in estimat-

ing any or all of these design parameters (a, b, g, p, and the
means of the loads and resistances) will have no affect on the
true probability of pile failure. These parameters disappear
from the proposed failure probability calculation only be-
cause the assumed true resistance given by eq. [6] makes
use of the very same parameters used in the design calcula-
tions of eq. [9]. In other words, if the design parameters are
in error, the true resistance will be correspondingly in error
and the failure probability ends up comparing two random
quantities (load versus resistance), both of which are aimed
at correspondingly wrong quantities.
A solution to the fundamental issue of how to handle er-

rors in design parameters is to calibrate the resistance factors
against values that are currently acceptable and based on
years of experience with real “data” (fraction of designed
piles that fail in practice), which of course makes sense in
any case, as mentioned above. What this means is that the
resistance factors proposed in this paper should really be
used in a comparative sense, i.e., as a way to determine how
existing resistance factors should be changed with respect to
changes in site variability, understanding, and maximum tol-
erable failure probability (dependent on failure consequen-
ces). For example, suppose that the current code specified
geotechnical resistance factor is 0.4, and that this is based on
a medium to low level of site understanding (equivalent to,
say, r = 9 m), is aimed at a lifetime failure probability of
10–4, and employs the same load factors as used herein. The
corresponding geotechnical resistance factor proposed in row
five of Table 5 is quite a bit higher, at 4gu = 0.65. This dis-
crepancy would almost certainly be due to omitting measure-
ment and model errors, but may also be suggesting that the
current resistance factor is overly conservative. Both possibil-
ities would need further investigation. A first pass calibration
would involve scaling all of the 4gu values in the first six
rows of Table 5 by 0.40/0.65 so that the calibrated resistance
factors would now range from 0.52 (row one) to 0.35 (row

six) in Table 5. A second pass calibration would involve ex-
plicitly adding an error term to the true resistance, with var-
iance selected so as to achieve the current geotechnical
resistance factor of 0.4.
The relative agreement between the theoretically derived

geotechnical resistance factors proposed in this study and
those used in the 1992 CFEM (Canadian Geotechnical Soci-
ety 1992), and to a lesser extent with the lower end of AS
5100.3 (Standards Australia 2004), as shown in Table 5, is,
however, encouraging. The current study provides a rigorous
mathematical basis for the determination of geotechnical re-
sistance factors in pile design in soils under effective stress
(frictional) conditions, and the theory provides a framework
to extend code provisions beyond only calibration with ex-
periment and the past.
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List of symbols

a earth pressure coefficient
b pile interface friction angle coefficient
D depth of soil sample
E expectation operator
d1 first derivative of lnX̂ and lnX
d2 second derivative of lnX̂ and lnX
d3 third derivative of lnX̂ and lnX
F total true (random) load

FD true (random) dead load
F̂D characteristic dead load (F̂D ¼ kDmD)
F̂i ith characteristic load effect
FL true (random) live load
F̂L characteristic live load (F̂L ¼ kLmL)
fY probability density function of Y
ff probability density function of friction angle
Gf standard normal random field of friction angle
H designed pile length
Ii importance factor corresponding to ith characteristic

load effect
m number of soil observations
n number of elements in pile
nf number of times Monte Carlo simulation steps result in

pile failure
nsim number of times Monte Carlo simulation steps are re-

peated
P probability operator
p pile perimeter length
pf probability of failure
pm maximum acceptable probability of failure
q factored design load = aLF̂L þ aDF̂D

RD/L ratio of dead to live load means
R̂D=L characteristic dead to live load ratio
Ru true ultimate resistance (random)
R̂u ultimate characteristic resistance (based on characteris-

tic soil properties)
r distance between soil sample and pile centerline
s scale factor governing friction angle variability
t distance between two points

vf coefficient of variation of friction angle
X̂ defined by eq. [29a]: X̂ ¼ ð1� sinf̂Þ tanðbf̂Þ
X defined by eq. [29b]: X ¼ ð1� sinfÞ tanðbfÞ
Y defined by eq. [29d]: Y ¼ FX̂=X
y a realization of Y
Z vertical coordinate axis
z depth from ground surface

Dz vertical dimension of soil samples
z1 depth of point 1
z2 depth of point 2
zi depth of point i
zoi depth of the center of the ith soil sample
aD dead load factor
ai load factor corresponding to the ith load effect
aL live load factor
aT total load factor
g effective unit weight of soil

gHD average correlation coefficient between the friction an-
gle samples over length D and the friction angle along
the pile of length H

g(H) variance function giving variance reduction due to
averaging over pile length H

d(z) average interface friction angle between the soil and the
pile perimeter at depth z

q correlation length of the random friction angle field, Gf

mD mean dead load
mF mean total load on pile
mL mean live load

mlnF mean total log load on pile
mlnX̂ mean of lnX̂
mlnX mean of lnX
mlnY mean of lnY
mf mean friction angle
mf̂ mean of the characteristic friction angle (based on an

arithmetic average of friction angle observations)
mf mean of the equivalent friction angle (based on an ar-

ithmetic average of friction angle over pile length H)
r correlation coefficient
sf friction angle standard deviation
sD dead load standard deviation
sF total load standard deviation
sL live load standard deviation

slnF standard deviation of total log load
slnY standard deviation of lnY
slnX̂ standard deviation of lnX̂
slnX standard deviation of lnX
sp̂ f

standard deviation of failure probability estimate
sf friction angle standard deviation
sf̂ standard deviation of f̂
s
f

standard deviation of f

s 0
oðzÞ effective vertical stress at depth z
t(z) average ultimate shear stress acting on the perimeter of

the pile at depth z
F standard normal cumulative distribution function
f friction angle
f̂ characteristic value of friction angle
f equivalent friction angle of the soil
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4gu ultimate geotechnical resistance factor

f̂i arithmetic average of observed friction angles (i = 1, 2,
…, m)

fi local average of fðzÞ over the ith element (i = 1, …, n)
fmax maximum friction angles in radians
fmin minimum friction angles in radians
fðzÞ average effective angle of internal friction of the soil

around the pile perimeter at depth z

Appendix A
The first, second, and third derivatives of lnX and lnX̂ are

given by d1, d2, and d3, respectively, as follows. The derivates
are evaluated at the mean. See Naghibi (2010) for more de-
tails.

½A1a� d1 ¼ @lnX̂

@f̂

					
mf

¼ @lnX

@f

					
mf

¼ cosðmfÞ
½sinðmfÞ � 1� þ

2b

sinð2bmfÞ

½A1b� d2 ¼ @2lnX̂

@f̂
2

					
mf

¼ @2lnX

@f
2

					
mf

¼ 1

½sinðmfÞ � 1� �
4b2cosð2bmfÞ
sin 2ð2bmfÞ

½A1c� d3 ¼ @3lnX̂

@f̂
3

					
mf

¼ @3lnX

@f
3

					
mf

¼ �cosðmfÞ
½1� sinðmfÞ�2

þ 8b3

sinð2bmfÞ
þ 2cos 2ð2bmfÞ

sin 3ð2bmfÞp
p
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List of symbols

b pile interface friction angle coefficient
d1 first derivative of lnX̂ and lnX
d2 second derivative of lnX̂ and lnX
d3 third derivative of lnX̂ and lnX
p pile perimeter length
X̂ defined by eq. [29a]: X̂ ¼ ð1� sinf̂Þ tanðbf̂Þ
X defined by eq. [29b]: X ¼ ð1� sinfÞ tanðbfÞ
mf mean friction angle

f̂ characteristic value of friction angle
f equivalent friction angle of the soil
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