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Research activity in the mechanics of landslides has led to renewed interest in the infinite slope
equations, and the need for a more general framework for giving insight into the probability of failure
of long slopes involving non-homogeneous vertical soil profiles and variable groundwater conditions.
This paper describes a methodology in which parameters such as the soil strength, slope geometry and
pore pressures, are generated using random field theory. Within the limitations of the infinite slope
assumptions, the paper clearly demonstrates the important ‘‘seeking out’’ effect of failure mechanisms
in spatially random materials, and how ‘‘first order’’ methods that may not properly account for spatial
variability can lead to unconservative estimates of the probability of slope failure.

� 2011 Elsevier Ltd. All rights reserved.
1. Introduction

Recent interest in the analysis of shallow landslides (e.g. [1–3])
has led to renewed examination of the infinite slope equations as a
simple model for assessing the factor of safety of ‘‘long’’ slopes. The
infinite slope model is the oldest and simplest slope stability meth-
od that assumes identical conditions occur on any vertical section.
While the model is not capable of modeling any kind of down-
slope variability, it is used in this paper to give important insight
into the influence of spatial variability on slope failure probability
and the location of the critical failure mechanism. The infinite
slope equation is usually implemented with the assumption of
homogeneous or averaged soil properties in which failure always
occurs at the base of the slope. The work described in this paper
takes a more general approach, in which one or more of the param-
eters used in the infinite slope equation are treated as random vari-
ables defined by a mean, a standard deviation, and in some cases, a
spatial correlation length. Furthermore, in the case of two or more
random variables, the analyses described in this paper allow for
the option of cross-correlation between parameters. The objective
of the analyses is to produce estimates of the probability of infinite
slope failure as opposed to the conventional factor of safety.
ll rights reserved.
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Consider a typical slice of the infinite slope shown in Fig. 1. The
infinite slope equation for the factor of safety (FS) of a homoge-
neous soil in this case (e.g. [4]) is given by

FS ¼ ðHc cos2 b� uÞ tan /0 þ c0

Hc sin b cos b
ð1Þ

where the independent variable names have the following
meanings
H
 depth of the soil layer to the potential failure surface

b
 slope inclination

c
 total unit weight

u
0

pore pressure at the base of the slice

/
0

effective soil friction angle at the base of the slice

c
 effective cohesion at the base of the slice
In a probabilistic approach to this problem, any of the six input
parameters can be defined statistically by a probability density
function with a mean and a standard deviation. In the case of
parameters such as the shear strength ðc0; tan /0Þ, the unit weight
(c) and pore pressure (u) which are distributed over the depth of
the slope, a third parameter, the spatial correlation length which
describes the distance over which properties tend to be spatially
correlated can be included. Random field (RF) models can account
for this parameter, however the paper will start by using some sim-
pler ‘‘first order’’ probabilistic methods. An important finding of this
paper will be that methods that do not properly account for the
influence of spatial correlation can lead to unconservative reliability
estimates.
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Fig. 1. Infinite slope configuration.

3 The FORM programs used for the three examples described in this paper are all
available from the first author’s web site at http://inside.mines.edu/~vgriffit/FORM/
Infinite_Slope_Paper.
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In most cases we will assume that random variables (e.g. soil
properties, slope angle, pore pressures) are lognormally distrib-
uted, which is to say that the log (base e) of the variables are nor-
mally distributed. The lognormal distribution is one of many
possible choices (e.g. [5]) however it offers the advantage of sim-
plicity, in that it is arrived by a simple nonlinear transformation
of the classical normal (Gaussian) distribution. Lognormal distribu-
tions guarantee that the random variable is always positive, and in
addition to the current authors, it has been advocated and used by
several other investigators as a reasonable model for physical soil
properties (e.g. [6–11]).

2. Example 1: undrained clay (random cu)

Although there are six independent variables in Eq. (1), the first infi-
nite slope example considers just one random variable, namely the un-
drained shear strength cu. Of the other five parameters, two are set to
zero (tan /u = 0, u = 0) and the other three (c, H, b) are set to determin-
istic constant values. Eq. (1) therefore simplifies to the form

FS ¼ cu

cH sin b cos b
ð2Þ

The first example problem assumes that the undrained shear
strength is defined by lcu

¼ 25 kN=m2;rcu ¼ 2:5 kN=m2, with the
other non-zero parameters fixed at c ¼ 20 kN=m3, H = 2.5 m and
b = 30�. It can be noted that if Eq. (2) is evaluated for this test prob-
lem with the undrained shear strength set to the mean value of
lcu
¼ 25 kN=m2, a factor of safety of FS = 1.15 is obtained.

2.1. Example 1 by the first order second moment (FOSM) method

Details of this classical method are described elsewhere (e.g.
[12,13]). The Factor of Safety given by Eq. (2) is a linear function
of a single random variable cu, hence the statistical properties of
the dependent variable FS are simply given by

lFS ¼
lcu

cH cos b sin b
¼ 1:155 and rFS ¼

rcu

cH cos b sin b

¼ 0:115 ð3Þ

In order to compute the probability of failure, we must assume
a distribution for FS. Since cu is lognormal, from Eq. (3) FS will also
be lognormal, hence the probability of failure is given by

pf ¼ P½FS < 1� ¼ P½lnðFSÞ < lnð1Þ� ¼ U �lln FS

rln FS

� �
ð4Þ

where the mean and standard deviation of the underlying normal
distribution of ln FS are given by

rlnðFSÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
lnf1þ v2

FSg
q

and llnðFSÞ ¼ ln lFS �
1
2
r2

lnðFSÞ ð5Þ

and vFS is the coefficient of variation of FS and U(�) is the cumulative
standard normal function.
Using the parameters of the example problem, Eq. (5) give
lln(FS) = 0.139 and rln(FS) = 0.100, which after substitution into
Eq. (4) gives

pf ¼ U �0:13887
0:09975

� �
¼ U½�1:39212� ¼ 1�U½1:39212�

¼ 1� 0:918 ¼ 0:082 ð6Þ

hence the probability of failure is 8.2%.

2.2. Example 1 by the first order reliability method (FORM)

A drawback of the FOSM method is that it can lead to non-
unique probabilities of failure for the same problem when stated
in equivalent, but different ways (e.g. [14–16]). The FOSM method
essentially computes the distance from the mean point to the fail-
ure surface in the direction of the gradient at the mean point. [17]
overcame the non-uniqueness issue in the FOSM by looking for
the overall minimum distance between the mean point and the
failure surface, rather than looking just along the gradient direc-
tion. The approach involves optimization, which is easily coded
in widely available software such as Excel (see e.g. [18,19]).

The Hasofer–Lind implementation is essentially ‘‘distribution
free’’ since it makes no assumption about the probability density
function of the input random variables. FORM implicitly assumes
that the input variables are normally distributed, so if non-normal
parameters are required, the user must evaluate ‘‘equivalent
normal parameters’’ using the [20] approach or suitable transfor-
mations (see also [21,22]). In this paper, only lognormal distribu-
tions will be considered, so the equivalency is easily obtained as
will be shown.

If cu is assumed to be lognormal as in the previous example, a
simple rearrangement of Eq. (2) leads to

FS ¼ elnðcuÞ

cH sin b cos b
ð7Þ

in which case ln (cu) is normally distributed with llnðcuÞ ¼ 3:214 and
rlnðcuÞ ¼ 0:100 from Eq. (5). A FORM analysis3 operating on Eq. (7)
leads to pf = 0.082 (8.2%) in exact agreement with FOSM which is
to be expected in this case for a linear function of a single normal
random variable (e.g. [23]).

2.3. Example 1 by the random field method

In this section we present results obtained using a random field
model of the infinite slope. In this case a typical column from the
slope is split into 100 equal slices and a 1-d random field of the re-
quired property assigned to each slice as shown in Fig. 2. The
choice of 100 slices was considered a reasonable compromise after
performing parametric studies going up to 10,000. As a general
rule, the greater the number of slices, the higher the computed
probability of failure, but the difference was only significant at
the lowest spatial correlation lengths. The methodology for gener-
ating random fields has been described in detail elsewhere, so the
interested reader is referred to other publications (e.g. [5]).

In addition to the mean and standard deviation of the property
being considered, this approach allows the inclusion of an addi-
tional parameter called the spatial correlation length h, also known
as the scale of fluctuation. Loosely speaking, h is a dimensional
property representing the distance within which properties are
significantly correlated (or the log of the property if the field is as-
sumed lognormal). Conversely, properties separated by a distance

http://inside.mines.edu/~vgriffit/FORM/Infinite_Slope_Paper
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Fig. 2. Typical random fields of cu with (a) large spatial correlation and (b) small
spatial correlation.

Fig. 3. Comparison of FORM and random field results for the undrained clay
Example 1 (/u = 0) showing the influence of the spatial correlation length H.
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of more than h are largely uncorrelated. Mathematically, h is
defined here as the area under the correlation function [24].
Fig. 2 shows a grayscale which portrays a random field of a soil
property (e.g. ln (cu)) in which black implies high values and white
implies low. A large spatial correlation length indicates that the
soil property is varying slowly (Fig. 2a) while a small value indi-
cates that it is varying rapidly (Fig. 2b) A key factor however, is that
while the fields look quite different from each other, they have the
same mean and standard deviation of the property being modeled
on average.

After the random field has been generated and assigned to the
slices, the factor of safety of each slice is computed using Eq. (2).
It should be noted that when implementing Eq. (1), H is replaced
by the depth z of each slice (see also Eq. (10)). In the case where
the soil column is modeled by 100 slices, the approach leads to
100 different factors of safety of which the smallest is recorded
as the ‘‘correct’’ value for that particular simulation. It may be
noted that a homogeneous slope (cu = constant) analyzed this
way would also lead to 100 different factors of safety, however
in this case the factor of safety would monotonically decrease with
depth, and the minimum value would always occur at the base of
the soil column (z = H) where z is a maximum. In the random field
case however, the lowest factor of safety of the set does not neces-
sarily occur at the base.
The random field approach then performs Monte-Carlo simula-
tions, which means that the analysis just described is repeated many
times. Each repetition of the analysis involves the generation of a
random field with the same mean and standard deviation, but with
a different spatial distribution of properties each time. For example
in one simulation, the strong soil elements may be near the bottom
of the column, whereas on another they may be near the top.

All results presented in this section used 5000 Monte-Carlo sim-
ulations, which were found to give satisfactory statistical repro-
ducibility. Further discussion of the influence of the number of
simulations on the standard error of the output mean and standard
deviation can be found in [25]. Following each simulation, the min-
imum factor of safety FS and the critical depth at which it occurred
were recorded. From the resulting 5000 FS values, the probability
of failure was computed simply as the proportion of those 5000 re-
sults in which FS < 1.

Fig. 3 shows the computed probability of failure for the test
problem assuming a lognormally distributed cu over a range of spa-
tial correlation lengths H, defined in dimensionless form as

H ¼ hlnðcuÞ

H
ð8Þ

where hlnðcuÞ is the actual correlation length in meters. A Markov
correlation function has been used in this paper of the form

q ¼ e�2s=hlnðcuÞ ð9Þ

where q is the correlation coefficient and s is the vertical distance
between points. In view of the lack of evidence supporting any par-
ticular form of correlation function (e.g. [26]), the Markov function
has been used on the grounds of its simplicity in which only one
parameter needs to be computed.

The result clearly demonstrates the unconservative nature of
the first order approaches. The random field solutions give a higher
probability of failure for all reasonable correlation lengths and only
converge asymptotically on the first order solution as the correla-
tion length becomes very large (H ?1). This convergence empha-
sizes the fact that first order approaches are ‘‘single random
variable’’ methods in which the soil column is always assumed to
be homogeneous, albeit with a shear strength that can vary
randomly.

3. Further observations on the random field results

3.1. Location of the critical failure plane

Consider once more Eq. (2) with the column depth H replaced
by the depth coordinate z to give



Fig. 4. Histograms showing the frequency of the critical depth from the random
field analyses of Example 1. (a) H = 0.04, (b) H = 1.28.

Fig. 5. Typical failure modes from RFEM analyses with vcu ¼ 0:1 and H = 0.25
showing mechanisms well removed from the base of the column (grayscale shows
relative values of cu/z).
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FS ¼ cu

cz sin b cos b
ð10Þ

The minimum factor of safety will occur where cu/z is at a min-
imum (e.g. [27]). When cu is treated as a spatially random variable
however, the minimum value of cu/z, and hence the critical failure
surface, will not necessarily occur at the base of the column. Fig. 4a
and b show histograms of the frequency with which the critical
failure plane occurred at different depths for two different spatial
correlation lengths. Both histograms indicate that a significant pro-
portion of critical failure planes occur above the base. The histo-
gram shown in Fig. 4a for H = 0.04, indicates that only about 23%
of the critical mechanisms occurred at the base with 77% occurring
higher up the soil column. This is because with small correlation
lengths, there is a greater probability of the minimum cu/z occur-
ring higher up the column, even though z is also smaller at higher
elevations. For the higher spatial correlation length of H = 1.28
shown in Fig. 4b, the percentage of mechanisms occurring at the
base (�51%) is considerably increased as the random field becomes
more spatially uniform, where it is less likely that the minimum cu/
z will occur at higher elevations.
Fig. 6. Distributions of input undrained strength corresponding to low ðvcu ¼ 0:1Þ
and high ðvcu ¼ 0:5Þ input coefficients of variation.
3.2. Finite element deformation analyses

The above example involved substitution of parameters into the
infinite slope equations and involved no concept of deformation. In
order to emphasize the varying locations of the critical failure
plane, an additional set of analyses have been performed using
the random elasto-plastic finite element method (RFEM) (e.g.
[28–31]). These analyses have the ability to indicate failure
deformations as well as factors of safety corresponding to each
Monte-Carlo simulation. Fig. 5 shows some deformed meshes for
simulations that were deliberately chosen because they gave
mechanisms that were well removed from the base. It is interest-
ing to observe that some simulations display more than one failure
mechanism, implying more than one location exhibiting the same
(minimum) factor of safety and failing at the same time.

3.3. Distribution of FS values

In the previous sub-section, the probability of failure pf was
computed simply as the proportion of the total number of
Monte-Carlo simulations that resulted in FS < 1. Since each random
field simulation computes a different minimum factor of safety, the
full probability density function of FS values can be plotted and
used for further analysis. Fig. 6 shows the lognormal probability
density functions of the input undrained strength cu for two
different coefficients of variation given by vcu ¼ 0:1 and vcu ¼ 0:5.
Both cases have the same mean of lcu

¼ 25 kN=m2 and spatial



Fig. 7. Histogram of FS frequency distribution for Example 1 together with normal
and lognormal fits based on the computed mean and standard deviation. (a)
vcu ¼ 0:1, (b) vcu ¼ 0:5.
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correlation length of H = 0.32. Fig. 7a and b show the computed
probability density plots of FS values for both cases. Also included
on the figures are analytical normal and lognormal fits to the factor
of safety distributions based on the computed mean and standard
deviation values. In Fig. 7a for the lower input coefficient of varia-
tion, both analytical curves agree well with the random field re-
sults as might be expected in view of the low input variation.

Fig. 7b shows similar fits for the higher input coefficient of
variation indicating that the slope now has a very high probability
of failure. The figure also illustrates that for higher input variabil-
ity, the distribution of FS is much better fitted to the lognormal dis-
tribution, which might be expected considering that the input
random variable on the right hand side of Eq. (3) is also lognormal.
Although this aspect will not be pursued here, lognormal distribu-
tions such as those illustrated in Fig. 7a and b could also be used to
make estimates of the probability of the factor of safety falling be-
low some ‘‘design value’’.

It can also be noted, that with a low input coefficient of varia-
tion of vcu ¼ 0:1 as shown in Fig. 7a, the computed mean and stan-
dard deviation of the factor of safety as (lFS = 1.124 and
rFS = 0.103)Random are quite close to those obtained by the first or-
der method from Eq. (5), namely (lFS = 1.155 and rFS = 0.115)1stOr-

der. For the case with a higher coefficient of variation of vcu ¼ 0:5 as
shown in Fig. 7b however, the results given as (lFS = 0.739 and
rFS = 0.270)Random and (lFS = 1.155, rFS = 0.578)1stOrder respectively
are quite different, confirming that first order assumptions are only
justified for low input coefficient of variation.

4. Example 2: frictional/cohesive soil (random c
0

and tan /
0
)

We now consider an effective stress analysis of the infinite
slope problem with shear strength parameters given by c

0
and

tan /
0

with no pore pressures included. In this case Eq. (1)
simplifies to

FS ¼ c0

cH sin b cos b
þ tan /0

tan b
ð11Þ
Here we consider random c
0

and tan /
0
. The parameter tan /

0

will be modeled as a random variable (rather than /
0
itself) in view

of the fundamental nature of tan /
0
in the Coulomb strength equa-

tion. A lognormal distribution of tan /
0
will ensure the friction an-

gle is bounded by 0 < /
0
< 90�. While it is recognized that very high

friction angles will occasionally be generated, it is felt that the log-
normal distribution represents a reasonable compromise at the
point level, where small pockets of very strong material may be
encountered. Some investigators have advocate a bounded distri-
bution for the frictional strength such as the ‘‘tanh-distribution’’
(see e.g. [5]) however demonstrations of this distribution is left
for future studies.

This second example problem gives both shear strength param-
eters a coefficient of variation vc0 ;tan /0 ¼ 0:3 in which the cohesion
is defined by lc0 ¼ 10 kN=m2 and rc0 ¼ 3:0 kN=m2 and the tangent
of the friction angle by ltan /0 ¼ 0:5774 and rtan /0 ¼ 0:1732 (corre-
sponding to l/0 � 30

�
and r/0 � rtan /0 cosl/0 ¼ 8:6

�
to a first order

of accuracy). The random variables are assumed to be uncorrelated
and lognormal. The remaining parameters from Eq. (11) in this
example are assumed to be deterministic with values given by
H = 5.0 m, b = 30�, c = 17.0 kN/m3 and u = 0. Substitution of these
deterministic parameters and the mean values of the random vari-
ables into Eq. (11) lead to a deterministic factor of safety of
FS = 1.27.

4.1. Example 2 by the first order second moment method (FOSM)

From Eq. (11), and assuming c
0

and tan /
0

are uncorrelated, we
can estimate the mean and standard deviation of FS by the FOSM as

lFS �
lc0

cH sin b cos b
þ

ltan /0

tan b
ð12Þ

and

rFS �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

cH sin b cos b

� �2

r2
c0 þ

1
tan b

� �2

r2
tan /0

s
ð13Þ

which gives lFS = 1.27 and rFS = 0.311
Assuming that FS is lognormal, the probability of failure is then

given by

pf ¼ P½FS < 1� ¼ P½lnðFSÞ < lnð1Þ� ¼ U �lln FS

rln FS

� �
ð14Þ

where the mean and standard deviation of the underlying normal
distribution of ln (FS) from Eq. (5) are given by lln(FS) = 0.2113 and
rln(FS) = 0.2409. After substitution into Eq. (14)

pf ¼ U �0:2113
0:2409

� �
¼ U½�0:8772� ¼ 1�U½0:8772�

¼ 1� 0:810 ¼ 0:190 ð15Þ

hence the probability of failure is 19.0%.

4.2. Example 2 by the first order reliability method (FORM)

If c
0
and tan /

0
are assumed to be lognormal, a simple rearrange-

ment of Eq. (10) leads to

FS ¼ elnðc0 Þ

Hc sin b cos b
þ elnðtan /0 Þ

tan b
ð16Þ

In which case ln (c
0
) and ln(tan /

0
) are normally distributed with

llnðc0 Þ ¼ 2:259, rlnðc0 Þ ¼ 0:294 and llnðtan /0 Þ ¼ �0:592, rlnðtan /0 Þ ¼
0:294 from Eq. (5).

For comparison with the FOSM result of the previous section,
when no correlation was assumed between c

0
and tan /

0
, FORM



Fig. 8. Influence of the correlation coefficient q (between c
0

and tan /
0
) on the

probability of failure pf by FORM.
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gave pf = 0.202 (20.2%) which is in close agreement with the FOSM
result presented in the previous section.

4.2.1. Influence of cross-correlation
The results of an investigation by FORM into the influence of the

correlation coefficient acting between ln (c
0
) and ln (tan /

0
) is

shown in Fig. 8. For comparison, the results obtained with nor-
mally distributed c

0
and tan /

0
have also been included in the figure

as a dotted line. It can be noted that the lognormal and normal re-
sponses are quite similar given the relatively low variability of the
random input parameters. The probability of failure pf appears
quite sensitive to the correlation coefficient q however, and for
the lognormal case varies in the range 0.085 6 pf 6 0.247, with
the highest probability of failure corresponding to the highest po-
sitive correlation between c

0
and tan /

0
. This trend is to be expected

(e.g. [32]) since with positive correlation c
0

and tan /
0

are both
either small, or large at the same time, resulting in a relatively
greater probability of failure.

4.3. Example 2 by the random field method

The random field model has also been applied to the c
0 � tan /

0

slope with the same parametric variations considered in the previ-
ous section. In addition, a range of spatial correlation lengths was
defined in dimensionless form as

H ¼ hlnðc0Þ

H
¼

hlnðtan /0 Þ

H
ð17Þ

The results shown in Fig. 9 indicate a similar trend to that ob-
served previously in Example 1 for the undrained clay, namely that
the FORM results are unconservative in underestimating the prob-
ability of failure for all but the longest spatial correlation lengths. It
Fig. 9. Comparison of FORM and Random Field results for the c
0 � tan /

0
Example 2

showing the influence of the spatial correlation length H and correlation.
may also be noted that the random field results exhibited the same
trend as FORM in relation to the cross-correlation between
strength parameters, with greater positive correlation leading to
higher probabilities of failure (e.g. [33]).

5. Example 3: frictional soil with pore pressures (random tan
/
0
, tan b, c and u)

This example is similar to the infinite slope case considered by
[34], and involves a cohesionless soil layer containing a random
pore pressure. In this study we will assume steady seepage parallel
to the ground surface leading to a pore pressure that decreases lin-
early above the base according to

uz ¼
0 if H � z P u=ðcw cos2 bÞ
u� ðH � zÞcw cos2 b if H � z < u=ðcw cos2 bÞ

(
ð18Þ

where 0 6 z 6 H is the depth below the ground surface, u is the pore
pressure at the base of the column when z = H and 0 6 uz 6 u is the
pore pressure at depth z.

In this case, four out of the six parameters, namely tan /
0
, tan b,

c and u from Eq. (1) are assumed to be random, with the properties
given in Table 1.

The remaining two parameters are deterministic with values
fixed at c

0
= 0 and H = 5 m. In this case, Eq. (1) simplifies to

FS ¼ tan /0

tan b
1� uð1þ tan2 bÞ

cH

� �
ð19Þ

where u is given by Eq. (18). Note that the input values ltanb = 0.325
and rtanb = 0.033 from Table 1 imply that to a first order of accuracy
lb � 18� and rb � 1.9�. Furthermore, when the mean values from
Table 1 are substituted into Eq. (19), the deterministic factor of
safety is FS = 1.514. It may be commented that the lognormal distri-
bution for random variable tan b may not be the best choice, how-
ever our goal in this example was to compare our results with
results of other investigators who had made this assumption.

5.1. Example 3 by the first order second moment method (FOSM)

From Eq. (19), and assuming tan /
0
, tan b, c and u are uncorre-

lated, we can estimate the mean and standard deviation of FS by
the FOSM as

lFS �
ltan /0

ltan b

1�
luð1þ l2

tan bÞ
lcH

 !
ð20Þ

and

rFS�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
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where the closed-form derivative terms are given in the Appendix
A. Evaluation of Eqs. (20) and (21) using mean values gives
lFS = 1.514 and rFS = 0.481.

Assuming that FS is lognormal, the probability of failure is then
given by
Table 1
Input values of for Example 3.

Variable Distribution Mean SD

tan b Lognormal 0.325 0.0325
tan /

0
Lognormal 0.577 0.1732

c Lognormal 18.000 0.5
u Lognormal 12.0 1.2



Fig. 11. Histograms showing the frequency of the critical depth from the random
field analyses of Example 3. (a) H = 0.05, (b) H = 2.0.
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pf ¼ P½FS < 1� ¼ P½lnðFSÞ < lnð1Þ� ¼ U �lln FS

rln FS

� �
ð22Þ

where the mean and standard deviation of the underlying normal
distribution of ln (FS) from Eq. (5) are given by lln(FS) = 0.366 and
rln(FS) = 0.310. After substitution into Eq. (22)

pf ¼ U �0:366
0:310

� �
¼ 0:119 ð23Þ

hence the probability of failure is 11.9%.

5.2. Example 3 by the first order reliability method (FORM)

If all four random variables are assumed to be lognormal, a rear-
rangement of Eq. (19) leads to

FS ¼ elnðtan /0Þ

elnðtan bÞ 1� elnðuÞð1þ e2 lnðtan bÞÞ
elnðcÞH

� �
ð24Þ

With no cross-correlations between the random variables,
FORM gives a probability of failure of pf = 0.113 (11.3%) which is
in close agreement with the FOSM result presented in the previous
section.

5.3. Example 3 by the random field method

Unlike the first two examples, this case includes random vari-
ables of different types. The slope angle tan b and the pore pressure
at the base u are single random variables that do not involve a spa-
tial correlation, length while the variables tan /

0
and c are typical

random field variables, which are spatially distributed along the
soil column with the same correlation length H as shown in Fig. 2.

The results of the random field analyses for a range of correla-
tion lengths are shown in Fig. 10. As in the previous examples,
the FORM result is shown to be unconservative and a special case
of the random field results as H ?1.

Fig. 11a and b show the frequency with which the critical failure
plane occurs at different depths for two different spatial correla-
tion lengths. The mean water surface is at a depth of about
3.65 m below ground surface, and due to these pore pressures,
both the low and high spatial correlation length cases indicate that
the critical depth is most likely to occur at the bottom of the
column. Since the soil under consideration in this example is
cohesionless, the histogram shown in Fig. 11a for a low spatial cor-
relation length (H = 0.05) displays a rather uniform frequency
above the mean water table, indicating that the critical depth has
no preferential location in this region. For a higher spatial correla-
tion length (H = 2.0) however, the factor of safety is also changing
gradually and is either increasing or decreasing with depth. This
Fig. 10. Comparison of FORM and Random Field results for Example 3 showing the
influence of the spatial correlation length H (lognormally distributed tan /

0
).
explains the ‘‘bimodal’’ appearance of the histogram shown in
Fig. 11b, where the critical depth is most likely, on average, to
occur either at the top or the bottom of the soil column.
6. Concluding remarks

Probabilistic slope stability methods that predefine the poten-
tial failure surface using deterministic methods are liable to over-
estimate the factor of safety or underestimate the probability of
failure. This is because they do not allow the failure surface to
‘‘seek out’’ the most critical path through the soil. While this con-
clusion is also valid for 2D and 3D slope geometries, the infinite
slope model offers a particularly striking example of this effect,
since the system exhibits no progressive failure and is essentially
‘‘brittle’’, whereby the first component to fail results in overall sys-
tem failure. First order methods (e.g. FOSM and FORM) applied to
the infinite slope problem gave very similar results to each other,
but inevitably underestimated the probability of failure compared
with the random field analyses, because the failure plane in those
cases is always assumed to occur at the base of the soil column.
The random field analyses showed that there is a significant prob-
ability that the critical mechanism will occur above the base of the
soil column where the factor of safety is lower. While the random
field analyses predicted higher probabilities of failure than the first
order methods, it was observed that the random field results con-
verged on the first order values as the spatial correlation length
was increased. This is to be expected, because as the spatial corre-
lation length increases, the greater homogeneity of the soil column
means that the probability of the critical mechanism occurring
above the base is reduced.
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Appendix A

Derivative terms used in Example 3

@ðFSÞ
@ðtan /0Þ ¼

1
tan b

1� uð1þ tan2 bÞ
cH

� �

@ðFSÞ
@ðtan bÞ ¼ �

tan /0

tan2 b
1� uð1þ tan2 bÞ

cH

� �
� 2u tan /0

cH

@ðFSÞ
@c
¼ ð1þ tan2 bÞ

tan b
u tan /0
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